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Abstract

RFID technology has been widely used in recent works for detecting close face-to-face contacts. This information is a very
good resource for information diffusion analysis or epidemiology. RFID technology provides more accurate information
of contacts than others technologies using location information, as it allows to detect face-to-face contacts. But this
technology requires of receivers or readers that have to be installed in the measured area. Current readers require of
some properties that make them unusable in challenging scenarios like remote locations in Africa, where measuring close
face-to-face contacts can provide valuable information for better vaccination protocols. We present in this paper a new
RFID reader device based on affordable Rasbperry Pis that does not require ethernet connection, and is able to work
outdoors using delay tolerant networking based on wifi and batteries. In this paper we also analyze the accuracy of the
RFID system using real world observable tests. We detect and show some current issues and propose a method to solve
them consisting in adding an additional signal for getting additional space information.
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1. Introduction

The interest of measuring contacts between people has
increased over the last years. This data can reveal mobility
patterns, social interactions, or personal habits. Different
models can be applied to this data, like information diffu-
sion or infectious diseases.

There exists different ways to measure interactions:
Ranging from social network analysis to face-to-face en-
counters measurements. The first one provides the social
structure of an individual, that can be used to measure
influence, information diffusion, etc. The latter, instead,
provides physical contacts from the participants, when
they have been in close contact, for how long, the fre-
quency of those close contacts, etc. This information, can
also be used for information diffusion for example, but in
contrast with the social network analysis, face-to-face con-
tact data can also be used in epidemiology for infectious
diseases spreading measurements.

Therefore, the target of the study defines the type of
the data required. When talking about close contact mea-
surements we also need to differentiate between different
subcategories inside this category. One way to measure
close contacts for example can be collecting geo-positions
using a GPS, for instance, using a mobile phone. This
method does not requires a big deployment but at the
same time it has some drawbacks, for example, GPS can-
not be used indoors, and it has an error range from 5 to
15 meters. Furthermore, extra data (orientation) will be
needed if we want to determine if two users have been in
close contact, a requirement for some epidemiology stud-

ies.
For more accurate measurements, wireless radio-frequency

can be used to detect close contacts between between. A
low power signal is emitted that can only be detected in
a close range of about 1 - 1.5 meters, thus enabling face-
to-face detection when the participants wear the emitter
and receptor on the solar plexus. The OpenBeacon plat-
form [1] is the most used platform using this technology
for face-to-face close contact detection.

This platform has been previously used for measuring
face-to-face contacts in several papers [2][3][4][5] to get in-
formation of the frequency and length of close face-to-face
contacts in different scenarios (schools, hospital wards,
conferences, etc).

As the paper [2] states there are some limitations of
this system. The main one is that it requires RFID read-
ers that limit where the measurement can be done. The
deployment require RFID tags worn by each participant
and RFID Ethernet readers that will read the contact data
reported by the tags and forward it to a server where it
will be stored.

RFID Ethernet reader require Ethernet connections,
therefore a network infrastructure, and a gateway or server
where to forward and store the contact data. These re-
quirements limit the possibilities of deployment in some
scenarios. Challenging environments, the focus of this pa-
per, like remote locations in Africa, require a more relaxed
requirements. Most of them are characterized for not hav-
ing network infrastructure available, thus making more dif-
ficult to deploy this type of RFID readers. Furthermore,
measurement of outdoors areas becomes more important
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where some RFID readers are not prepared to be deployed
in.

These scenarios have not been explored yet in terms
of close face-to-face measurements. The analysis of this
data could bring improved vaccination protocols as infec-
tious diseases models (that require frequency and length
information of close contacts between participants) could
be applied on top of this collected network.

We present a new RFID reader with more relaxed re-
quirements that can be deployed outdoors, and does not
require network infrastructure or a server. The reader is
based on a Raspberry Pi, and therefore has a low power
requirements, being able to work with a 7000 mAh battery
for more than 10 hours.

We also test the accuracy of the current OpenBea-
con platform and propose a more expensive in terms of
power consumption solution that can provide more accu-
racy. This solution is based in an additional signal with
more transmission power that will be used for additional
spatial location, thus correcting the possible errors of the
current RFID tags. A more accurate (in terms of frequency
and length) close contact measurement will provide better
infectious diseases simulations results.

The paper is divided in two parts. The first part of the
paper shows the new RFID reader that enables face-to-face
close contact measurements in challenging scenarios. The
second part of the paper is dedicated to improve accuracy
of the current system.

2. Background

In these section we describe the technologies and ar-
chitecture behind the current contact measurement tools
based on RFID.

2.1. RFID System

RFID (Radio Frequency IDentification) tags have been
used in many previous experiments to measure person to
person interactions. Particularly, for the RFID devices,
the OpenBeacon platform [1] has been widely used in these
studies. OpenBeacon is an open platform that uses active
RFID devices. It consist in two main elements: The RFID
tag, and the RFID reader. The RFID tag is a small device
that users wear, usually on the chest (solar plexus point),
that constantly sends beacons (air messages) that can be
read by other RFID tags and RFID readers. When an
RFID tag detects other tags (reads the beacons sent by
them), it sends a message to inform that a contact has been
produced. These messages are received by RFID readers
that forward them to a gateway where these messages are
stored.

2.1.1. RFID Tag

An OpenBeacon RFID Tag [6] (Figure 1) is an active
RFID tag that transmits signals (also known as beacons
or messages) in the 2.45 GHz band using an nRF24L01

transceiver. The nRF24L01 [7] can transmit beacons at
different power strengths: -18dBm, -12dBm, -6dBm, and
0dBm. Different power strengths are used to estimate the
distance between tags and the RFID readers. When a
beacon is received, the power strength that was used to
sent the beacon is used to calculate the distance from the
reader (this information is inside the beacon or message)
and can be used as well for location using trilateration if
several RFID readers have been deployed.

Tags can detect beacons from other tags because they
are active RFID tags. This feature is used to measure
face-to-face contact detections. These contacts are stored
in a short memory of the RFID Tag and a report mes-
sage is sent periodically to the readers with the list of tags
contacted.

The tags are flashed with the tagPRO firmware, that
provides two different antenna power configurations. The
first one uses the nRF24L01 transceiver with any of the
four different RF output power configurations in TX mode:
-18dBm, -12dBm, -6dBm, or 0dBm. Beacons sent with
this configuration will be used for distance calculation.
The second type uses the nRF24L01 transceiver plus a
resistor that lower the output power making the signal re-
duce its range to only 0.6-1.2m instead of 5-20m. The re-
sistor is activated when the tag wants to send a proximity
beacon, used for close face-to-face contact detection. The
low output power value of the signal in this case produces
that the signal will not be able to be detected behind the
body of the participant carrying because the human body
will absorb most of the signal. Thus making the signal or
beacons only detectable face-to-face.

Figure 1: RFID Tag [6]

2.1.2. RFID Readers

The RFID ethernet readers [8] detect messages or bea-
cons sent by RFID tags. These messages are formatted and
sent to the gateway or server where they will be stored. As
ethernet RFID readers do not have large permanent stor-
age, a server is required. The server is configured as the
gateway in the network configuration of all the ethernet
readers. Figure 2 shows the structure needed.
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Figure 2: RFID System scheme

These RFID readers require an ethernet connection
supporting Power over Ethernet (PoE) to power the reader
(or a standard mini-USB power port suppling 5V). They
also require an ethernet network infrastructure with hubs
and/or routers that connects all the readers with the gate-
way.

3. Opportunistic RFID Reader

In this paper we present a new opportunistic RFID
Reader which new characteristics closely relates to the
concepts of opportunistic networks or Delay Tolerant Net-
works (DTNs). The new RFID reader can work outdoors,
does not need network infrastructure, is mobile/portable,
and is decentralized (does not requires of a server). It
is based on a Raspberry Pi Model B, a tiny computer
equipped with a 700 MHz ARM11 CPU, 512 MB of RAM,
an Ethernet port, two USB ports, an SD card port for stor-
age, and several GPIO (General Purpose Input Output)
pins, between others.

An OpenBeacon USB RFID reader [9] dongle is used
with the Raspberry Pi with an equivalent firmware to the
one in the ethernet RFID reader. The dongle uses the same
nRF24L01 transceiver as the OpenBeacon RFID Tags [6]
and therefore it is fully compatible. A script collects the
data from the USB RFID Reader via serial port (USB) and
process the streaming received containing all messages (or
beacons) read by the dongle. These messages are stored to
the permanent storage of the Raspberry Pi (an SD card).

The new RFID reader, therefore, supports local stor-
age and does not require a centralized server. A WiFi
dongle is also used, eliminating the need of an ethernet
network infrastructure. To completely eliminate the need

of network infrastructure, even wifi infrastructure, we use
Delay Tolerant Networks (DTN). As the main purpose is
to use the system in challenging environments, the support
of this type of networks will help in some extreme cases.

DTNs support allows to exchange messages between
devices without an existing end-to-end path between the
sender and the receiver. Thus, opportunistic RFID read-
ers can be deployed isolated from others or in discon-
nected groups, supporting big delays and disruption on
paths when forwarding and/or delivering messages. De-
pending of the forwarding algorithm used, the messages
will be spread to any other reader they contact (epidemic
like) or will follow an strategy to only forward a message
to selected nodes.

In our prototype, we have configured it to use a data
mule approach. Data mules is a particularly case of delay
tolerant networks in which, most of the nodes are station-
ary and a few of them move around, following routes that
intersect with stationary nodes. These moving nodes are
called ferries or data mules and are in charge of collecting
data from the stationary nodes. This method is very used
in sensors networks to collect data from sensors for exam-
ple. Another example is the the postman example in rural
regions. The postman carries with him (or in its motor-
cycle) a node that collects and delivers messages to other
nodes in little villages without internet access. People liv-
ing in these villages, then, can send and receive emails,
social networks updates, digital newspapers, etc, without
having internet access, in a delay way.

Our prototype works in the same way. We deploy sev-
eral opportunistic RFID readers over the area we want
to measure. When a collection of data is wanted, a data
mule goes around where the readers have been deployed
and those send a copy of the data collected to it.

We have installed the prototype inside a water proof
plastic box (Figure 3) to make it resistant to rain, dust,
etc. Thanks to this protection we can deploy the RFID
reader outdoors and thus relaxing the restrictions of other
RFID readers systems and opening the possibility to take
measurements in wider areas.

To make it portable and for easily deployment, we have
tested its use with a battery pack. A Raspberry Pi has low
energy consumption, it only draws 3.5W. We performed
several tests with a battery pack with a capacity of 7000
mAh. The average duration of the battery was around 10
hours, enough for a continuous measurement and collec-
tion of data during daylight.

3.1. Test

To test the system proposed we performed an exper-
iment. We deployed 17 Raspberry Pi RFID Readers in
the Computer Laboratory of the University of Cambridge
(Figures 4, 5, and 6). The Readers were distributed based
on the location of the participants and common areas (the
cafe, dinning areas, corridors, etc) in each one of the three
floors of the Computer Laboratory. Private areas where
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Figure 3: Raspberry Pi OpenBeacon Reader

participants were not allow to go or areas where no par-
ticipant was meant to be were not covered.

Over a period of three days we collected contact and
location data from 27 participants, divided on different
groups (students, interns and different research staff from
different research groups). Each one of the participants
was given RFID tags who had to wear during the time
they were in the Lab.

As stated in the definition of the prototype, the readers
collected all the data and store them into its permanent
storage (an SDCard), we collected all the data using a data
mule approach going through all the readers location with
a data mule who was in charge of receiving all the data
from the deployed stationary readers.

Figure 4: Deployment of the RFID readers on the ground floor

Figure 5: Deployment of the RFID readers on the first floor

Figure 6: Deployment of the RFID readers on the second floor

The results were collected using a data mule approach
with a moving node. The server moving node collected the
data when passing next to a deployed opportunistic RFID
readers and stored this data on its own storage. After all
data was collected, it was aggregated and exported as a
network, where nodes represent the participants of the ex-
periment and the edges represent the interaction between
two individuals. The edges are weighted by the number of
beacons interchanged between them. Figure 7 shows the
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network after applying a community detection algorithm.
The results correctly show the different groups that par-
ticipated in the experiment.
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Figure 7: Results from the test using opportunistic RFID readers

4. Accuracy

The second part of the paper is an analysis and pro-
posal of improvement of measurements accuracy. We per-
formed a series of tests to measure distance sensitivity, po-
sition, signal problems, etc. Some of these tests are shown
in figure 8 and figure 9. The first set of tests (figure 8) tests
were done with 3 participants, each one of them carrying
an RFID tag on the solar plexus. We located the partici-
pants in a big room and in fixed positions without allowing
them to move during the experiment. We used a distance
between them of 1 meter. Previous works in different loca-
tions like conferences [2] or primary schools [3] show that
more than 85% of contacts have less than 1 minute of du-
ration. We performed tests of around 1 minute of duration
with stationary participants. For each one of the tests, we
used different positions for the participants to measure the
impact of the orientation and location. In figure 8 can be
seen the configuration for each one of them.

Authors of previous works [2][3][4] have used the follow-
ing algorithm to analyze contact data. First, they divide
the time into intervals of 20 seconds. Then, they apply
an algorithm that considers that two tags taga and tagb
have been in contact during a whole interval (20 seconds)
if during this interval at least one contact message report
has been received.

contact time = Array.new
ncontacts = 0
for i in (1..time).step(20) do

if contacts[i..(i+ 19)].size > 0 then
if contact time[ncontacts] == nil then

contact time[ncontacts] = 20
else

1 m

1 m 1 m

A B

C

(a) First experiment

1 m

1 m 1 m

A B

C

(b) Second experiment

1 m

1 m 1 m

A B

C

(c) Third experiment

1 m

1 m 1 m

A B

C

(d) Fourth experiment

1 m

1 m 1.4 m

A B

C

(e) Fifth experiment

Figure 8: RFID experiments

contact time[ncontacts] = contact time[ncontacts]+
20

end if
else

ncontacts = ncontacts + 1
end if

end for

This threshold of 20 seconds is considered by the au-
thors the minimum interval of time to have a probability
of 99% that no contact have been produced during this in-
terval if no contact report have been received. This means
that if we take a tinier interval of 10 seconds and no contact
report is received during this interval, it cannot be guaran-
teed that a contact has not been produced, the probability
will be less than 99%. As authors state, this is the best
timescale as a faster one do not improves accuracy due to
noise issues.

Although this solution is useful in some situations, the
20 seconds timescale may not be enough when a higher
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Exp1 Exp2 Exp3 Exp4 Exp5
A-B 0.66 0.2 0.88 0.11 0.88
B-C 0.83 0.4 1 1 0
C-A 0.83 1 1 0.88 0.33

Table 1: Results of the tests after applying the timescale algorithm.
The results show the percentage of the total time of the experiment
that the two nodes have reported being in contact.

resolution is wanted. The distribution of the probability
for intervals than less than 20 seconds is unknown. The
known probabilities therefore are:

• For a timescale of 1 second, the probability that two
tags are in contact if a contact report is received
during this period of time is 1.

• For a timescale of 20 second, the probability that
two tags haven’t been in contact if no contact report
have been received during this period of time is 1.

After applying this algorithm to the data from the tests
performed, the table 1 shows the following results:

In all the tests the participants were still during the
duration of the experiment in the position expressed in
the figure 8. The results of the table 1 should be theo-
retically 1 as the two participant were in network range
of their RFID tags. Although the timescale of 20 and the
algorithm have been applied, some results do not show a
continuous contact during the experiment.

5. Improving accuracy

The previous section showed that face-to-face contact
measurement can be inaccurate in some cases. Some pre-
vious works already mentioned that measure that type
of contacts in different environments have a significant
amount of contacts of less than 20 seconds long (even
more than 75% of all the contacts measured). This can
be caused by two possible factors by our understanding.

First, some of these short measured contacts could be
just two people passing by each other. Some works may
require this type of contacts to have another type of con-
sideration or even not to be taken into account. Lowering
the time frame window in the current algorithm (20 sec-
onds) will help in detecting this type of situations.

The second possibility of these short measured contacts
could be high effects of noise or other elements, splitting a
longer contact into shorter ones (missing face-to-face con-
tact reports).

To increase the accuracy in contacts measurements we
propose the use of an additional signal with more power
strength, providing spatial information. Data about spa-
tial information between two tags will help to correct pos-
sible errors in face-to-face contact data (missed contact
reports), and help to reduce the time frame window, the
two main problems we have detected that affects accuracy.

5.1. Distance estimation based on signal strength

Distance estimation based on the difference between
the transmitter and the receiver signal strength has been
used in several previous works [10][11][12][13][14][15]. The
signal strength in the transmitter is known and in the re-
ceiver is provided by the received signal strength indicator
(RSSI) that some wireless devices have. To calculate the
distance between a transmitting and a receiving point the
Friis equation [10] is used, under perfect conditions:

Pr(d) = PtGtGrλ
2

(4π)2d2

where Pr is the signal strength in the receiving point,
Pt is the transmitting power, Gt is the transmitting an-
tenna gain, Gr is the receiving antenna gain, λ is the
wavelength of the transmitted signal, and d is the distance
between the receiving and the transmitting point.

As signals are not transmitted in ideal conditions, and
the environment where they are transmitted have an im-
pact in the transmission. Reflection, absorption, scatter-
ing, or multipath are just some effects that affect the trans-
mission of signals and therefore alter the signal strength
received in the receiver. A more realistic equation [10]
giving a closer approach to signal propagation in real con-
ditions is the following:

Pr = P0 − q10log10( dd0 ) + α
where Pr is the signal strength at a distance d from

the transmitter, P0 is the signal strength at a distance
d0 from the transmitter, q is the loss exponent that indi-
cates how signal strength decreases through distance and
it is dependent of the environment (indoor with walls, free
space, outdoor...), and α is a Gaussian distributed random
variable with zero mean and standard deviation σ that ac-
counts for the random effect of shadowing.

The loss exponent is greater as more obstacles and
other type of effects (reflections, absorptions, etc) have
the environments. The usual values are from 2 to 6 rang-
ing from outdoors to indoors, although can arrive to grater
than 6 at indoors and lower than 2 in tunnels, as they act
as a waveguide.

Most of previous works use this equation to infer loca-
tion, applying estimation techniques like lateration. Later-
ation techniques are based in distance measurements from
different static points, called anchor nodes. The first thing
that has to be done is to “calibrate” all the anchor nodes.
This is an offline phase that requires to measure the signal
strength received at a distance of 1 meter of an anchor
point. With this information, the path loss exponent can
be calculated, which is different depending on the environ-
ment where the signal has to be propagated. This calibra-
tion has to be done for each one of the anchor nodes, as the
effects of reflection, scattering, etc can be different on each
set. Once all the anchor nodes are calibrated, the distance
to each one of them can be calculated based on the RSS
(Received Signal Strength) and the equation above. The
location of the moving node then, is calculated using the
intersection of the n distances measured.
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5.2. Two moving signals

The face-to-face contact detection is substantially dif-
ferent from the previous works on distance estimation as in
this case we want distance information between two mov-
ing nodes instead of a moving node and an anchor node.
Therefore, the environment changes, making the loss ex-
ponent different under different locations.

Although the location and thus the loss exponent can
change, a face-to-face contact usually happens in an static
position. This means that during a face-to-face contact,
the loss exponent will be constant or have a very low vari-
ation.

When a close contact report between two nodes nodea
and nodeb is received from an RFID tag at time t, we can
say that the two tags are separated by less than 1.5 meters
of distance. We will collect the received signal strength
for the high power signal at that time t which will have
the same characteristic (less than 1.5 meters of distance).
Therefore, we will have a maximum distance d, a constant
loss exponent q, and a received signal strength RSS. If at
time t1 a contact report is not received from an RFID tag,
the high power signal will be analyzed and compared to
the one collected at time t to see if the two nodes are still
in range of < 1.5 meters of distance. t1 − t should be less
than what the original authors consider in their papers as
the maximum time after receiving a contact report with
non-zero probability. Therefore, for the temporal analysis
of the high power signal we will use the received RFID
contact reports as ground truth.

Received signal strengths will also give information about
the gaussian shadowing when analyzing the signal over
time, being able to extract its characteristics (mean, stan-
dard deviation).

5.3. Experiment

For confirming the algorithm we have used as a proto-
type an OpenBeacon tag for close-contact measurements,
and a Bluetooth device for high power signal strengths.
The reason for doing this is because the nRF2401 radio
transceiver does not have a received signal strength indi-
cator, therefore, in case of building a new RFID tag, the
developer will have to use another radio transceiver sup-
porting a rssi.

The use of bluetooth based beacons, also commercially
called iBeacons, have exponentially increased the last months.
This is thanks to the notably decrease of energy consump-
tion of the last version of Bluetooth 4.0, also known as
Bluetooth Low Energy or Bluetooth Smart.

Bluetooth is a wireless radio technology standard de-
signed for short distances. It uses the 2.40 GHz ISM
band divided in 79 channels for transmission achieving a 1
Mbit/s data rate in its first version, and up to 24 Mbit/s
in its last 4.0 version. This standard has been widely used
for transmitting data between devices in short range, call-
ing this type of networks, Personal Area Networks (PANs).
The typical range of this technology is usually around 5 to

10 meters for Class 2 radio implementations, the most used
one. It has also been used for contact detection, specially
since the expansion of devices equipped with the version
4.0 of the standard, which includes a new mode (called
Bluetooth Low Energy or Bluetooth Smart) that reduces
drastically the amount of power required for sending bea-
cons, thus increasing the number of applications.

This fact, together with the adoption of the last Blue-
tooth standard in the last smartphones from different man-
ufacturers, have produced the appearance of several new
devices implementing this wireless technology for several
different purposes: distance, location, presence, etc. A lot
of tiny bluetooth tags with a very low power consumption
have appeared in the market [16][17] with the main goal
to attach them to objects and monitor their approximate
distance.

As a bluetooth device we have chosen a Samsung Galaxy
Note 2 equipped with Bluetooth 4.0. We have also devel-
oped an Android application for bluetooth scanning that
allows us to get between 1 to 4 rss readings per second.

We performed an experiment to show the feasibility of
the proposal, figure 9 shows the configuration.
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Figure 9: Experiment outdoors measuring RFID + Bluetooth

The two participants used an RFID and a Bluetooth
devices. The configuration (firmware) used in the RFID
tag is the standard used in another previous experiments
(explained in previous sections) and participants wore it on
the solar plexus. We used our opportunistic RFID readers,
already described in this paper. The participants also car-
ried the Bluetooth device under the location of the RFID
tag.

While the participant A, in the middle, did not move
during the whole experiment, the participant B moved
from one location to another (marked with numbers in the
figure) with a 2 minutes stay in each one of the locations
and a 30 seconds gap between positions. Participant B
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always looked at participant A (orientation), while partic-
ipant A always maintained the same position. We tested
two distance: 1 and 1.5 meters in different locations.

Figure 10 shows the data collected in the experiment.
In green can be seen the time when a contact report beacon
was received by either participant A or participant B. The
red crosses mark the received signal strength (RSS) in dBm
between participant A and B. The vertical lines separate
each one of the experiments (locations marked in the figure
9) with a duration of 120 seconds.
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Figure 11: Received Signal Strength for each one of the locations in
the experiment

5.4. Algorithm

Let Contacts be the set of all the contacts c reported by
the RFID tags between two tags nodea and nodeb between
the start of the experiment at time t0 until the end of the
experiment tn. Lets define as well RSSs as the set of all
the Received Signal Strengths rss of the high power signal
of nodeb from nodea. For each contact c in Contacts at
time t we have rssα(c), which contains all the high power
(bluetooth) received signal strengths from t−1 to t+1 for
a contact c.

For each second during the measured time from t0 to
tn, we will calculate the average of the rss (received signal
strengths) for each t‘, therefore rss(t‘). We will compare
rss(t‘) with rssα(c) only if c has been produced at time
t < t‘ + 40 & t > t‘ − 40. The reason of having a 40
seconds interval temporal analysis is because this is the
equivalent to two time frames in the previous algorithm
used to analyze data (if a contact has been detected in
the first second of the time frame 1, we do not discard
a possible ongoing contact until the next time frame has
passed: a total of 39 seconds). If after two time frame
windows a contact c has not been received there is a very
low probability that the close face-to-face contact is still
ongoing.

In case that c has been produced at time t < t‘ + 40 &
t > t‘−40, if rssavg(t‘) ≤ rssα(c)mean+rssα(c)std then we

Posi-
tion

Total
time

connected
Num

contacts
Avg
time Std

1 60 (20, 40) 2 30 14
2 120 1 120 0
3 100 (20, 80) 2 50 42
4 0 0 0 0
5 0 0 0 0
6 60 1 60 0
7 100 (20, 80) 2 50 42
8 120 1 120 0
9 80 (60, 20) 2 40 28
10 100 1 100 0
11 60 (40, 20) 2 30 14
12 100 (80, 20) 2 50 42
13 120 1 120 0

Table 2: Results of the tests after applying the timescale algorithm
(all results in seconds)

say that at time t‘, nodea and nodeb have been in contact.
A greater received signal strength means closest distance
between peers.

If we analyze figure 11, we can clearly see that during
a contact between two nodes the received signal strength
is similar (it has very similar average and standard devi-
ation) as the nodes does not move during it. The stan-
dard deviation is always large in all the experiments, due
to Gaussian distributed random variable with zero mean
that accounts for the random effect of shadowing. The sig-
nal then, only changes when, (a) the environment changes
(signal effects), or (b) one of both of the nodes move. If
the two nodes get closer the received signal strength will
get greater values, if the two nodes get farer the received
signal strength will get lower values.

In the old algorithm to detect that two nodes are no
longer in contact, we have to wait a complete time frame
(20 seconds). With this new algorithm we can detect sud-
den changes much faster, as the received signal strength
will heavily change getting much lower values meaning
longer distance between nodes.

5.5. Results

After applying the algorithm described in previous sec-
tion, the results are plotted in figure 12. The blue signal
represents when the two nodes have been in contact based
on the new algorithm. The table 2 show the results using
the previous algorithm used by other authors. The ex-
pected results observable and measured in the experiments
should be a “Contact rate” of 1 in all the experiments with
only 1 contact of 120 seconds of duration. Table 3 show
the results using the new algorithm.

In figure 13 we can see the mean and standard devi-
ation time between contact reports RFID beacons. The
figure shows a mean of more than 10 seconds from most

8



-100

-90

-80

-70

-60

-50

-40

-30

 1500  2000  2500  3000  3500

R
S

S
 (

d
B

m
)

timestamp

exp1 exp2 exp3 exp4 exp5 exp6 exp7 exp8 exp9 exp10 exp11 exp12 exp13

RSS
RFID

Figure 10: Received signal strength and RFID contact reports between the two participants during all the experiments
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Figure 12: Received signal strength, RFID contact reports (and proposed algorithm in blue) between the two participants during all the
experiments
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Posi-
tion

Total
time

connected
Num

contacts
Avg
time Std

1 100 (20, 80) 2 50 42
2 120 1 120 0
3 120 1 120 0
4 0 0 0 0
5 0 0 0 0
6 120 1 120 0
7 120 1 120 0
8 120 1 120 0
9 100 (80, 20) 2 50 42
10 120 1 120 0
11 80 1 80 0
12 120 1 120 0
13 120 1 120 0

Table 3: Results of the tests after applying the new algorithm using
the same timescale (all results in seconds)

Position RSSI Mean RSSI Std

1 -51.18 2.82
2 -58.25 4.03
3 -59.40 3.72
4 -72.16 4.18
5 -74.43 4.01
6 -69.2 4.52
7 -59.17 2.69
8 -61.81 2.38
9 -67.86 4.56
10 -63.47 2.94
11 -66.66 3.83
12 -71.44 1.92
13 -62.07 2.93

Table 4: Received signal strength based on the position in the ex-
periment

of the experiments. Table 4 shows the mean and standard
deviation received signal strength for different locations in
the experiment. We can see how the body acts as signal
absorber and therefore the rss received on not face-to-face
experiments are much lower. We can also appreciate that
a longer distance between the nodes produces a lower rss.

6. Discussion

As the results sections shows in tables 2 and 3, after
applying the new algorithm and maintaining the same 20
seconds timeframe window, the results are much closer to
the real ones (120 seconds total time connected where the
two nodes are facing each other and only one contact).
Furthermore, we can also obtain more fine grained results
by lowering the timeframe windows from 20 seconds to

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 0  1  2  3  4  5  6  7  8  9  10  11  12  13  14

T
im

e 
(s

ec
)

Location

Time between beacons

Figure 13: Time between contact reports RFID beacons for each one
of the locations in the experiment

Posi-
tion

Total
time

connected
Num

contacts
Avg
time Std

1 100 (20, 80) 2 50 42
2 110 1 110 0
3 120 1 120 0
4 0 0 0 0
5 0 0 0 0
6 120 1 120 0
7 120 1 120 0
8 120 1 120 0
9 100 (80, 20) 2 50 42
10 110 (50, 60) 2 55 7
11 70 1 70 0
12 120 1 120 0
13 110 1 110 0

Table 5: Results of the tests after applying the new algorithm using
the same timescale (all results in seconds)

a lesser value. If we relax the timeframe window to 10
seconds, we will get the results from table 5.

Although the results are worst than using a 20 seconds
time frame window, they are still better than the results
obtained by using only RFIDs thanks to the additional sig-
nal that gives added spatial information. Having a lower
time frame window allows to help to decide whether a
short contact consists in only two nodes passing by in-
stead of a face-to-face contact. This type of information
can be relevant under some type of experiments, for ex-
ample epidemiology ones where only long contacts should
be considered. Furthermore, it also gives us more accurate
measurement of the length of the contact than the previ-
ous method, where the minimum length of a contact was
of 20 seconds.

Also, the recovery of missed contacts should be easier.
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Total
time

Num
contacts

Avg
time Std

Real 1200 10 120 0
RFID 1020 17 60 39
RFID+BT 1240 13 95 38

Table 6: Different results from different measurements methods (all
results in seconds)

As an example we can take the experiment 1; It is always
measured as a 2 contacts no matter the method used (ta-
bles 2, 3, or 5). The correct measurement should be only
1 contact of length 120 seconds. Using only RFID (table 2
and figure 10) the gap between these two detected contacts
is of 60 seconds, adding the extra spatial information from
the high power signal, in table 5 the gap between these
two contacts is of 20 seconds making it easier to recover
that information and finally counting only 1 contact of 120
seconds.

The results can change a lot, for example, lets take
tables 2 and 3. If we calculate the number of contacts
and the average contact time in table 2 for all the exper-
iments we get as a result: 17 contacts with an average
contact time of 60 seconds and a standard deviation of
39 seconds, making a total contact time of 1020 seconds.
A perfect measurement would have measured 10 contacts
with an average contact time of 120 seconds and a stan-
dard deviation of 0 seconds, making a total contact time of
1200 seconds. Adding more spatial information with the
high power signal we get the following results: 13 contacts
with an average contact time of 95 seconds and a stan-
dard deviation of 38 seconds, making a total contact time
of 1240 seconds; closer to the ideal ones. Table 6 sums
up all these results showing the significant difference that
could impact in the results some algorithms applied to the
generated graph.

As a final remark, it is important to say that a high
accuracy when doing this type of experiments is very hard
to achieve due to the several effects that can affect a sig-
nal. For example, experiment 6 (figure 9) shouldn’t have
reported any contact but it did, probably to some reflec-
tion or other signal effect. One of the goals of this paper
then is to improve accuracy of the already good results
from the RFID tags contacts detection.

Some previous works already mentioned have a signif-
icant amount contacts of 20 seconds (or less) long. This
can be caused by two possible reasons by our understand-
ing. First, some of these short measured contacts could be
just two people passing by each other. This type of con-
tacts should have another type of consideration or even
not taken into consideration for some type of analysis. To
better detect this type of contacts and be possible to dis-
card them, we have decreased the timeframe window to
10 seconds, therefore now the shortest contact that can be
detected has a duration of 10 seconds instead of 20. The

second possibility of these short measured contacts could
be high effects of noise or other signal effects, splitting a
longer contact into shorter ones. This example can be seen
in the experiment 1 in tables 2, 3, or 5. It can be seen in
these same tables that adding the new spatial information
given by the extra additional signal, it helps to reduce the
gap between these contact splits and thus be able to re-
cover the long contact more easily. Furthermore, it is also
able to reduce the number of splits of contacts as can be
seen in these tables for experiments 3, 7, or 12.

6.1. Relevance of the measurements for some studies

Stehl et al [3] published a work measuring face-to-face
contacts in a primary school using RFIDs. The results
showed an average of 323 contacts per child per day, with
an average contact time of 33 seconds. It has to be taken
into account that the minimum time measurable in a con-
tact is 20 seconds given the time frame window used in
their algorithm. On another previous work from Glass et
al [18] also measuring close contact interactions (less than
1 meter), the authors used a survey method. The results
showed an average of 4.43 contacts per day per child with
an average contact time of 1 hour.

The difference between the two studies are remarkable
not only in the number of contacts but in the duration
of these. One of the factor to this is that in the second
study the survey only asked for contacts with a “recogniz-
able length of time”, thus getting only an average of 4.43
contacts per day per child. The automatization of contact
detection using RFID allows to get a huge amount of con-
tact information, even those contacts that weren’t noticed
by the participant.

From the other side, if we study the data from day 1
published from Stehl et al, we can see that only 20 from the
5539 edges in the graph (0.36%) have a total contact time
of more than 1 hour. Furthermore, only 106 edges (1.9%)
have an average contact time longer than 1 minute.

The contact time between two participant is relevant
for this type of studies as it may influence in the possibil-
ities of contagious of an infection disease. For this reason
we believe that improving accuracy to measurements is
important.

7. Related work

Bluetooth technology has been previously used to mea-
sure contact interaction between participants: iMotes were
used in the Haggle project [19] and mobile phones were
used in the MIT Media Lab [20]. These works do not
measure face-to-face interaction but contact between par-
ticipants with a wider distance, 5 to 10 meters in the case
of the Nokia 6600 used in the MIT Media Lab experiment
[20]. As a difference to the OpenBeacon RFID tag, the
iMote (or other Bluetooth motes used for tracking con-
tacts) do not use a low power beacon system that only
measures close 1.5 meters (or less) face-to-face contacts
but they can be used either indoor and outdoors.
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More sophisticated image processing based contacts
tracking systems using satellite images or video surveil-
lance systems require a more complex deployment and ex-
pensive processing systems. Several cameras need to be
installed to cover all the spots in an area and they also
require complex image processing systems.

The MIT Media Lab has also used IR sensors to detect
face-to-face contacts using the Sociometric Badges [21][22]
(apart from other elements detected by the badge like
speech). These badges only offer ±15 degrees visibility
cone and the IR technology requires direct line of sight.

Some localization systems can also be used to detect
contacts if two nodes are detected in the same area. Some
systems like RADAR [23], Horus [24], DIT [25], or ekahau
[26] offer indoor localization techniques based on WLAN
received signal strength (RSS). As explained previously in
the paper, this type of systems require an offline phase to
calibrate the system and most of them have an accuracy
of a few meters [27] indoors. Furthermore, most of these
options does not offer node orientation required for face-
to-face interaction.

Between the few localization systems that also offer ori-
entation we can find COMPASS and Active Bats. COMPASS[28],
also based on WLAN RSS, uses a compass to add orien-
tation information to improve accuracy by taking into ac-
count the effects of the human body that blocks signals by
absorption. COMPASS is able to reduce the distance error
to 1.7 meters but still needs an offline phase to calibrate
the system and has only been tested indoors. Active Bat
[29] is able to know orientation and location but requires
a large number of sensors deployed (for high accuracy) on
the ceiling of the indoor location. Therefore, this system
does not works on outdoors locations.

The most common outdoor localization technologies in-
clude GPS/GLONASS, with an accuracy of a few meters,
and GSM localization with much higher error rate. These
systems do not have enough accuracy for measuring close
face-to-face contacts interactions.

7.1. Filters

Kalman and Particle filters [30] have been widely used
for noise correction based on pre-defined models, and for
prediction. The contact model to be used can be different
depending the scenario we want to measure (outdoors, in-
doors, schools, hospitals, etc) as the contact patters will
change from each scenario as well as the type of signal ef-
fect depending of the location. If the user can identify the
model, she will be able to apply a Kalman filter to reduce
false negatives. Other works use Particle filters to estimate
location. These works use the aggregation of several sen-
sors signals deployed in the scenario. This data can give an
approximate prediction of the location of a node at t+ 1.
Some works [31] have also used particle filters together
with received signal strength for localization purposes. In
the case of face-to-face interaction measurements, anchor
nodes are not used (for distance between nodes measure-
ments), neither the system is calibrated in an offline phase

as environment changes when the nodes move to different
areas. Thus, the distance between nodes is unknown even
when the system receives a contact report from one of the
tags. In this case, the unknown variable of distance be-
tween two nodes is relaxed to the condition that the two
nodes are in less than 1.5 meters of separation.

8. Conclusion

In this paper we have seen how current methods for
measuring close face-to-face encounters sometimes suffer
from accuracy problems. We have proposed to use a sup-
plementary no low power signal for getting additional spa-
tial information.

The main purpose is to help reduce the face-to-face
contacts splits and provide a easier recovery of the loss
of signals from RFID. The RFID beacons are used as a
face-to-face contact detector, while the additional signal is
used to get spatial information between the two nodes and
detect if the distance between the two have changed while
there was no RFID contact report beacon.

Furthermore, we have developed a new opportunistic
RFID reader based on a Raspberry Pi and using wireless
networks supporting delays and disruptions. These new
characteristics allows deployment of these readers in more
challenging environments.
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