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Opportunistic networks are a generalization of DTNs in which disconnections are frequent
and encounter patterns between mobile devices are unpredictable. In such scenarios, mes-
sage routing is a fundamental issue. Social-based routing protocols usually exploit the
social information extracted from the history of encounters between mobile devices to find
an appropriate message relay. Protocols based on encounter history, however, take time to
build up a knowledge database from which to take routing decisions. While contact infor-
mation changes constantly and it takes time to identify strong social ties, other types of ties
remain rather stable and could be exploited to augment available partial contact informa-
tion. In this paper, we start defining a multi-layer social network model combining the
social network detected through encounters with other social networks and investigate
the relationship between these social network layers in terms of node centrality, commu-
nity structure, tie strength and link prediction. The purpose of this analysis is to better
understand user behavior in a multi-layered complex network combining online and offline
social relationships. Then, we propose a novel opportunistic routing approach ML-SOR
(Multi-layer Social Network based Routing) which extracts social network information
from such a model to perform routing decisions. To select an effective forwarding node,
ML-SOR measures the forwarding capability of a node when compared to an encountered
node in terms of node centrality, tie strength and link prediction. Trace driven simulations
show that a routing metric combining social information extracted from multiple social
network layers allows users to achieve good routing performance with low overhead cost.

� 2015 Elsevier B.V. All rights reserved.
1. Introduction

The pervasive use of mobile phones and the social
networking applications available on these devices have
attracted particular interest in recent years, especially in
the research area of infrastructure-less network
architectures exploiting peer-to-peer opportunistic
connectivity and social relations for content dissemination.
In a world where individuals are becoming increasingly
reliant on mobile communication in several aspects of
their life, being unable to communicate can negatively
affect both business and personal relationships.
Consequently, when there is no suitable network architec-
ture, an alternative system is necessary. Delay Tolerant
Networks (DTNs) [1–3] were designed to allow communi-
cation in challenged scenarios where a fixed network
infrastructure is not available, nodes often create sparse
network topologies and the contacts between them are
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intermittent. DTNs use a store-carry-forward paradigm where
the mobile node first stores the message, carries it while
moving, and then forwards it to an intermediate node or to
the destination. A network that routes packets using this
approach is also called opportunistic network [4], because
nodes forward messages during an encounter opportunity.

Many works on opportunistic routing focus on the best
way to select the optimal relay node considering real-
world social interactions to optimize message delivery.
Studying the social relationships between individuals
within the network, it is possible to better understand
which encounters are useful to minimize unnecessary
message forwarding. Commonly, the social relationships
are extracted from Bluetooth, ZigBee or Wi-Fi encounters
between mobile devices [5–10]. Protocols based on the
social network detected through encounters, however,
take time to build up a knowledge database from which
to take routing decisions. Contact information changes
constantly and it may produce suboptimal paths since it
takes time to build the complete social behavior of each
network node. Online social network ties (e.g. Facebook,
Twitter, MySpace, and LinkedIn), on the contrary, are
explicitly declared and represent more stable relation-
ships. Also nodes’ interests that are usually self-declared
online represent a social dimension useful to build the
social behavior of a node. For this reason, we believe that
by designing routing metrics that combine the available
offline social information with online social information,
the chances of the message reaching its destination are
maximized since the routing scheme has a ‘‘multi-layer
knowledge’’ of a relay’s social behavior [11,12].

The aim of this paper is to demonstrate that the use of
online and offline social features extracted from multiple
social networks is able to improve opportunistic routing.
Although several forwarding schemes [13–19] using both
online social network and detected social network infor-
mation exist, we propose an approach exploiting more
than two social network layers, previously introduced in
[20]. In this paper, we start defining a multi-layer social
network model combining the temporal social network
detected through wireless encounters and other types of
static social networks, and investigating the relationship
between social network layers in terms of node centrality,
community structure, tie strength and link prediction. Our
knowledge of the structural differences between different
social networks for the same set of individuals is limited.
This is partly due to the difficulty in collecting human
mobility data that record, simultaneously, individuals’
movements and their social interactions at different layers.
For this reason, we analyze the data of two experiments
including mobility, online social network and interests of
the participants that enable us to better understand par-
ticipants’ behavior at different social network layers. The
aim of this analysis is twofold: firstly, it provides novel
insights into the comparability of social networks and sec-
ondly, it is useful for understanding social dynamics on a
multi-layer complex network which can be exploited for
message forwarding. Then, we demonstrate that
multi-layer social networks can improve opportunistic
forwarding by proposing a Multi-Layer Social network
based Opportunistic Routing (ML-SOR) protocol, in which
a node forwards packets using a routing metric that com-
bines social information extracted from multiple social
network layers. We show the effectiveness of ML-SOR by
comparing it to Epidemic routing [21], PRoPHET [22],
Bubble Rap [5], H-Bubble Rap, a hybrid version of Bubble
Rap computing centrality on a multi-layer social network,
and PeopleRank [15]. Extensive simulations on the two
experimental datasets show that ML-SOR can achieve
message delivery ratio similar to Epidemic routing with
significantly lower overhead cost.

The remainder of this paper is organized as follows.
Section 2 provides a review of existing works on multi-
layer social networks and on social-based routing proto-
cols for opportunistic networks exploiting several types
of social networks to drive routing decisions. Section 3 for-
mally describes the multi-layer social network model
adopted in our work. Section 4 describes the datasets used
to test individuals’ behavior at different social network lay-
ers and discusses the results of multi-layer social network
analysis. Section 5 presents ML-SOR, our multi-layer social
network based routing proposal. Section 6 describes how
ML-SOR performance evaluation is organized. Section 7
presents the results of performance evaluation. Finally,
Section 8 discusses the results and Section 9 concludes
the paper.
2. Related work

In recent years, several social-based routing algorithms
have been proposed for opportunistic networks. The plain
fact that these networks are basically human-centered
and follow the way humans come into contact, has led
researchers to use concepts of Social Network Analysis
(SNA) [23] like community detection [24,25] or centrality
analysis [26–28] in the design of more efficient routing pro-
tocols. Most social-based routing protocols exploiting com-
munity structure and/or centrality (i.e., the contribution of
network position to the importance of an individual in the
network) compute these metrics on the social graph
detected through real-world contacts between mobile
devices. We refer to this proximity graph as detected social
network (DSN). Only few works drive routing decision also
using social information extracted from virtual or self-
declared contacts. We call the social network based on these
kind of contacts online social network (OSN). In the following
sections, we describe the main social-based forwarding
schemes for opportunistic networks, by dividing them into
two categories; using only DSN or using both DSN and OSN
for extracting social routing metrics. Since we consider
more than two social network layers in our work, we also
review the main works on multi-layer social networks.
2.1. Multi-layer social networks

In the real world, more than one kind of connections
can exist between any pair of individuals. As a matter of
fact, for this type of social networks there is not a unique
word identifying them. Terms as multi-layer network,
multi-relational network, multidimensional network and
multiplex network are considered synonyms [29].
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Bródka et al. [30] define a multi-layer social network as
a set of single-layered social graphs where each graph has
a unified and fixed set of nodes, and only the set of edges
between nodes may vary. A similar model is proposed by
Magnani and Rossi [31], where a pillar multi-network
allowing different node sets for each layer and adding a
node mapping function between layers is defined. In this
work, the authors propose also a ML-model where many
nodes from one social network layer can match to a single
node in another layer.

A great effort has been made into the definition of
multi-layer social metrics that consider all the different
social dimensions. In [32], Hao et al. propose a measure
of the influence of one layer on the other layers. Bródka
et al. [33] focus on the shortest path problem proposing
two approaches for the computation of shortest paths in
multi-layer social networks. In [30], the same authors
investigate the neighborhoods in multi-layer social net-
works by defining and analyzing cross-layer clustering
coefficient, cross-layer degree centrality and various ver-
sions of multi-layer degree centrality.

2.2. Opportunistic forwarding using only DSN

Forwarding schemes belonging to this category com-
monly extract social information from Bluetooth, ZigBee
or Wi-Fi interactions between mobile devices whose ubiq-
uity permits the collection of user co-presence information
and the identification of social ties grounded on real-world
interactions. In [34], a large number of traces related to dif-
ferent human mobility environments are analyzed, finding
that their inter-contact time distribution is heavy-tailed.
Consequently, routing algorithms for opportunistic net-
works have to be tested under different mobility models
than the random waypoint (RWP).

Bubble Rap [5] is a social-based protocol exploiting both
community and centrality computed on DSN. It uses two
centrality values that are associated to each node based
on the node global popularity in the whole network and
local popularity within its community or communities.
The forwarding scheme uses these centrality values so that
a message is transferred to nodes with higher global cen-
trality values until the carrier node meets a node with
the same community label as the destination node. In this
case, the message is forwarded to nodes with higher local
rankings until successful delivery.

In Habit [6], Mashhadi et al. define a social-based rout-
ing scheme where messages are forwarded to nodes that
are interested in the specific content of the message.
Messages are disseminated in a selection-based manner
by taking into account a node’s physical proximity and
its social ties. A regularity graph is used to keep trace of
when and how often two nodes come into contact, and
an interest graph is used to build dissemination paths based
on nodes interested in particular data. However, the data
useful to build the interest graph is only disseminated to
close neighbors belonging to the regularity graph.

The SimBetTS [7] routing protocol is another example of
DSN-based protocol where a node forwards a message to
an encountered node according to three social metrics:
betweenness (the number of shortest paths on which a
node lies), similarity (the number of ties that two nodes
share), and tie-strength (the recency, duration and number
of contacts between two nodes). During an encounter, the
nodes exchange their lists of encountered nodes in order to
locally calculate the betweenness utility, the tie strength
utility and the similarity utility. Each node then examines
the messages it is carrying and computes the overall utility
value of each message destination. Messages are then for-
warded to the node holding the highest overall utility for
the message destination node.

In [8,9], the popularity of a node in DSN is used as
routing criterion. In the former, popular nodes (called
hubs) are those connected with many nodes in DSN and
are characterized analyzing the history of encounters. In
the latter, both the popularity of a node in DSN and the
contact durations are used to perform a destination-unaware
forwarding strategy. The interesting aspect of this work is
that centrality is not computed based on the aggregated
network contact graph but takes into account the
dynamics of node mobility.

2.3. Opportunistic forwarding using both DSN and OSN

Routing schemes based on DSN examine encounters
between mobile devices in order to optimize routing by
forwarding messages to nodes which are encountered
more often. However, social metrics computed on DSN,
may miss some strong social ties between nodes, since it
takes time to reconstruct a consistent social behavior for
each node from an intermittent contact network. In such
situations, OSN helps to better identify the social behavior
of nodes and consequently, to improve the construction of
forwarding paths.

In [13], Mtibaa et al. propose a Bluetooth-based mobile
social network application deployed among a group of par-
ticipants during a computer communication conference
and show that the structure of the social graph constructed
on self-declared friends helps to build forwarding paths in
the contact graph, allowing two nodes to communicate over
time using opportunistic contacts and intermediate nodes.

In MobiClique [14], Pietiläinen et al. leverage DSN and
OSN so that users can move between them in a way that
enhances both. MobiClique bootstraps the network using
the users’ Facebook profiles consisting of a unique user
identifier, the friendlist and a list of groups (or networks)
consisting of users sharing some common interests.
During an encounter, if the two users are friends or share
some interests, they are alerted and can choose to
exchange data. In a similar work [16], Bigwood and
Henderson present an opportunistic routing protocol,
called Social Role Routing (SRR), that uses OSN information
to bootstrap the opportunistic network. SRR exploits social
network analysis technique of regular equivalence [35]
that partitions nodes into classes in order to categorize
nodes into roles. During the bootstrap phase of the net-
work, each node stores a copy of a role connectivity graph,
which has been previously computed using the OSN of
the participating nodes, allowing them to compute the
geodesic distance between roles. Message are then
forwarded only to encountered nodes that are in the same
role, or in a role adjacent to the destination’s role.
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PeopleRank [15] uses OSN information in a different way.
The OSN graph (called social graph) edges can represent a
friendship relationship or shared interests between a node
pair. This information is used by the routing scheme to
compute node rankings. This protocol is similar to the
PageRank algorithm [36] used by Google search engine to
measure the relative importance of a Web page within a
set of pages. When two neighbor nodes in the OSN graph
meet, they exchange two pieces of information: their
current PeopleRank values describing their sociality and
the number of OSN neighbors they have. Messages are then
forwarded towards nodes having a higher PeopleRank
value.

In SPRINT [18], OSN information is combined with
contact history and predictions of future encounters.
These aspects are used by each SPRINT node to compute
utility values for its messages and perform social-based
routing accordingly. Message utility is computed considering
the freshness and the number of hops of the message, the
delivery probability and the popularity of the carrier node,
the future meeting, the social connection and the time
spent between the carrier and the destination.

3. Multi-layer social network model

Physical encounters described through DSN are the old-
est form of interaction which still plays a fundamental role
in human sociality. However, today’s social relationships
are maintained through several layers of interactions, such
as chats, emails, phone calls and online social networking
websites. DSN and OSN described in the previous section
represent two different social contexts. If we extend the
number of social contexts and consider several social net-
works for a particular set of users, we obtain a multi-layer
structure, representing the connections of a single user to
other users on several autonomous layers. Two users might
be connected on many layers at the same time – e.g. two
users may be connected through Bluetooth network,
Facebook, LinkedIn and Twitter networks – while other
users may be connected on just one layer – e.g. like
co-workers connected only through LinkedIn or friends
only through Facebook. The result is a multidimensional
complex structure where there are several social network
layers and where users exploit different dimensions of
sociality. In this paper, we define a multi-layer social net-
work as in [30] and consider weighted graphs, where edge
weights can be used to represent the strength of the
relationship, similarly to [31].

Definition 1 (SOCIAL NETWORK LAYER). A social network layer L
is a weighted graph G V ; Eh iwith vertex set V corresponding
to users on the social network and edge set E # V � V
corresponding to social links between users.
Definition 2 (MULTI-LAYER SOCIAL NETWORK). A multi-layer
social network MLSN ¼ ðL1; L2; . . . ; LnÞ is a tuple where
Li ¼ Gi V ; Eih i; i 2 1; . . . ;n are social network layers.

An example of multi-layer social network is shown in
Fig. 1. As can be seen, the vertexes of the set
{A,B,C,D,E,F,G,H,I} are connected on n different social
network layers. On each layer, the set of vertexes has a par-
ticular connectivity pattern (set of directed edges) which is
related to the social context representing that layer. Vertex
C and vertex D, for example, have a unique connection on
layer 2. The study of such a network is useful to under-
stand the overall social behavior of users. By comparing
node centrality, communities or other structural measures
computed on the multi-layer network, it is possible to
understand how much the single networks are comple-
mentary to each other or have a similar social function.
In the following section, we study two particular
multi-layer social networks extracted from experiments
performed during scientific conferences and we present
the results of the multi-layer social network analysis.

4. Multi-layer social network analysis

In this preliminary study, we aim to illustrate how
nodes behave at different social network layers. We start
describing the datasets used to perform the analysis and
the methodology adopted to create a multi-layer social
network from temporal and static social networks. Then,
we analyze some structural properties of the multi-layer
social graph. The key contributions of this study can be
summarized as follows:

� propose a novel methodology to create a multi-layer
social network graph when the available social informa-
tion is in the form of both temporal (e.g. DSN) and static
social graphs (e.g. OSN);
� provide novel insights into the comparability of social

networks;
� provide results about the relationship between social

network layers which support our intuition that multi-
layer social networks can be exploited for opportunistic
routing.

4.1. Datasets

For our analysis, we use Lapland [37] and Sigcomm [38]
datasets. Lapland dataset was collected during the
ExtremeCom09 workshop in Padjelanta National Park
(Sweden) and contains Bluetooth co-location data of 17



Table 1
Summary of the two datasets used for evaluation.

Lapland Sigcomm

DSN type Bluetooth Bluetooth
Radio range 10 m [10–20] m
# of devices 17 76
Device type iMote Phone
Trace duration 399812 s 320593 s
Granularity [120–600] s 120 ± 10 s
OSN type Facebook Facebook
Interests type scientific Facebook
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conference attendees logged during 4 consecutive days.
Participants were asked to carry iMotes with them detecting
devices in proximity range (approximately 10 meters). In
addition to mobility information, the dataset contains par-
ticipants’ Facebook friendlists and interests in terms of
scientific topics.1 Similarly to Lapland dataset, Sigcomm data-
set was collected during a conference, the SIGCOMM 2009
conference held in Barcelona (Spain). This dataset, available
from the CRAWDAD project [39], includes Bluetooth co-location
data collected by the opportunistic mobile social application
MobiClique and the social profiles (Facebook friends and
interests) of 76 conference attendees.

In both datasets, the experimental devices logged all
Bluetooth contacts between the nodes participating to the
experiment using a periodic scanning every t seconds,
where t is the experiment’s granularity. These two experi-
mental traces are representative of two different social
environments in terms of node mobility. Moreover,
considering OSN information, each Lapland mobile node
has a Facebook profile while in Sigcomm, a small subset
of mobile nodes does not have Facebook information
(probably for privacy issues or simply because they do
not use Facebook). On the contrary, considering interests,
both in Lapland and in Sigcomm each node has at least
one interest. Table 1 summarizes their main characteristics.

Fig. 2 summarizes the characteristics of Bluetooth co-
location data in terms of contact duration and total
number of contacts distributions. As can be observed, they
follow both an approximate power law in each dataset. By
looking at the complementary CDF of contact durations,
52% of Lapland contact durations last more than one hour,
while only 4% last more than 3 h. In Sigcomm dataset, con-
tact durations are shorter: only 5% of contact durations last
more than 1 h. By looking at the number of contacts in
Lapland dataset, we observe that 50% of the number of
contacts is greater than 26, and 15% is greater than 50. In
Sigcomm dataset, on the contrary, the number of contact
opportunities between node pairs is significantly lower.
Only 10% of the number of contacts is greater than 10. As
far as the correlation between contact durations and the
number of contacts is concerned, in Lapland dataset we
found that contact duration is positively correlated to the
number of contacts with a correlation coefficient of
0.991. For Sigcomm dataset, we found a correlation value
of 0.621.
1 The scientific topics of conference attendees have been extracted from
their publications available online. Using each paper’s keywords listed after
the abstract, we produced a list of scientific interests for each participant.
4.2. Social network layers modeling

Based on the above social information, we extract dif-
ferent undirected social graphs that are used to model
the multi-layer social network for each dataset. We use
the participants’ Facebook social network information to
generate a Facebook network social graph, where an edge
between two nodes exists if they are friends, and the
participants’ interests to generate an Interest network social
graph where an edge between two nodes i and j measures
the similarity Simði; jÞ between them. Here, we use the
Jaccard coefficient as similarity measure:

Simði; jÞ ¼ jIi \ Ijj
jIi [ Ijj

ð1Þ

where Ii and Ij are the sets of interests of node i and node j,
respectively.

As far as Bluetooth co-presence data are concerned, we
need to form a social graph as in the above cases.
However, the modeling of a social graph from a time-vary-
ing structure is more complex, since contact patterns may
change radically over time. The most obvious example is
the day-time pattern: many contacts during the day and
few at night. Considering that the DSN is a temporal graph
while the other network layers (Facebook and Interest) are
static graphs, we choose to model a multi-layer social
network using only static graphs in order to simplify the
comparison between layers. In that way, we are able to
easily compare metrics belonging only to static graphs thus
avoiding the comparison between temporal and static
graph metrics. To this end, we choose to use a Joint
Diagonalization (JD) technique [40] that is able to decom-
pose the behavior, in times, of DSN in order to create average
static graphs for each time. Each of these static graphs,
called mode, is a representation of the most common prop-
agation paths corresponding to a particular time interval. JD
has been successfully used in different areas to track the
evolution of systems via their eigenvectors and the applica-
tion to SNA is quite recent. Given M samples of a network
fA1;A2; . . . ;AMg, JD produces an average matrix �A of the sam-
ples. Specifically, it seeks an orthogonal matrix such that:

Ai ¼ UCiU
T 8i ð2Þ

If U corresponds to the eigenvectors of Ai then Ci is diagonal,
however no matrix U exists where all Ci are diagonal
(except for the trivial case in which all Ai are equal). Since
JD aims at finding an average matrix representative of all
samples, it seeks an average orthogonal matrix �U which
diagonalizes the given matrices Ai as much as possible. In
particular, it seeks a matrix �U such that the sum of the

squares of off diagonal elements of
PM

i¼1Ci are minimized:

�U ¼ argmin
U

off2

XM

i¼1

Ci

 !
ð3Þ

where off2 is the sum of the squares of off diagonal ele-
ments, called the deviation of Ai from �A; di:

di ¼ off2ðCiÞ ¼
X
k–j

jCk;j
i j

2 ð4Þ
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where Ck;j
i is the kth row and jth column of Ci. Given �U, an

average sampling graph may be constructed as:

�A ¼ �U�C �UT ð5Þ

where �A is a matrix in which each entry is the average
weight of the link as observed by the samples in the
network (in a least square sense) and �C is the average of
diagonals of Ai projected onto �U.

For each dataset’s DSN, we generated 10,000 spanning
trees as samples, starting from a random node with the
messages starting at random times (uniformly distributed).
Then, these trees were combined using JD in order to
create an average sampling matrix �A. By examining the dis-
tribution of deviations from �A; di (with i ¼ 1; . . . ;10;000),
we found that the distribution is multi-modal both in
Lapland and in Sigcomm datasets (Figs. 3 and 5). Two
modes of operation, extracted through a Gaussian mixture
model [41], summarize the most frequent propagation
paths on the corresponding DSNs. Figs. 4 and 6 show the
distribution of the sample start times. Lapland DSN has
different modes of operation at different times. Mode 1
covers part of the times with low frequency values (i.e.
network pattern occurring few times), while Mode 2 is
the predominant one, being the first mode to occur and
covering all the times with high frequency values.
Similarly, Sigcomm DSN has Mode 2 as the predominant
one. However, differently from Lapland DSN, Sigcomm
Mode 1 covers a shorter time window with high frequency
values (i.e. network pattern occurring many times in a
limited time period).

Based on the social graphs extracted from Bluetooth co-
presence data, Facebook friendlists and shared interests,
Lapland and Sigcomm multi-layer social graphs will be
composed by 4 layers: (1) DSN Mode 1 (M1), (2) DSN
Mode 2 (M2), (3) Facebook network (FB), and (4) Interest
network (Int). The structural analysis of these multi-layer
networks will be presented in the following sections.
4.3. Comparison of node centrality

The identification of which nodes are more central than
others is one of the most important tasks in social network
analysis. The aim of this analysis on a multi-layer network
is to understand how a particular centrality measure varies
for a given node in each network. For each node and at
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each network layer we computed some fundamental cen-
trality measures: degree, ego betweenness, closeness and
eigenvector centrality. Degree centrality counts how many
connections a node has and can be considered the most
basic of all centrality measures. Ego betweenness [42] is
another important measure quantifying the influence a
node has over the flow of information between every pair
of nodes in the network graph under the assumption that
information flows over the shortest path between them.
This measure is computed using just the one-hop adja-
cency matrix of a node, as opposed to the global adjacency
matrix used for classical betweenness [27]. Closeness cen-
trality [23] emphasizes the distance of a node to all others
in the network. With this measure, it is possible to identify
the nodes that could reach others quickly. Eigenvector
entrality [43] is a particular centrality measure defined in
a circular manner. The centrality of a node is proportional
to the sum of the centrality values of all its neighbors. In
other words, an important node can be characterized by
its links to other important nodes.

In Table 2, the correlation between the values of a par-
ticular centrality measure computed among two different
layers of Lapland dataset is shown. qM1;M2 represents, for
example, the correlation between a centrality measure
in Mode 1 network and the same centrality measure in
Mode 2 network. We note that, in general, there is no
high correlation between centrality measures of the same
type at different layers, except for closeness between
Mode 2 network and Facebook network with a medium
correlation value of 0.42. Looking at Sigcomm dataset
results in Table 3, we find again low correlation values,
except for Mode 2 network and Interest network that
show medium correlation values on most centrality
values (degree, closeness and eigenvector centrality) thus
demonstrating that they are more similar. We conclude
that even if there are some cases in which some layers
show medium–low similarity in terms of a centrality
metric, the results for both datasets show that in most
cases the centrality of a node on Facebook network and
Interest network layers do not predict its centrality on
DSN.
4.4. Similarity among communities

In this section, we focus on groups by analyzing the
communities at each network layer. We consider a set of
community detection algorithms that are able to detect
both non-overlapping and overlapping communities. The
following summarizes their features.

� Fiedler clustering [44] is a spectral method splitting the
graph into two disjoint communities. The eigenvector
for the second smallest eigenvalue of a Laplacian matrix
is called Fiedler vector and can be used for decomposing
graphs into structural components.
� Louvain method [45] partitions the graph in disjoint

communities and is based on a greedy optimization
technique that attempts to optimize the modularity
[46] of a partition of the network. As a first step, the
method looks for small communities by optimizing
modularity locally. As a second step, it aggregates nodes
belonging to the same community and builds a new
network whose nodes are the communities. These steps
are repeated iteratively until a maximum of modularity
is attained and a hierarchy of communities is produced.
� n-CLIQUE algorithm [47] analyzes the overlapping

structure of communities. It finds all the maximal
complete subgraphs such that the distance of each pair
of nodes is not larger than n.
� k-CLIQUE or Clique Percolation Method (CPM) [48] is

another approach finding overlapping communities
where a community is defined as the union of all
k-cliques (complete subgraphs with k nodes) that can
reach each other through a series of adjacent k-cliques,
where two k-cliques are said to be adjacent if they
share k� 1 nodes.

Since we are interested in measuring the similarity
between communities belonging to different network
layers, we use the normalized mutual information [49]
measure. Given two networks A and B, the normalized
mutual information is defined as follows:



Table 2
Correlation between centrality measures computed between couple of social network layers (Lapland dataset).

qM1;M2 qM1;FB qM2;FB qM1;Int qM2;Int qFB;Int

Degree �0.318 0.155 0.113 �0.12 0.358 0.244
Ego betweenness �0.453 0.104 �0.106 �0.073 0.082 0.191
Closeness �0.347 0.169 0.42 �0.212 0.272 �0.213
Eigenvector �0.276 0.137 0.076 �0.206 0.392 0.213

Table 3
Correlation between centrality measures computed between couple of social network layers (Sigcomm dataset).

qM1;M2 qM1;FB qM2;FB qM1;Int qM2;Int qFB;Int

Degree �0.302 0.145 0.103 �0.111 0.343 0.233
Ego betweenness �0.435 0.099 �0.086 �0.065 0.069 0.18
Closeness �0.332 0.158 0.263 �0.199 0.418 �0.209
Eigenvector �0.265 0.122 0.069 �0.195 0.379 0.196

Table 4
Similarity between Lapland communities belonging to different social
network layers.

Communities NMIFiedler NMILouvain NMIn�CLIQUE NMICPM

CM1; CM2 0.185 0.17 0 0
CM1; CFB 0.174 0.229 0.179 0.398
CM1; CINT 0.028 0.228 0 0
CM2; CFB 0.075 0.11 0 0
CM2; CINT 0.091 0.025 1 1
CFB; CINT 0.108 0.208 0 0

Table 5
Similarity between Sigcomm communities belonging to different social
network layers.

Communities NMIFiedler NMILouvain NMIn�CLIQUE NMICPM

CM1; CM2 0.103 0.098 0.032 0.018
CM1; CFB 0.127 0.119 0.012 0.039
CM1; CINT 0.123 0.028 0.021 0.235
CM2; CFB 0.199 0.359 0.188 0.298
CM2; CINT 0.097 0.224 0 0
CFB; CINT 0.158 0.323 0.037 0.215
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NMIðA;BÞ ¼
�2
PcA

i¼1

PcB
j¼1Nij log NijN

Ni:N:j

� �
PcA

i¼1Ni: log Ni:
N

� �
þ
PcB

j¼1N:j log N:j
N

� � ð6Þ

where cA is the number of communities in network A; cB is
the number of communities in network B; Nij is the
number of nodes in the intersection between community
i from network A and community j from network B; N is
the total number of nodes, and Ni: and N:j are the number
of nodes in community i of network A and community j
of network B, respectively. NMIðA;BÞ ranges between 0
and 1, where different communities have a mutual
information of 0 and identical communities have a mutual
information of 1. In [50], an extended version of this
measure was defined for overlapping communities.

The results of the similarity values for Lapland and
Sigcomm datasets are shown in Tables 4 and 5,
respectively. For both datasets, we considered n = 3 with
a minimum size of cliques c sizemin ¼ 2 for n-CLIQUE and
k = 3 for CPM. In Lapland networks, all the algorithms are
characterized by medium–low similarity values between
communities belonging to different network layers, except
for n-CLIQUE and CPM detecting the Mode 2 network and
the Interest network as two identical communities.
An interesting result is that all the algorithms, even if
producing different community sets, have a similarity
value computed between Mode 1 network communities
and Facebook network communities which can be
considered significative. In Sigcomm dataset, we also find
medium–low similarity values. In addition, we observe
that all algorithms show that the most similar
communities are those related to Mode 2 network and
Interest network. Considering the results obtained for both
datasets, we conclude that there is no high similarity
between layers in terms of communities, except for the
most frequent network pattern in DSN and Facebook
network resulting slightly similar.

4.5. Strong ties

Motivated by recent studies [51–54] demonstrating
that mobile nodes encounter other online socially-con-
nected nodes or nodes with common interests with high
probability, we now focus on analyzing the strong ties on
Lapland and Sigcomm DSN layers in order to find a match-
ing, if any, with Facebook network and Interest network
links. In this work, we consider as strong ties the links
between DSN nodes having a high number of contacts
[55] and hence, frequent interactions through which the
transfer of information may arise. If we find a good match-
ing between the DSN strong ties and the links on other
social layers, we could evaluate if a DSN link is a strong ties
just considering the presence/absence of links on other
social layers and thus avoiding the computation of contact
frequency. To this end, we computed for each node pair the
total number of contacts had both in Mode 1 network and
in Mode 2 network. Then, we computed the percentage of
matchings between strong ties and Facebook friendships
(Table 6), and between strong ties and Interest network
links (Table 7). In particular, we computed the top-20
strong ties (i.e. the first 20 node pairs ordered for decreas-
ing number of contacts) and similarly, the top-40 strong
ties. Table 6 shows that a high percentage of strong ties
both for Mode 1 network and Mode 2 network correspond



Table 6
Percentage of strong ties corresponding to Facebook network links.

Lapland
M1

Lapland
M2

Sigcomm
M1

Sigcomm
M2

% of matchings
(20 pairs)

70 80 65 70

% of matchings
(40 pairs)

62.5 67.5 60 62.5

Table 7
Percentage of strong ties corresponding to Interest network links.

Lapland Lapland Sigcomm Sigcomm
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to Facebook friendships in both datasets, especially when
considering the strongest ties corresponding to the top-
20 node pairs. Comparing the two DSN network modes,
we observe that there is a better matching between
Mode 2 network strong ties and Facebook links. This
means that online social ties are a good indicator of the
strong ties in the predominant DSN mode. Comparing the
two datasets, we can further note that Lapland dataset is
characterized by higher matching percentages. Analyzing
Table 7, the lower values of matchings lead us to conclude
that online social ties are better than shared interests for
identifying strong ties.
M1 M2 M1 M2

% of matchings
(20 pairs)

40 45 35 40

% of matchings
(40 pairs)

50 52.5 40 40

Table 8
Link prediction performance of different training graphs. The values specify
the factor improvement over random prediction.

Lapland Sigcomm

G0DSN 43.4 38.8
GFB 21.3 17.1
GInt 41.6 31.5
4.6. Link prediction

We finally analyze the multi-layer social network from
another point of view that will be useful for designing effi-
cient opportunistic forwarding rules. The tie strength ana-
lyzed in the previous section evaluates already existing
connections and could be exploited by a routing scheme
for evaluating the future availability of an existing link.
Note that due to the intermittent connectivity, an existing
link to a central node, for example, could not be available.
In this case, the tie strength measure will be useful for hav-
ing an indication about links having a high probability to
be activated. In this section, we study the usefulness of a
multi-layer structure for predicting likely future links that
do not already exist. In particular, our aim is to evaluate if
additional social layers like Facebook network and Interest
network layers are able to predict new links in the DSN.

Some previous studies explored the theory of measures
based on common neighbors for predicting future links in
co-authorship networks [56], networks of users’ home
pages in the World Wide Web [57] and human contact net-
works [58]. These studies assign a connection weight score
to pairs of nodes based on their common neighbors and
then produce a ranked list in decreasing order of score.
They basically compute a measure of similarity between
node pairs, relative to network topology in order to predict
future links. The more two nodes are similar in terms of
neighbors, the more they will be likely to have a future
link. In co-authorship networks, for example, if two
authors have many colleagues in common, they are more
likely to come into contact themselves.

Our link prediction method follows the aforementioned
approach. We form the graph G0DSN½t0; t1� where an edge
between two nodes exists if they had at least one contact
during the first day of the experiment. We refer to ½t0; t1�
as the training interval. Similarly, we form G00DSN½t2; tend� as
the graph containing the contacts had from the second
day to the end of the experiment and we refer to ½t2; tend�
as the test interval. Note that for this analysis we do not
use Mode 1 network and Mode 2 network since we are
interested in the temporal evolution of DSN. The link pre-
diction algorithm we apply accesses (1) the network
G0DSN½t0; t1�, (2) the Facebook network graph denoted with
GFB and (3) the Interest network graph denoted with GInt

to output a list of edges not present in G0DSN ½t0; t1� that are
predicted to appear in G00DSN½t2; tend�. We denote the generic
training graph by Gtrain V ; Eoldh i and the graph G0DSN ½t2; tend�
on the test interval as Gtest V ; Enewh i. Enew are the new inter-
actions we are seeking to predict. Note that we test the
prediction capabilities of Facebook network and Interest
network graphs compared to the training graph
GDSN ½t0; t1�. Hence, we consider as training graphs also
Facebook network and Interest network graphs.

The method used for link prediction is the Jaccard coef-
ficient. This link predictor measures the similarity between
nodes i and j belonging to Gtrain as

LPði; jÞ ¼ jNi \ Njj
jNi [ Njj

ð7Þ

where Ni and Nj are the set of i’s neighbors and j’s neigh-
bors, respectively. The link prediction algorithm outputs
a ranked list LP of pairs in V � V � Eold; these are predicted
new links in decreasing order of confidence. Using the
ranked list, we determine the size of the intersection
between this set of pairs and Enew.

To represent the predictor quality, we compute the
factor improvement over a random predictor which simply
predicts randomly selected pairs not present in the
training interval. Table 8 shows the results obtained for
the different training graphs. The Interest network layer
is able to predict links with an accuracy comparable to that
of the DSN graph representing the first day of contacts. On
the contrary, Facebook network, even if outperforming the
random predictor, has a performance sensibly lower than
the Interest network. This experiment demonstrates that
the interests shared between nodes create relationships
similar to those in the DSN, thus allowing to predict links
with the same accuracy of the prediction using part of
DSN data. Similarly to co-authorship networks where com-
mon neighbor measures well predict future collaborations



Table 9
List of symbols used to define ML-SOR social metric.
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[56], we found that scientific interests shared between
nodes are able to accurately predict future encounters.
List of symbols

i ith node
j jth node
d Destination node
t tth time slot
T Number of time slots
N Number of neighbors of node i
M Number of neighbors of node j
l lth OSN layer
L Number of OSN layers
e Encounter event
CDegree Degree centrality
CCDegree Cumulative degree centrality
TS Online tie strength
TSTOT Total online tie strength
LP Link predictor (common neighbors)
CS Centrality utility score
TSS Tie strength utility score
LPS Link predictor utility score
MLS ML-SOR utility score
5. Opportunistic routing with multiple social network
layers

The analysis performed in the previous section can be
useful for designing forwarding rules that construct
efficient paths based on relationships at different social
network layers. Although limited to Lapland and Sigcomm
datasets, our results mostly show low correlation between
the values of a given centrality measure computed on dif-
ferent social network layers. However, we also found that
Mode 2 network and Interest network layers show medium
correlation values for closeness with respect to Lapland
dataset, and for degree, closeness and eigenvector centrality
with respect to Sigcomm dataset. Analyzing communities,
the results mostly show medium–low similarity between
communities belonging to different social network layers.
However, we also found that for n-CLIQUE and CPM
algorithms there is a perfect similarity between Mode 2
network and Interest network communities.

The above relationship between layers assessed
through different types of structural analyses can be
exploited by an opportunistic routing scheme for having
a proper view of users’ social dynamics when available
information about a social dimension is partial. Because
of the temporal dynamics of contacts among users, it
takes time to infer the corresponding social behavior of
nodes. DSN strong ties, for example, take time to be iden-
tified using the history of encounters. If the routing
scheme has a partial view of a node’s sociality given by
part of DSN data, it may produce sub-optimal forwarding
paths. Having assessed that Facebook ties are able to pre-
dict DSN strong ties, we can exploit Facebook network
layer together with DSN layer in the proposed routing
strategy. In addition, we can also exploit the Interest net-
work layer that has shown to predict future DSN links
with a factor improvement over random prediction com-
parable to that of the DSN graph representing the first
day of contacts. The extraction of more complete social
information to be used to identify the nodes that are best
suited to forward information, aims at maximizing the
chance of the message to reach its destination.

In this section, we present ML-SOR, a multi-layer social
network based opportunistic routing scheme. Simulating
real mobility traces, we will show that social information
extracted from a multi-layer social network is able to
improve opportunistic routing.
2 Considering that the DSN graph is a temporal graph, we form a static
graph for each time slot by amalgamating all contacts in that time interval.
5.1. ML-SOR social metric

ML-SOR is based on a social metric which exploits three
social dimensions: proximity, online friendships and
interests. ML-SOR social metric is computed using a
combination of three measures:

� centrality on DSN layer
� tie strength on OSN layer(s)
� link predictor on Interest network layer
Table 9 lists the symbols used to define the social
metric.

We consider centrality as one of the most important
factors to choose a good message relay. In graph theory
and network analysis, centrality quantifies the structural
importance of a vertex within the graph. A central node
has usually a stronger capability of connecting other
network nodes. We therefore compute centrality at the
DSN layer, where the corresponding social graph is
leveraged through encounters between mobile devices.
ML-SOR social metric computes node centrality for a node
i; CCDegreeðiÞ, using a long-term cumulative estimate of
degree centrality. Degree centrality basically quantifies
the number of connections a node has. The advantage in
using this measure is that it can be easily computed locally
considering only a node’s ego network. More specifically,
ML-SOR computes the number of unique nodes seen
throughout a specific time slot and then average this mea-
sure with a set of previous measures. Degree centrality for
a node i during a time slot t is computed as follows:

CDegreeði; tÞ ¼
XN

j¼1

eði; j; tÞ ð8Þ

where

eði; j; tÞ ¼
1 if i encounters j during time slot t

0 otherwise

�
ð9Þ

represents an edge between node i and a node j on the DSN
graph corresponding to the time slot considered,2 and N is
the number of nodes in i’s range. The cumulative degree,
CCDegreeðiÞ, is then computed by averaging the node’s degree
values over a set of T time slots including the most recent
time slot and all the previous ones:

CCDegreeðiÞ ¼
1
T

XT

t¼0

CDegreeði; T � tÞ ð10Þ
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In that way, ML-SOR provides a fully decentralized
approximation for a node’s degree centrality, which is easy
to be computed.

Centrality described above is measured using the
history of contacts and does not consider future links
availability. Considering that the links in the network are
time-varying, an existing link to a central node may not
be highly available. We therefore include a tie strength
indicator into ML-SOR social metric. This indicator is able
to identify the links that have a higher probability to be
activated and is measured by considering online social ties
between the individuals carrying the mobile devices. This
choice is driven by the consideration that a social tie
between two users on online social networking websites,
such as Facebook, Twitter3 or LinkedIn, typically do not
change over time. In Facebook, for example, ‘‘intermittent’’
friendships are highly improbable. Moreover, such friend-
ships have been shown to be a good indicator of DSN strong
ties in the previous section. Consequently, online ties can be
considered a good measure of whether a link on DSN will be
activated. ML-SOR calculates tie strength between node i
and node j at OSN layer l as:

TSði; j; lÞ ¼
1 if i and j are connected at layer l

0 otherwise

�
ð11Þ

The total tie strength between two nodes is the sum of the
indicators measured at each OSN layer:

TSTOTði; jÞ ¼
XL

l¼1

TSði; j; lÞ ð12Þ

where L is the total number of online social networking
websites considered. Here, we hypothesize that more
OSN layers are able to improve ML-SOR’s knowledge about
strong ties. Two users, for example, may not be friends on
Facebook but be linked on Twitter thus having an online tie
indicating a DSN strong tie on another OSN layer.

ML-SOR social metric takes into account a third mea-
sure useful to predict future encounters between two
nodes. While tie strength can be used to indicate the future
availability of an existing link in the contact network, a link
predictor predicts likely future new connections. Here, the
link predictor is computed on Interest network layer,
where a link between two nodes exists if they have at least
one interest in common. As shown in the previous section,
examining common neighbors of a pair of nodes on
Interest network layer, we can predict future encounters
to which the transfer of information may arise. ML-SOR
computes the link predictor LPði; jÞ of a possible future
collaboration between node i and node j as a common
neighbor measure based on Jaccard coefficient:

LPði; jÞ ¼ jN \Mj
jN [Mj ð13Þ

where M is the number of nodes in j’s range.
For each measure, ML-SOR determines the utility score

of node i for delivering a message to node d compared to
node j as follows:
3 Here we consider a tie between a user A and a user B, if A follows B and
vice versa.
CSði; jÞ ¼ CCDegreeðiÞ
CCDegreeðiÞ þ CCDegreeðjÞ

ð14Þ

TSSði; j;dÞ ¼ TSTOTði;dÞ
TSTOTði;dÞ þ TSTOTðj;dÞ

ð15Þ

LPSði; j;dÞ ¼ LPði; dÞ
LPði;dÞ þ LPðj;dÞ ð16Þ

The ML-SOR social metric is given by the combination of
the contributing score values as follows:

MLSði; j;dÞ ¼ CSði; jÞ½1þ TSSði; j;dÞ þ LPSði; j;dÞ� ð17Þ

As can be observed, MLS captures the relay significance of a
node when compared to an encountered node across all
social network layers, in terms of centrality, tie strength
and link predictor. Note also that node centrality is consid-
ered as the predominant factor in message forwarding.
Both tie strength and tie predictor utility scores are
weighted with centrality utility score and then added to
centrality utility score. In that way, tie strength and link
predictor utility scores will reflect the centrality utility
score (e.g. high, low or medium) between the sender node
and the encountered node.

5.2. ML-SOR forwarding strategy

The forwarding process in ML-SOR is given by Algorithm
1. During a contact event between two nodes, these nodes
exchange their centrality values, one or more lists of online
social contacts (one list for each online social networking
website) and a list of nodes with common interests. Each
node then examines the messages it is carrying and com-
putes the MLS social metric of each message destination.
Messages are then forwarded to the encountered node if
this node has a higher MLS value for the message destination
node or if it is the destination. As can be observed, the two
nodes only have to exchange few informations to be able
to compute the ML-SOR metrics in a distributed fashion.

Algorithm 1. ML-SOR forwarding algorithm.

1: procedure ENCOUNTERNODE(j)
2: exchangeCentralityValues()
3: exchangeOnlineContactsLists()
4: exchangeInterestNodeList()
5: for every message m in message_buffer do
6: d  m:destinationðÞ
7: myMLS  computeMLScore()
8: encounterMLS  computePeerMLScore()
9: if encounterMLS � myMLS jj j = d then
10: forwardMessage(m; j)
11: end if
12: end for
13: end procedure
6. Evaluation

The performance of ML-SOR are evaluated through
simulations carried out on the Opportunistic Network
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Environment (ONE) simulator [59], which is a specific tool
for simulating mobile opportunistic networks. First, we
focus on the analysis of ML-SOR social metric by showing
the benefit of combining utility scores computed on
several layers and the effect of using different centrality
measures denoting user’s importance within the DSN
layer. Then, we compare ML-SOR to other well-known
opportunistic routing schemes. For all these tests, we
consider Lapland and Sigcomm traces described in
Section 4. For both datasets we consider a multi-layer
social network formed by the following layers: Bluetooth
contact network (DSN layer), Facebook network (OSN
layer) and Interest network.
6.1. Centrality measures in comparison

ML-SOR uses a social metric which is based on user
degree centrality computed on DSN layer. Node centrality
is just one of the measures accounting for user position/
importance in social networks. The existing centrality
measures can be divided based on the way in which they
are computed in three main groups: degree, shortest paths
and rank [60]. We therefore test on ML-SOR social metric
two other user position measures, ego betweenness cen-
trality and node position [60–62], representative of the
shortest paths and rank groups, respectively. Even if there
are other measures representative of these groups (e.g.
closeness centrality for shortest-paths group), we choose
the measures that we consider easy to implement in a dis-
tributed way.

As described in Section 4.3, ego betweenness centrality
measures the influence a node has over the information
flow between every pair of nodes in the ego network graph
under the assumption that information flows over the
shortest path between them. This centrality metric can
be computed efficiently in a distributed way since only
local information is required at each node. If A is the

adjacency matrix for the ego network, A2½1� A�i;j gives
the number of shortest paths (geodesics of length 2)
joining i to j and the sum of the reciprocal of the entries
gives the ego betweenness.

Node position is a type of eigenvector centrality taking
into account the position of the other nodes. In particular,
node position for a node x considers both the value of node
positions of its neighbors as well as their activity in
relation to x:

NPðxÞ ¼ ð1� �Þþ�ðNPðy1ÞCðy1! xÞþ � � �þNPðymÞCðym! xÞÞ
ð18Þ

where � is a constant coefficient from the range [0,1]
denoting the influence the neighborhood has on
x; fy1; y2; . . . ; ymg are the m neighbors of x, and Cðy! xÞ is
a commitment function from the range [0, 1] reflecting the
strength of the relationship between y and x. In the sim-
ulations, we compute the commitment function as the
ratio between the number of connections from y to x and
the total number of connections from y to all its encoun-
tered nodes. The initial values of node position were
established to 1 for all nodes, while for � we considered
three levels of neighborhood influence: � ¼ 0:1 (low),
� ¼ 0:5 (medium) and � ¼ 0:9 (high).
6.2. Routing algorithms in comparison

There are many forwarding methods in the literature
for opportunistic networks but we cannot compare
ML-SOR with all of them, hence we choose those that we
consider most relevant. We test three benchmark
algorithms, Epidemic routing [21], PRoPHET [22] and
Bubble Rap, together with two forwarding schemes using
both DSN and OSN, H-Bubble Rap that we designed as a
hybrid version of Bubble Rap and PeopleRank.

Epidemic routing can be considered a reference for
other routing methods, since it determines an upper bound
for message delivery and a lower bound for end-to-end
delay. This method is characterized by a flooding-based
strategy for which when two node encounter, they
exchange all of their messages. In such way, messages
spread like viruses by pairwise contacts between two
nodes.

PRoPHET is another well known protocol in opportunis-
tic networks and it is commonly used, as Epidemic, in com-
parisons due to its contact-based nature and good routing
performance. It is a probabilistic routing method that cal-
culates a metric, named delivery predictability, based on
contact histories. A node that is carrying a message, relays
it only to a node with higher deliver predictability.

As previously described, Bubble Rap is a social-based
routing method which exploits node centrality and
communities as routing metrics. We choose this method
to compare ML-SOR to another social-based forwarding
strategy where centrality is identified as the metric with
a dominant impact on routing and for having a comparison
with a well-known social protocol using only a social layer.
We also implemented a hybrid version of Bubble Rap,
H-Bubble Rap, in order to obtain another social-based
protocol extracting social information from a multi-layer
social network. H-Bubble Rap and Bubble Rap forwarding
algorithms are the same. The only difference is that
Bubble Rap local centrality and global centrality metrics
are replaced with MLS metric computed with local CCDegree

and MLS metric computed with global CCDegree, respectively.
Aside from H-Bubble Rap, we compare ML-SOR to

another protocol using both DSN and OSN. We choose
PeopleRank since it uses a social graph where a link
between two nodes is present either if they share interests
or are online friends. Thus, it uses three social dimensions
as ML-SOR.
6.3. Performance metrics

We use the following metrics to compare these algo-
rithms: delivery ratio (the ratio of the number of delivered
packets to the number of all packets), overhead cost (the
number of packets transmitted across the air divided by
the number of unique packets created), average latency
(the average time it takes a packet to be delivered) and
average hop count (the average number of hops a packet
requires to reach destination). In the results, we plot all



Table 10
Values for the simulation parameters.

Parameter Value

Network Buffer size 2000 MB
Messagea size 1 kB
Inter-message creation interval 1800 s

PRoPHET Pinit 0.75
b 0.25
c 0.98

Bubble Rap C-Window duration 6 h
C-Window # of windows 5
K (K-Clique) 5

PeopleRank Damping factor 0.8
ML-SOR Time slot 6 h

T 5

a Each message is exchanged between randomly selected source–
destination pairs.
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Fig. 7. Routing performance of ML-SOR utility scores.
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these metrics as a function of TTL: the maximum time a
message can stay in the system after its creation. TTL has
been chosen since it is a fundamental parameter for
studying the ability of a routing protocol to find the
necessary number of relays within a certain time. In
Table 10, we specify the common simulation parameters
for all the simulations.
7. Simulation results

In this section, we discuss the results obtained after
performing the simulations. The first experiment evaluates
the average delivery ratio of each utility score composing
ML-SOR social metric. The second experiment evaluates
ML-SOR average delivery ratio when other centrality mea-
sures are used for computing the utility score defined on
DSN layer. The third and the fourth experiments illustrate
ML-SOR routing behavior compared to the other routing
algorithms in Lapland and Sigcomm datasets, respectively,
having different characteristics in number of nodes, dura-
tion, mobility patterns and social dynamics.

7.1. Evaluation of each ML-SOR utility score

In the first experiment, we evaluate the routing
performance of each ML-SOR utility score and the benefit
of combining the three utility scores in order to improve
message delivery. Fig. 7 shows the average delivery ratio
for Lapland and Sigcomm datasets after simulating several
scenarios with different TTL values. As can be observed,
when evaluating centrality (CS), tie strength (TSS) and link
predictor (LPS) utility scores, forwarding based on DSN
centrality is characterized by the highest average delivery
ratio both in Lapland and in Sigcomm. This result confirms
the importance of node centrality in message forwarding
and hence, in finding good next hops. However, TSS and
LPS show good delivery performance considering that are
metrics that are not based on physical encounters and only
on virtual ties, especially in Lapland dataset. As observed in
Section 4, both tie strength computed on Facebook
network layer and link prediction computed on Interest
network give better results in Lapland datatset than in
Sigcomm dataset. The advantage in using TSS and LPS is
more clear when they are combined with CS. We can note
that the overall delivery ratio increases, especially in
Sigcomm dataset where ML-SOR achieves 88% of delivery
ratio while routing based only on CS achieves only 78% of
delivery ratio. In Lapland dataset, on the contrary, the
performance improvement is lower since the higher dura-
tion of the trace and the higher link density cause the
generation of more messages within the network, so a
higher delivery ratio is harder to achieve with devices
having a limited data memory. We observed that nodes’
buffers are often full thus causing many message drops
and consequently, a lower delivery performance.
7.2. Evaluation of different centrality measures on DSN

The goal of the second experiment is to evaluate
centrality measures different from degree centrality in
ML-SOR social metric. In particular, we compare ML-SOR
delivery performance to two variants: ML� SOREBC and
ML� SORNP using ego betweenness centrality and node
position, respectively. Similarly to the previous
experiment, we evaluate the average delivery ratio in both
datasets after simulating several scenarios with different
TTL values. Analyzing ego betweenness, Fig. 8 shows that
in Lapland dataset, ML� SOREBC achieves average delivery
ratio slightly lower than ML-SOR based on degree central-
ity (45% vs. 47%). In Sigcomm dataset, on the contrary, ego
betweenness has the lowest average delivery ratio, achiev-
ing only 61% of delivery. Considering that in Lapland data-
set the average diameter of DSN is significantly smaller
than Sigcomm DSN diameter, ego betweenness, which is
based on shortest paths of length 2, is more effective in
the smaller network. As far as node position is concerned,
ML� SORNP with � ¼ 0:9 performs the best compared to
the other two coefficients measuring neighborhood
influence (� ¼ 0:1 and � ¼ 0:5) in Lapland dataset. It
achieves 46% of average delivery ratio. Thus, node position
results in a routing performance very similar to
ML� SOREBC and ML-SOR. In Sigcomm dataset, where the
network is larger, we observe that ML� SORNP is more
influenced by the choice of the � value. Here, setting a
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Fig. 10. Overhead cost as a function of message TTL (Lapland dataset).
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medium value for the neighborhood influence, we obtain a
percentage of average delivery ratio comparable to
ML-SOR (86% vs. 88%). In general, we conclude that
rank-based node position performs better than ego
betweenness and for some parameter settings is able to
achieve average delivery ratio comparable to ML-SOR ratio.
Consequently, node position can be considered a good
candidate as user importance/centrality metric in
opportunistic routing. However, the initial choice of the
parameter � in node position influences delivery
performance, thus making degree centrality, which is
simpler and easier to compute, a preferable choice.

7.3. Comparison between ML-SOR and other routing schemes

Lapland dataset. By analyzing delivery ratio showed in
Fig. 9, we observe that all algorithms deliver more packets
to the destinations when the TTL increases. However, as
the TTL becomes high the increment in the delivery ratio
is marginal, since the capacity of the network to forward
packets becomes the performance bottleneck. Epidemic
routing outperforms all the other protocols with the
highest delivery ratio, achieving 61% of message delivery.
We can observe that its overhead cost having a value of
15 on average is also very high because of the large amount
of message replicas injected into the network. That is why
an opportunistic protocol with a high delivery capability,
as in the case of Epidemic routing, but with a lower cost
would be the right choice in order to save energy. As can
be seen, PRoPHET is a good candidate, since it reduces
overhead cost, with a delivery ratio slightly lower than
Epidemic routing. Moreover, PRoPHET outperforms all
social-based protocols in terms of message delivery.
Adding probabilities to the decision making, as in the case
of PRoPHET, works better than social information in this
mobility scenario. In terms of overhead cost (Fig. 10),
however, PRoPHET costs much more than social-based
protocols. On the contrary, multi-layer social information
included by ML-SOR in the forwarding decision reduces
notably overhead. ML-SOR shows the lowest overhead cost
while maintaining a delivery ratio which is about 10% less
than PRoPHET’s delivery ratio. ML-SOR, even if
outperforming the other social-based schemes in terms
of message delivery, shows delivery ratios lower than
Epidemic routing and PRoPHET. Analyzing the most fre-
quent contact patterns in Lapland DSN, we conclude this
difference with Epidemic routing and PRoPHET is due to
the network contact patterns’ dynamics that are not very
suitable for social-based schemes in general. Lapland DSN
network is often dense thus leading Epidemic routing to
find quickly a path to destination. Also in PRoPHET, contact
network dynamics lead to compute contact probabilities
that result in effective routing paths. As far as the other
social-based schemes are concerned, H-Bubble Rap is able
to outperform PeopleRank both in terms of delivery ratio
and delivery cost. This confirms that our social metric
exploiting strong ties and link prediction is able to find
routing paths better than PeopleRank that uses also
friendships and interests within its routing metric.
Observing Bubble Rap’s delivery ratio and overhead cost,
we conclude that protocols exploiting multiple social
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network information are able to select more efficient paths
in terms of delivery ratio and overhead ratio.

By looking at average latency in Fig. 11, for low TTLs
(1 h and 2 h) all protocols show a similar average latency.
As TTL is increased, Epidemic routing and PRoPHET are
able to deliver messages faster than the other protocols.
The reason is that they replicate more packets than the
other algorithms, as can be seen from their overhead costs,
thus reducing delivery delay. H-Bubble Rap, on the
contrary, even if it transmits more messages than
ML-SOR, has an higher average latency for each TTL value,
while PeopleRank performs slightly better. However, both
H-Bubble Rap and PeopleRank are outperformed by
ML-SOR showing a lower delivery ratio. As expected,
Bubble Rap, due to the higher number of messages
transmitted, is able to reduce the end-to-end delay with
respect to the other social-based schemes.

Fig. 12 compares the algorithms in terms of average hop
count. This metric is interesting to analyze since it reveals
the social distance between sources and destinations.
Epidemic routing has the highest average hop count with
a value that is around 2.7. PRoPHET shows a lower hop
count, with an average value of around 2.3, while social-
based routing protocols such as Bubble Rap, H-Bubble
Rap and ML-SOR have lower values since they wait for
the right relays to forward messages. As can be observed,
H-Bubble Rap and ML-SOR deliver messages by using paths
with an average number of hops lower than PeopleRank
and Bubble Rap. These results confirm that forwarding
strategies which exploit multiple social contexts, and in
particular the schemes exploring tie strength and link
prediction, are able to reach the destination of the message
within less hops.

Sigcomm dataset. Fig. 13 shows the delivery ratio for
the second dataset. When compared to Lapland dataset,
Sigcomm overall delivery ratio is higher, with values
achieving more than 95% of message delivery. Since the
number of nodes is higher, the possibilities of forwarding
and delivery are higher as well. Moreover, the network
contact pattern that we observed from Sigcomm modes
are able to better balance network traffic avoiding the
overloading of message buffers that may result, as in the
case of Lapland dataset, in lower delivery performance.
Among all algorithms, Epidemic routing has again the
highest delivery ratio. However, for most TTLs, ML-SOR
and H-Bubble Rap perform the same as Epidemic routing.
Differently from Lapland dataset, the protocols based on
the ML-SOR metric are able to achieve Epidemic routing
delivery and this is due to Sigcomm DSN modes that are
less dense and more socially-structured thus resulting in
better forwarding paths. We can further observe that
within this dataset, PeopleRank and PRoPHET perform
worse, even if for high TTLs (10, 11 and 12 h) they achieve
Epidemic routing performance. Once again, as for Lapland
dataset, Bubble Rap shows the lowest delivery ratio,
achieving around 83% of message delivery. This means that
ML-SOR social metric is able to improve the performance
of Bubble Rap, both in the case of ML-SOR which does
not consider communities to drive routing decisions and
of H-Bubble Rap which is community-based.
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In terms of cost (Fig. 14), we can observe that among
the algorithms considered Epidemic routing has the
highest cost. Again, this is because Epidemic routing
generates many message replicas. In contrast, the other
five algorithms are more greedy in replication, especially
the social-based schemes. ML-SOR and H-Bubble Rap
confirm that the use of the multi-layer social metric not
only gives better performance than Bubble Rap that uses
only contact network social information and PeopleRank
that uses multiple social dimensions, but is also able to
find more effective relays than PRoPHET. We can further
note that H-Bubble Rap has the lowest overhead cost. In
Sigcomm scenario, where we found communities better
structured than in Lapland dataset, we observe that the
multi-layer social network metric combined with
community detection is more effective than ML-SOR.

As we can see from average latency in Fig. 15, among all
protocols Epidemic routing performs the best except for
TTL set to 12 h where Bubble Rap performs better, while
PRoPHET is characterized by the worst performance.
PRoPHET behavior is completely different from Lapland
dataset, where its average latency was similar to
Epidemic routing. Here, also social-based schemes
outperform PRoPHET. As for delivery ratio, Epidemic routing,
H-Bubble Rap and ML-SOR performance is very similar. In
particular, the multi-layer social metric of ML-SOR and
H-Bubble Rap works quite well producing a latency lower
than Bubble Rap and PeopleRank latency for most TTLs.

In Fig. 16 the average hop count is shown. Differently
from Lapland dataset, social-based strategies show average
hop counts higher than Epidemic routing and PRoPHET.
However, H-Bubble Rap and ML-SOR outperform Bubble
Rap and PeopleRank. As can be further observed,
H-Bubble Rap shows an hop count lower than ML-SOR
hop count. This result demonstrates, as perviously seen
for overhead cost, that in this dataset the multi-layer social
network metric combined with community detection is
more effective.
8. Discussion

ML-SOR is a social-based algorithm exploiting multiple
social networks to perform routing in mobile opportunistic
networks. ML-SOR has been designed in a distributed man-
ner and drives routing decisions exchanging only small
amount of social information. Taking advantage of
multiple social contexts, it reduces notably the number
of transmissions and achieves a satisfactory delivery
performance compared to Epidemic routing, especially in
Sigcomm dataset. In Lapland dataset, even though
Epidemic routing and PRoPHET have high delivery ratios,
ML-SOR outperforms both these schemes and the other
social-based schemes in terms of overhead cost. That is
why maximizing delivery ratio is not necessarily an indica-
tion that a routing protocol performs better than a protocol
that does not. Considering that energy consumption is a
fundamental issue in opportunistic networks [63], the
reduction of unnecessary message forwarding will con-
serve energy and hence improve network performance.

There are some important aspects considered in this
work that need further investigation. Node centrality at
DSN layer is one of these aspects. In ML-SOR, node
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centrality is considered as the predominant factor in mes-
sage forwarding. In Section 7.2, we evaluated different cen-
trality measures showing the effectiveness of degree
centrality. However, we did not analize the effect of com-
bining multiple centrality measures at DSN layer (e.g.
two, three or more measures on DSN layer). We argue that
if we choose a proper set of m centrality metrics, we expect
to have more information about user importance useful for
message forwarding. However, the m metrics should be
chosen to be as independent or as orthogonal as possible,
otherwise less information is reflected by dependent
metrics. In general, since most of the centrality metrics
are computed from the adjacency matrix of DSN, we may
expect that most metrics are dependent.
9. Conclusions

In this paper, we have presented ML-SOR, a novel
opportunistic routing protocol that uses a multi-layer
social network to select nodes to act as message relays.
First, we have proposed a methodology to build a multi-
layer social network graph from a temporal DSN graph
describing wireless contacts and other static social net-
work graphs describing virtual relationships. By analyzing
two experimental traces containing multiple social networks
for the same set of users, we have found medium–low
correlation between centrality metrics at different layers
and medium–low similarity between communities belong-
ing to different layers. On the contrary, Facebook links have
shown to be good indicators of DSN strong ties and Interest
network links good predictors of future DSN links. Then,
we have evaluated the routing performance of ML-SOR.
Our results, although limited to two datasets, describe
the behavior of our protocol in two environments where
node mobility and the amount of social information are
different. We have compared ML-SOR to Epidemic routing,
PRoPHET, Bubble Rap, H-Bubble Rap which has been
defined as a hybrid version of Bubble Rap using the same
metric of ML-SOR, and PeopleRank. Testing Lapland and
Sigcomm datasets, we have shown that by combining mul-
tiple social information messages can be delivered with
high probability while keeping overhead ratio very small.
Additionally, in Sigcomm dataset, delivery performance
may be achieved equal to Epidemic routing but with sig-
nificantly reduced overhead cost. Our plans for future work
include the analysis of other datasets with different con-
nectivity patterns and social network layers such as
Twitter or LinkedIn, in order to gain further validation of
our forwarding scheme.
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