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Abstract. Dimensionality reduction (’visualization’) is a central prob-
lem in statistics. Several of the most popular solutions grew out of inter-
action metaphors (springs, boids, neurons, etc.) We show that the prob-
lem can be framed as a game of coordination and solved with standard
game-theoretic concepts. Nodes that are close in a (high-dimensional)
graph must coordinate in a (low-dimensional) screen position. We derive
a game solution, a GPU-parallel implementation and report visualization
experiments in several datasets. The solution is a very practical applica-
tion of game-theory in an important problem, with fast and low-stress
embeddings.
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1 Introduction

Most of the current practical visualization solutions make use of interaction
metaphors (springs, boids, self-organizing neurons, etc.) among data-points. In
this paper we give agents more strategic intelligence and consider whether a
multi-agent perspective can bring in new connections and solutions to the prob-
lem.

Namely, the problem is to take a graph or high-dimensional distance matrix
between data points as input and calculate a lower dimensional embedding of
these points as output. General data practitioners, from diverse areas of knowl-
edge, often use, for example, force-directed graph visualization, which is the
main element in most popular graph visualization tools. Scientific practition-
ers and statisticians, on the other hand, tend to prefer less scalable and less
exploratory solutions that have, instead, stronger guarantees. We depart from
Multi-Dimensional Scaling (MDS), a classical statistical dimensionality reduc-
tion technique, and reach a solution that is as practical as force-directed systems,
while maintaining (or improving) the quality of statistical solutions.

We look at the problem as a game where players have to decide which screen
position to occupy. Given that they want to be far away on the screen to far
away players on the graph (or distance matrix), their chosen position will depend
on their expectations about what others will do. To solve the problem we thus
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study games, which we call Spatial Coordination Games, where player payoffs
vary with mutual distances in a player-to-player basis. Players keep probability
distributions over each others positions and update them with each individual
movement.

2 Spatial Coordination Games

More precisely, we consider a game G = [N,M, aij ] with N players over a finite
set of M positions and a pairwise distance-based payoff function, aij(m, k) -
with m and k as players i and j’s respective positions, i, j ∈ [N ] 1, m, k ∈ [M ],
a : [N ]2 × [M ]2 → R and M,N ∈ N+.

When M = 1, the Spatial Coordination Game is reduced to the consen-
sus problem [24] (the solution is a single consensual position and players have
incentive to conglomerate). The problem has applications in agent (spatial) sens-
ing, formation, rendezvous, alignment, evacuation, flocking, coordinated decision
making, etc.

When aij is uniform across players, aij(m, .) = 1/N, the game is reduced to
a congestion game [21] (all players have the exact same amount of influence on
individual decisions, making payoffs proportional to the number of players using
a resource and giving them incentive to disperse). The problem has applications
in network routing (especially over wireless networks) and analysis.

We are interested in the general case when payoffs aij are not constant, but
player-specific, and the game is played over a large set of positions and players,
M � 1 and N � 1. This is the case of visualization - where players choose
where to go based on where other individual players are, and not, for example,
an absolute count of players (as in general congestion or the El-Farol Bar problem
[20]). In this game a pure strategy profile specifies a player’s position given all
others’ possible movements. A mixed profile assigns a probability (or belief) to
each possible position, which players can review after observing others’ beliefs.

Consider that player i has a probability distribution over positions m, pi(m),
as mixed strategy. The player starts with a prior distribution and calculates its
strategy based on the expected actions of all others p1(m), p2(m), ..., pN (m) a
posteriori.

Player i can calculate the (expected) utility of choosing a position m as the
probability of player j choosing a position k and the resultant (joint) utility
aij(m, k) in that case, m, k ∈ [M ]. The expected utility reflects proximities
across all possible likely placements. In a best-reply fashion, it is rational for the
player to update its distribution at any point in the game proportional to its
expected payoff,

pi(m) ∝
∑
j,k

pj(k)aij(m, k) (1)

1 [c] denotes a set with c ∈ N+ elements
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which is iterated, with some prior distribution p0i (m). The mutual, syn-
chronous updates then create a coupled dynamical system that can be analyzed
with game-theory.

The model has three parts: the players’ utility functions, their belief revision
strategy and their communicative strategy. We first formulate the payoff function
aij(m, k), then how players update their beliefs (i.e., the inherited dynamics of
the game) and then how players can intervene (manipulate their private beliefs)
to change the outcome of the game. We finally move on to implementation notes
and experiments.

2.1 Stress Payoffs

The payoff for a player i varies with its distance to each other player j individ-
ually, and is derived from an input (weighted) graph or distance matrix Dij -
which we simply call ’graph’ for short.

Specifically, the payoff ai,j(m, k) is the embedding’s normalized stress [18],
the difference between the (low-dimensional) spatial distance d(m, k) and the
(high-dimensional) distance D(i, j) across placements.

aij(m, k) =

∑
ij [dij(m, k)−D(i, j)]2∑

ij dij(m, k)2
(2)

The measure explicitly indicates the difference between the distances in the
input (high-dimensional) and the output (low-dimensional) positions. The values
lie between zero and one (assuming a normalized input); the smaller, the bet-
ter an embedding represents the high-dimensional data. This quantity can be
calculated once and independently of the next equations (and thus can be pre-
calculated and stored in look-up tables during the game). The squared euclidean
distance is used for d(m, k) in all experiments.

2.2 Update Strategy

A central issue is how exactly players change their distributions (redistribute
their probabilistic mass) after observing others’ beliefs, while keeping their own
beliefs altogether stochastic. If the payoffs are normalized aij ∈ [0, 1], symmetric
and do not change, then

pi(m) =
∑
j,k

1∑
l pj(k)aij(l, k)

pj(k)aij(m, k) (3)

with l ∈ [M ].
A player using Eq.(3) change its beliefs according to expected payoffs. For

the type of problem studied here (where payoffs are coordinative), Eq.(3) using
expected payoffs has advantages. This is because in these problems it’s advan-
tageous for players to readjust not based on their immediate gains but also con-
sidering what others might actually do, which seemingly allows them to explore
further opportunities for coordination.
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We want to derive next a differential equation ṗi(m) which gives players
iterative updating rules and allow us to better understand the asymptotic game
behavior. The solution can be derived (with regularity assumptions) by enforcing
that

∑
i pi(m) = 1 and thus that

∑
i ṗi(m) = 0.

The denominator in Eq.(3) unfortunately makes updates impractical in large
games. We can simplify the relationship between players strategies by assuming
parametric forms to the belief distributions. Let players’ beliefs have an expo-
nential form with constant rate of change (derivative) aij(m, k).∑

j,k

1∑
l pj(k)eaij(l,k)

pj(k)eaij(m,k) (4)

This, together with the second-order regularity assumption, leads to a simpler
form ṗi(m) = pi(m)(vi(m, k) − α(m, k)), where vi(m, k) is the right-hand-side
likelihood of Eq.(1) and α(m, k) is a renormalizing constant. Under these con-
ditions, the normalizing constant α(m, k) exists and can be derived with a few
simple logarithmic operations, leading to the final form of the belief updating
strategy2 and the multi-population replicator dynamics [30]:

ṗi(m) = pi(m)[
∑
i 6=j

∑
k

aij(m, k)pj(k)−
∑
i6=j

∑
l,k

aij(l, k)pi(l)pj(k)], (5)

with i, j ∈ [N ] and l,m, k ∈ [M ]. The interpretation, however, is slightly
different from typical multi-population replicator dynamics. We view the dy-
namics as a model of learning where the population m frequency correspond
to an individual player’s probability of playing m at time t. Thus pi(m) is its
mixed strategy at t. And the payoff received from the rest of the players, α, is a
renormalizing constant.

For analysis, we are interested in the situation in which every player chooses
a pure strategy - i.e., for every player i, pi(m) is concentrated on a single posi-
tion. That is, while having the choice from the set of mixed strategies, players
choose a particular position with little uncertainty. These are ”corners” of the
M -dimensional probability vectors p(m) simplex. Corners are trivially equilib-
rium points. Other equilibria, that are not corners, are sometimes named interior
equilibria. A further attractiveness of the replicator dynamic is that it is typically
well behaved. All asymptotically stable attractors must include corners, and if
compact, these are the game Nash equilibria [13]. That is, a trajectory either
converges to a corner, or eternally moves around in the interior of the simplex.
However, when asymptotically stable corners do exist, their basin of attraction
typically cover most of the simplex. Although we do not require equilibrium to
reach the final game solution (see Implementation Section) and currently focus
on demonstrating the practically of the game, we observe this empirically (the
game typically converges to a corner).

2 See [12] [1] for a similar derivation and further details on the relationship between
the exponential family and the replicator dynamics
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2.3 Communication Strategy

We introduce the notion of a player’s probabilistic intervention in this game. An
intervention [11] is an experimental change on a player’s model (e.g., a player
clamping of the variable m to a value k). Causal interventions are often notated
as P (X|do(y)) [25], we use pj(m|do(i, k)) to denote player j’s distribution when
i’s distribution is clamped to a value k. Because an intervention affects the game
outcome simply by changing others’ mental models, it’s natural to think of it as
a model for communication (’I will be at position x’).

If players are distributed on the graph and will favor positions according to
(5), it is then the order of interventions that remains to be optimized. We define
the player’s risk in the game in terms of its uncertainty across positions. We
then propose a minmax criterion that chooses the intervention with minimum
risk across players at each step. In the resulting game, a competitive game is
progressively modified through ’communication’(a cycle of intervention followed
by equilibrium calculation, repeated to a desired uncertainty level). This way,
an embedding is defined incrementally.

We imagine players incur a risk when they have to settle for a given position
(i.e., it’s beneficiary to keep their individual options open, or their own position
uncertainty high). We then take the individual risk to be

R(i) = −log2pi(m) (6)

The intervention do(i, k)’s collective risk is the maximal risk across all players,
argmax(i,k)R(j|do(i, k)). Players then choose the intervention with minimum
collective risk at each iteration,

do(i, k)∗ = minargmax(i,k)R(j|do(i, k)) (7)

The criterion has a cooperative interpretation, in which all players incur the
risk of the worst player in a given intervention. Below we show how to calculate
Eq. (5) and (7) in a parallel GPU [28] implementation. We also explore the
spatial nature of the problem to devise probability distributions with increasing
resolution (i.e., a multi-level scheme that alleviates the solution’s computational
requirements). Finally, we show how to use the model for visualization and report
results.

3 Related work

’Classic’ (or Torgerson) metric MDS is often done by transforming distances into
similarities and performing PCA (e.g., singular-value-decomposition) on those.
PCA is sometimes taken as the simplest possible MDS algorithm. In particular
for real world data, which is typically nonlinear, nonlinear techniques may offer
a definite advantage. In the spatial domain, spatial data with local correlations
are especially problematic for PCA, and it is similar to simply taking a Fourier
transform and filtering out low-frequency components [23]. Linear methods (like
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classical MDS) are generally not good at modeling curved manifolds, often only
preserving distances between widely separated points and loosing local structure
[27]. Currently, Kruskal’s stress [18] is the most common measure of goodness-of-
fit for a non-metric MDS embedding, and serves as objective function to minimize
in majorization approaches (’smacof’) [9], which perform well in a wider range
of domains.

Spring layout algorithms are probably the most practical and popular algo-
rithms for drawing general graphs, as proposed by Eades [6]. Since, his method
has been revisited and improved in a variety of ways [16]. In general, force-
directed algorithms can produce good results for small graphs, but do not scale
well. Large graphs often result in the energy function been trapped in local
minima. Additionally, force-directed algorithms lack predictability, two different
runs with the same input may lead to disparate results. This inconsistency can
be a serious problem in visualization. Annealing [15] has show to be a uniquely
effective way to globally optimize both force-directed [4] and stress majorization
schemes [2]. The player-guided, progressive reduction of uncertainty studied here
provides an alternative to annealing schedules. In the experimental section, we
compare the performance of these methods to the suggested.

Self-organizing maps (SOMs) [17] also use the metaphor of a competitive
process (’game’) between agents, inspired by neural behavior. A neural network
is trained to produce a low-dimensional (typically 2D), discretized representation
of the training samples input space. For each training point, a neuron is selected,
and weights in its neighborhood are moved in the same direction (’similar items
tend to excite adjacent neurons’). More neurons go to regions with high training
sample concentration, and fewer where the samples are scarce. SOMs have been
shown to have advantages [31] over more conventional feature extraction methods
such as PCA. The neurons’ exact location in the grid/graph, however, constrain
their interaction and capture completely their mutual model. If players are given
the latitude to move around freely, they require foresight (and a model) on others’
behavior to coordinate. In Boids [26, 22], players calculate individual positions
using simple following and flocking behaviors. Players are homogeneous (have
no preferential proximity among them) and need not to reason about each other
actions.

In a polymatrix games [14], there is a utility matrix for every pair of players
(i, j), each a separate component of player i’s utility. Polymatrix games always
have at least one mixed Nash equilibrium. Erdem and Pelillo [7] solved a generic
polymatrix game using evolutionary game-theory (i.e., the replicator dynamics)
to estimate a classification decision over partially-observed values in a set of
prior graph-structured exemplars (i.e., transduction) with interesting results.

Congestion games were first proposed by Rosenthal [21]. In them, the payoff
of each player depends on the resources it chooses and the number of players
choosing the same resource. In general, players cannot communicate and have
no uncertainty over each other’s actions (only an observed and determined con-
gestion on the chosen resource). More recently, the notion of uncertainty over a
resource’s congestion was explored [10]. Uncertainties are, however, static (i.e.,
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cannot change or be strategically manipulated) - the inverse assumption of the
current approach.

4 Implementation

4.1 Parallel Implementation

We implement a parallel GPU [28] version of the game where each thread-row
correspond to players’ probabilities pi(m) under a different intervention. Each
individual intervention y = do(i, k) is described jointly by a player i and a
(clamped) position k, and we have C interventions.

n

m

c

(a)

0.5

0.5
(b) (c)

Fig. 1. (a) Player/threads layout, (b) radial prior, (c) multi-level prior.

The resulting thread layout for the game is a 3-dimensional C×N×M matrix
(Fig.1a). Each row (i,m) correspond to an intervention in i and each column to
a player j. A tread-cell contains the likelihood that player j (column) will go to
a given position m when the intervention (i,m) is applied (i.e., that an arbitrary
player will go to an arbitrary position). The value of d(m, k) in Eq.(2) is fixed for
each cell. We use the Euclidian distance between the centers of a 2-dimensional√
M ×

√
M cells regular grid (Fig.1b). The value for a cell p(i, k,m) can then

be calculated from this constant, D(i, j), and N − 1 vectors p(i, k, .), where
D(i, j) is taken from the input distance-matrix and p(i, k, .) from neighboring
cells. Since this corresponds to N ×M parallel vector multiplications, common
GPU vector-vector optimizations can be used [3]. The individual values can then
be made stochastic again by a depth (i.e., across m values) and row prefix-sums
and a parallel division. We let the system run for T cycles, with values pt(i, j,m).
We do not require, however, for players to reach equilibrium to stop the game,
although we have observed that for a value t > 10 they often do. We look at T ,
instead, as a time constraint on the solution.

For visualization, interventions are exhaustively enumerated and an optimal
intervention is selected according to the risk criterion, Eq.(7). This correspond to
a row selection, based on a calculated property f over rows, argminf [pt(i, j,m)].
This row selection can be implemented trivially with parallel arithmetic opera-
tions and prefix-sums.
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4.2 Priors and Multi-level Games

For realtime performance, we employ a second set of optimizations. Instead of
playing the game over all M positions, we first play the game over a small grid
M ′ � M . Then play the game again in each individual grid position, limited
to players there but with further M ′ positions. We repeat this Dmax times,
generating an increasingly finer grid. The probabilistic priors serve to connect
the levels, allowing players to take a summarized version of the previous (higher-
level) game into consideration.

In practice, it’s hard however to specify the prior distribution parametrically.
We imagine then that the grid is a metal plate with discrete heat sources (each
located in the middle position of two cell’s border and with temperatures varying
[0, 1]) [5]. With the sources positions and the heat equation, it’s easy to calculate
the temperatures at plate positions (i.e., the new level prior probabilities) by
interpolating temperatures in parallel (Sanders and Kandrot, 2011).

Fig. 2. 4.5M players in a synthetic dataset (subsequent interventions).

Let cd denote a game’s congestion - the number of players who intervened
to position m in a game at level d, and with cDmax = N . For the first-level
prior, we place a single heat source at the grid center with temperature 0.5.
For subsequent priors, we place sources at the middle positions of each adjacent
square side with temperatures

1− cd(m)

cd−1(m)
,
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the normalized congestion on the prior level. Fig.1b shows a first-level prior
and Fig.1c a prior with two previous neighbours (each with equal congestion)
in a grid with 5x5 = 25 positions. By breaking large games into independent
smaller ones, we are able consider the exhaustive set of interventions C ′ in a
level, for each position m (C ′ = Cd(m)×M ′).

4.3 Rendering

For rendering, players have no single, determinate position in this game (only
a mixture of positions). We render player i’s screen position xi ∈ R2 (vector)
as the average position across all M positions, weighted by the mixed strategy
profile:

xi =
∑
m

pi(m)xc(m) (8)

where xc(m) is the vector from the grid center to the position m in the regu-
lar, squared grid. Each intervention (and subsequent competitive play) changes
incrementally others’ mixtures, and thus positions.

Each level has a different set of vectors xc(m) from the level cell center to
all lower level positions. The player’s final position is then the sum of vectors
across all levels. The metaphor of single-body attraction and repulsion between
nodes, for example, is then replaced by the interventions on players’ probabil-
ity distributions. And players’ velocity and acceleration are ’replaced’ by their
uncertainty. With a radial prior (Fig.1b), players start at the screen center and
spread out. Typically, the first interventions are more ’catastrophic’ and very
noticeable, with latter ones barely. And equilibrium states are apparent (i.e.,
players halt movement).

5 Experiments

A difficulty with visualization is that there are no consensual benchmark mea-
sures (and often no comparison measures at all are given). We start with a
few synthetic data. We then test the game (’coord-game’) in several machine
learning datasets and compare to standard-MDS and the deterministic anneal-
ing approach of [2] which do report stress measures. We also report results in
a Facebook dataset with three networks. To reveal the structure of the output
embedding more explicitly, we additionally reproduce the MNIST characters vi-
sualization of [29]. We finally briefly discuss running times. Experiments ran on
an Intel Core 2 3 GHz CPU with 4 GB of memory and an nVidia 8800GTX
graphics card with 512MB of texture memory. Timings do not include file load-
ing time.

We started by generating a batch of synthetic datasets, consisting of 4.5 mil-
lion players distributed in a 2D grid embedded in 7 dimensions. We also tested
the effects of adding noise to this grid (5% noise in a third dimension). Fig.3a
shows one run, comparing the performance (expected stress through number
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Fig. 3. (a) stress trough time, (b) iris dataset stress, (c) yeast dataset stress, (d)
metagenomics dataset stress.

of interventions) of the min-max criterion, Eq.(7) compared to a greedy crite-
ria, min(i,k,j)R(j|do(i, k)). By avoiding riskier placements (i.e., ones that would
constraint unfavorably individual, future others) the criterion leads to an overall
layout that is closer to the high-dimensional, more quickly. The min-max crite-
rion seems very resistant to local minima, when compared to annealing. This is
reflected on the stress results reported below.

The Iris dataset (available on the UCI ML Repository) has 150 points in
4 dimensions (4 attributes over 3 classes of flowers). It’s one of the most fa-
mous datasets in both machine learning and statistics [8]. Its dimensionality is
speculated to be marginally greater than the embedding dimension (with two
of the classes linearly separable), both the global structure and the local prox-
imity of the data may be important but neither can be reconstructed without
some distortion (not being perfectly separable). Some cluster structure can be
distinguished.

Fig.4 shows the output map as a scatterplot (all experiments and figures ran
with radial prior distribution in Fig.1c, M = 5×5 = 25, Dmax = 3 and T = 10).
There is class information with each datapoint, but it is only used to label
players in the figure (and no way influences their positions). Symbols (asterisk,
cross and circle) clarifies how well the map preserves the similarities within each
class. Qualitatively, the spatial embedding clearly separates the symbol-coded
groups.

The yeast dataset has approximately three time more data points (1,484
points) than Iris, each 8-dimensional. The metagenomics data has twenty times
more points (30,000 points). Fig.3 lists the obtained normalized stress (’coord-
game’), together with those obtained with classical Scaling by Majorizing a Con-
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Fig. 4. Iris Dataset scatterplot (crosses, circles, asterisk coding from ground truth).

vex Function [9] (’smacof’) and the more recent Deterministic Annealing with
Iterative Majorization [2] (’annealing’). Since the later two algorithms have ran-
domizations, these are average performances over 50 trial runs. For Iris, the
stress obtained with coord-games is over twice as low as smacof and outper-
forms deterministic annealing, with a final normalized stress of 0.00111. This
suggests that coord-game generates low-dimensional embeddings that are more
accurate representations of these high-dimensional data-sets. Error bars across
trials in [2] indicate variation across the trials for smacof and annealing which
is not observed for coord-game.

Next, we run the algorithm in a set of 3 collegiate facebook social graphs
with 1005, 10078 and 13455 nodes. We only consider users with at least 10
friends, and all information but the plain friendship graph is ignored. The gain
in performance is more dramatic, Fig.5. Force-directed and MDS algorithms tend
to look like a ball of yarn - a dense mess with no visually discernible structure -
for networks with over 1000 nodes. We can however see structure in placements
for these graphs using coord-game, Fig.6. This is described more precisely by
the stress measures in Fig.5. MDS Algorithms [9] are O(N2) and obtaining
comparison measures for networks larger than 10000 nodes is difficult without
further optimization schemes.

The MNIST database of 28 × 28 (scaled and centered) handwritten digits
(training set) has 60,000 examples. Although it’s used mostly on classification
tasks, it’s interesting to take advantage of the visual difference between digits
to make the mapped relationships clearer [29]. We downsampled and Gaussian
smoothed digits to 16 × 16 bitmaps. We then selected 900 of the images, the
100 first examples for each digit in the original distribution [19]. Fig.5a contains
the overall resulting embedding. Fig.5b,c show two bordering regions in detail
(between 0-6 and 8-9-4 clusters). The separation between the digit classes is very
clear. The few digits close to the wrong cluster are distorted, almost unrecog-
nizable characters (Fig.5c highlights, with rectangles, two examples, both from
the ’9’ training subset).
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Fig. 5. (a) facebook friends network-1 stress, (c) network-2 stress, (d) network-3 stress.

Fig. 6. Facebook friends network scatterplot with 10078 nodes.
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The coord-game system is an order of magnitude faster than others with com-
parable performance (see, for example, [29]). It takes approximately 0.8 seconds,
1.9 and 8.3 seconds for the final placement of the Iris, Yeast and Metagenomics
datasets. The visualization is iterative, and, perhaps more relevant, is the time
per intervention, which is of 0.61ms/intervention with M = 25 and T = 10. The
effective parameters T and M (resp., the equilibrium time constrain and square
grid size) for these two systems offer useful speed-quality tradeoffs.

(a)

(b) (c)

Fig. 7. MNIST dataset.



14 A. Ribeiro, E. Yoneki

6 Conclusion

At the heart of the article is a game-theoretic model of many-players coordina-
tion using graphs (with models for players belief revision and communication).
A common critic of game-theory is that it is mostly ’toy mathemathics’. We
demonstrate that the perspective can be practical for visualization. Dimensional-
ity reduction is closely related to a range of important topics such as compression
and discriminant analysis. We have also applied the model to large-scale spa-
tial coordination problems with shops check-in (Foursquare) and human travel
(Flickr) data with surprising results. The work thus opens up new opportunities
for game-theory in both Machine Learning and in new applications.
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