The Influence of Prosody and Ambiguity on English Relativization Strategies

Ted Briscoe & Paula Buttery

Computer Laboratory and RCEAL
University of Cambridge

Interdisciplinary Approaches to Relative Clauses, Sept07
SRCs vs. NSRCs

- The guy who/that likes me just smiled
- The guy who/that I like just smiled

Complexity:
Distance between ‘filler’ and ‘gap’
Unbounded dependencies potentially complex
SRCs vs. NSRCs

- The guy who/that likes me just smiled
- The guy who/that/0 I like e just smiled

Complexity:
Distance between ‘filler’ and ‘gap’
Unbounded dependencies potentially complex
SRCs vs. NSRCs

- The guy who/that likes me just smiled
- The guy who/that/0 I like e just smiled

Complexity:
Distance between ‘filler’ and ‘gap’
Unbounded dependencies potentially complex
 SRCs vs. NSRCs

- The guy who/that likes me just smiled
- The guy who/that/0 I like e just smiled

Complexity:
Distance between ‘filler’ and ‘gap’
Unbounded dependencies potentially complex
NSRCs and Ambiguity

- The guy who I think you want e? to succeed e? just smiled
- The guy who I want e? to think that the boss will succeed e?

succeed = win / replace, intrans / trans

Ambiguity:
Distance between filler and potential gap, and potential gap and actual gap
Unbounded ambiguities potentially complex
NSRCs and Ambiguity

- The guy who I think you want e? to succeed e? just smiled
- The guy who I want e? to think that the boss will succeed e?

succeed = win / replace, intrans / trans

Ambiguity:
Distance between filler and potential gap, and potential gap and actual gap
Unbounded ambiguities potentially complex
NSRCs and Ambiguity

- The guy who I think you want to succeed just smiled.
- The guy who I want to think that the boss will succeed.

succeed = win / replace, intrans / trans

Ambiguity:
Distance between filler and potential gap, and potential gap and actual gap
Unbounded ambiguities potentially complex
The guy who I think you want e? to succeed e? just smiled
The guy who I want e? to think that the boss will succeed e?

succeed = win / replace, intrans / trans

Ambiguity:
Distance between filler and potential gap, and potential gap and actual gap
Unbounded ambiguities potentially complex
Universal Darwinism

1. Linguistic Variation +
2. Language Acquisition +
3. Linguistic Selection =
4. Linguistic Evolution
Universal Darwinism

1. Linguistic Variation +
2. Language Acquisition +
3. Linguistic Selection =
4. Linguistic Evolution
Universal Darwinism

1. Linguistic Variation +
2. Language Acquisition +
3. Linguistic Selection =
4. Linguistic Evolution
Universal Darwinism

1. Linguistic Variation +
2. Language Acquisition +
3. Linguistic Selection =
4. Linguistic Evolution
Linguistic Selection

1. Learnability – frequency, interpretability, learning bias...
2. Expressiveness – economy of production, memorability, prestige...
3. Interpretability – ease of perception, resolution of ambiguity...
Linguistic Selection

1. **Learnability** – frequency, interpretability, learning bias...

2. **Expressiveness** – economy of production, memorability, prestige...

3. **Interpretability** – ease of perception, resolution of ambiguity...
Linguistic Selection

1. **Learnability** – frequency, interpretability, learning bias...
2. **Expressiveness** – economy of production, memorability, prestige...
3. **Interpretability** – ease of perception, resolution of ambiguity...
A Lexicon Fragment

who(m) (N\N)/(S/NP)
I S/(S\NP)
want ((S\NP)/NP)/VP (S\NP)/VP
succeed (S\NP)/NP S\NP
...
Combinatory Categorial Grammar

Forward Application (FA):

\[
\frac{X/Y \ Y}{X} \quad \frac{\lambda \ y \ [X(y)] \ (y)}{X(y)}
\]

Backward Application (BA):

\[
\frac{Y \ X\ Y}{X} \quad \frac{\lambda \ y \ [X(y)] \ (y)}{X(y)}
\]

Forward Composition (FC):

\[
\frac{X/Y \ Y/Z}{X/Z} \quad \frac{\lambda \ y \ [X(y)] \ \lambda \ z \ [Y(z)]}{\lambda \ z \ [X(Y(z))]}
\]
A Derivation

who want
(N\N)/(S/NP) ((S/NP)/NP)/VP
------------ FC
(S/NP)/VP
------------ FC
((N\N)/S)/VP

who I want e to succeed

(N\N)/S
<table>
<thead>
<tr>
<th>Stack Cells</th>
<th>Lookahead</th>
<th>Input Buffer</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

(\textit{who}) $(\textit{N/N})/(S/NP)$ (\textit{you want}) $(S/NP)/VP$ to $VP/(S/NP)$ S/VP

Costs / cell

4 2

3 \textit{Shifts}, 1 \textit{Reduce} to reach this configuration

\textbf{Onset} of the shift-reduce ambiguity at the first potential gap
Working Memory Cost Metric

After each parse step (Shift, Reduce, Halt):

1. Assign any new Stack entry in the top cell (introduced by Shift or Reduce) a cost of 1 multiplied by the number of CCG categories for the constituent represented (Recency)

2. Increment every Stack cell’s cost by 1 multiplied by the number of CCG categories for the constituent represented (Decay)

3. Push the sum of the current costs of each Stack cell onto the Cost-record (complexity at each step, sum = tot. Complexity)
Optimal Ambiguity Resolution

- **Default Parsing Preference**: Prefer Shift over Reduce when Lookahead item can be integrated with cell 1 by Reduce
- Predicts preference for more costly late gap analysis (contra Gibson, 1998)
- This is the optimal strategy if the extrasyntactic information required to override the default action is available at the onset of the ambiguity
- Other things being equal, we expect languages and usage to evolve via linguistic selection for **Interpretability** using the optimal strategy
Optimal Ambiguity Resolution

- **Default Parsing Preference**: Prefer Shift over Reduce when Lookahead item can be integrated with cell 1 by Reduce
- **Predicts preference for more costly late gap analysis** (contra Gibson, 1998)
- This is the optimal strategy if the extrasyntactic information required to override the default action is available at the onset of the ambiguity
- Other things being equal, we expect languages and usage to evolve via linguistic selection for **Interpretability** using the optimal strategy
Optimal Ambiguity Resolution

- **Default Parsing Preference**: Prefer Shift over Reduce when Lookahead item can be integrated with cell 1 by Reduce
- Predicts preference for more costly late gap analysis (contra Gibson, 1998)
- This is the optimal strategy if the extrasyntactic information required to override the default action is available at the onset of the ambiguity
- Other things being equal, we expect languages and usage to evolve via linguistic selection for Interpretability using the optimal strategy
Optimal Ambiguity Resolution

- **Default Parsing Preference**: Prefer Shift over Reduce when Lookahead item can be integrated with cell 1 by Reduce
- Predicts preference for more costly late gap analysis (contra Gibson, 1998)
- This is the optimal strategy if the extrasyntactic information required to override the default action is available at the onset of the ambiguity
- Other things being equal, we expect languages and usage to evolve via linguistic selection for Interpretability using the optimal strategy
Structural vs. Lexical Preferences

- The guy who you wanted to give the present to Sue refused
- The guy who you asked to give the present to Sue refused

\[
P((S\backslash NP)/VP \mid \text{want}) >> P(((S\backslash NP)/NP)/VP \mid \text{want})
\]

\[
P((S\backslash NP)/VP \mid \text{ask}) << P(((S\backslash NP)/NP)/VP \mid \text{ask})
\]
Structural vs. Lexical Preferences

- The guy who you wanted to give the present to Sue refused
- The guy who you asked to give the present to Sue refused

\[P((S\backslash NP)/VP \mid \text{want}) \gg P(((S\backslash NP)/NP)/VP \mid \text{want}) \]

\[P((S\backslash NP)/VP \mid \text{ask}) \ll P(((S\backslash NP)/NP)/VP \mid \text{ask}) \]
Structural vs. Lexical Preferences

- The guy who you wanted to give the present to Sue refused
- The guy who you asked to give the present to Sue refused

\[
P((S\backslash NP)/VP | \text{want}) >> P(((S\backslash NP)/NP)/VP | \text{want})
\]

\[
P((S\backslash NP)/VP | \text{ask}) << P(((S\backslash NP)/NP)/VP | \text{ask})
\]
Structural vs. Lexical Preferences

- The guy who you wanted to give the present to Sue refused
- The guy who you asked to give the present to Sue refused

\[P((S\backslash NP)/VP \mid \text{want}) \gg P(((S\backslash NP)/NP)/VP \mid \text{want}) \]

\[P((S\backslash NP)/VP \mid \text{ask}) \ll P(((S\backslash NP)/NP)/VP \mid \text{ask}) \]
Gibson ‘98 vs. Us

1. I gave the guy who you wanted e? to give the books to e? three books

2. The guy who you think you want e? to succeed e? just smiled

On-line resolution at onset + late gap predicts 1) GP, 2) not-GP
On-line resolution at onset + early gap predicts 2) also mild GP:

\[
\begin{align*}
P((S\backslash NP)/VP \mid \text{want}) & \ggg P(((S\backslash NP)/NP)/VP \mid \text{want}) \\
P((S\backslash NP)/NP \mid \text{succeed}) & \llll P(S\backslash NP \mid \text{succeed})
\end{align*}
\]
Gibson ’98 vs. Us

1. I gave the guy who you wanted e? to give the books to e?
 three books
2. The guy who you think you want e? to succeed e? just smiled

On-line resolution at onset + late gap predicts 1) GP, 2) not-GP
On-line resolution at onset + early gap predicts 2) also mild GP:

\[P((S\backslash NP)/VP \mid \text{want}) >> P(((S\backslash NP)/NP)/VP \mid \text{want}) \]
\[P((S\backslash NP)/NP \mid \text{succeed}) <<< P(S\backslash NP \mid \text{succeed}) \]
Marking the ‘outer’ RC boundary

- I gave the guy who you wanted to give the books to *tath* three books
- I wouldn’t give the guy who was reading *tath* three books
- I wouldn’t give the guy who was reading three books *tath* another one

Resolves some ambiguity at cost of increased complexity if *tath* is (S|XP)\(\langle\text{N}\rangle\), as this introduces an additional unbounded dependency with the modifiee – not attested typologically (Kuno ’74, Hawkins ’94).
Marking the ‘outer’ RC boundary

- I gave the guy who you wanted to give the books to tath three books
- I wouldn’t give the guy who was reading tath three books
- I wouldn’t give the guy who was reading three books tath another one

Resolves some ambiguity at cost of increased complexity if tath is (S|XP)\((N\backslash N)\), as this introduces an additional unbounded dependency with the modifiee – not attested typologically (Kuno ’74, Hawkins ’94).
Marking the ‘outer’ RC boundary

- I gave the guy who you wanted to give the books to tath three books
- I wouldn’t give the guy who was reading tath three books
- I wouldn’t give the guy who was reading three books tath another one

Resolves some ambiguity at cost of increased complexity if tath is (S|XP)\(\text{\textbackslash}(N\text{\textbackslash}N)\), as this introduces an additional unbounded dependency with the modifiee – not attested typologically (Kuno ’74, Hawkins ’94).
Marking the ‘outer’ RC boundary

- I gave the guy who you wanted to give the books to tath three books
- I wouldn’t give the guy who was reading tath three books
- I wouldn’t give the guy who was reading three books tath another one

Resolves some ambiguity at cost of increased complexity if tath is (S|XP)\(\langle N\rangle\), as this introduces an additional unbounded dependency with the modifiee – not attested typologically (Kuno ’74, Hawkins ’94).
Marking the ‘outer’ RC boundary

- I gave the guy who you wanted to give the books to **tath** three books
- I wouldn’t give the guy who was reading **tath** three books
- I wouldn’t give the guy who was reading three books **tath** another one

Resolves some ambiguity at cost of increased complexity if **tath** is \((S|XP)\setminus(N\setminus N)\), as this introduces an additional unbounded dependency with the modifiee — not attested typologically (Kuno ’74, Hawkins ’94).
Prosodic Boundaries

- PBs occur at ‘outer’ ends of RCs (e.g. Venditti, Jun & Beckman ’96)
- PBs are exploited on-line during interpretation (e.g. Warren ’99)
- Actual gaps are always marked by PBs?
 - Intonational/Major PB if coincides with outer end (e.g. Nagel et al., ’94)
 - Intermediate/Minor PB if medial (e.g. Warren, ’85)
- PBs are coded in ‘parallel’ so processing/complexity overhead is low
Prosodic Boundaries

- PBs occur at ‘outer’ ends of RCs (e.g. Venditti, Jun & Beckman ’96)
- PBs are exploited on-line during interpretation (e.g. Warren ’99)
- Actual gaps are always marked by PBs?
 - Intonational/Major PB if coincides with outer end (e.g. Nagel et al., ’94)
 - Intermediate/Minor PB if medial (e.g. Warren, ’85)
- PBs are coded in ‘parallel’ so processing complexity overhead is low
Prosodic Boundaries

- PBs occur at ‘outer’ ends of RCs (e.g. Venditti, Jun & Beckman ’96)
- PBs are exploited on-line during interpretation (e.g. Warren ’99)
- Actual gaps are always marked by PBs?
 - Intonational/Major PB if coincides with outer end (e.g. Nagel et al., ’94)
 - Intermediate/Minor PB if medial (e.g. Warren, ’85)
- PBs are coded in ‘parallel’ so processing/complexity overhead is low
Prosodic Boundaries

- PBs occur at ‘outer’ ends of RCs (e.g. Venditti, Jun & Beckman ’96)
- PBs are exploited on-line during interpretation (e.g. Warren ’99)
- Actual gaps are always marked by PBs?
 - Intonational/Major PB if coincides with outer end (e.g. Nagel et al., ’94)
 - Intermediate/Minor PB if medial (e.g. Warren, ’85)
- PBs are coded in ‘parallel’ so processing/complexity overhead is low
Prosodic Boundaries

- PBs occur at ‘outer’ ends of RCs (e.g. Venditti, Jun & Beckman ’96)
- PBs are exploited on-line during interpretation (e.g. Warren ’99)
- Actual gaps are always marked by PBs?
 - Intonational/Major PB if coincides with outer end (e.g. Nagel et al., ’94)
 - Intermediate/Minor PB if medial (e.g. Warren, ’85)
- PBs are coded in ‘parallel’ so processing/complexity overhead is low
Prosodic Boundaries

- PBs occur at ‘outer’ ends of RCs (e.g. Venditti, Jun & Beckman ’96)
- PBs are exploited on-line during interpretation (e.g. Warren ’99)
- Actual gaps are always marked by PBs?
 - Intonational/Major PB if coincides with outer end (e.g. Nagel et al., ’94)
 - Intermediate/Minor PB if medial (e.g. Warren, ’85)
- PBs are coded in ‘parallel’ so processing/complexity overhead is low
Prosodic Predictions

- The guy who you want | to succeed || just smiled
- The guy who you want to succeed || just smiled
- The guy who you wanna succeed || just smiled
Prosodic Predictions

- The guy who you want | to succeed || just smiled
- The guy who you want to succeed || just smiled
- The guy who you wanna succeed || just smiled
Prosodic Predictions

- The guy who you want | to succeed || just smiled
- The guy who you want to succeed || just smiled
- The guy who you wanna succeed || just smiled
Complexity Hierarchy

- (SRCs < NSRCs)
- (unambiguous NSRCs < ambiguous NSRCs)
- (short NSRCs < long NSRCs)
Complexity Hierarchy

- (SRCs < NSRCs)
- (unambiguous NSRCs < ambiguous NSRCs)
- (short NSRCs < long NSRCs)
Complexity Hierarchy

- (SRCs < NSRCs)
- (unambiguous NSRCs < ambiguous NSRCs)
- (short NSRCs < long NSRCs)
BNC (90+10M) and SEC (50K)

- Automatically parsed (RASP)
- Extract and categorize wh-SRCs/NSRCs
- Manually analyse sample of that(-less) RCs
- Manually analyse PB annotation of SEC
BNC (90+10M) and SEC (50K)

- Automatically parsed (RASP)
- Extract and categorize wh-SRCs/NSRCs
- Manually analyse sample of that(-less) RCs
- Manually analyse PB annotation of SEC
BNC (90+10M) and SEC (50K)

- Automatically parsed (RASP)
- Extract and categorize wh-SRCs/NSRCs
- Manually analyse sample of that(-less) RCs
- Manually analyse PB annotation of SEC
BNC (90+10M) and SEC (50K)

- Automatically parsed (RASP)
- Extract and categorize wh-SRCs/NSRCs
- Manually analyse sample of that(-less) RCs
- Manually analyse PB annotation of SEC
Ambiguity & Prosody
Corpus/Usage-based Predictions

Results

1. Ambiguous non-actual medial gaps not marked by PBs (35/35 egs)
2. Ambiguous actual medial gaps are marked with inter./minor PBs (39/40 egs)
3. SRCs/NSRCs: 6.9/1 (sp), 6.4/1 (wr), $\chi^2_1 = 3.2, p = 0.07$
4. Unambig/Ambig NSRCs: 4.4/1 (sp), 6.3/1 (wr), $\chi^2_1 = 1.61, p = 0.20$
5. Long/Short: av. lgth 2.81 (sp), 4.07 (wr), t-test, $p = 0.0005$
Results

1. Ambiguous non-actual medial gaps not marked by PBs (35/35 egs)

2. Ambiguous actual medial gaps are marked with inter./minor PBs (39/40 egs)

3. SRCs/NSRCs: 6.9/1 (sp), 6.4/1 (wr), \(\chi^2 \) = 3.2, \(p = 0.07 \)

4. Unambig/Ambig NSRCs: 4.4/1 (sp), 6.3/1 (wr), \(\chi^2 \) = 1.61, \(p = 0.20 \)

5. Long/Short: av. lgth 2.81 (sp), 4.07 (wr), t-test, \(p = 0.0005 \)
Results

1. Ambiguous non-actual medial gaps not marked by PBs (35/35 eggs)
2. Ambiguous actual medial gaps are marked with inter./minor PBs (39/40 eggs)
3. SRCs/NSRCs: 6.9/1 (sp), 6.4/1 (wr), $\chi^2_1 = 3.2, p = 0.07$
4. Unambig/Ambig NSRCs: 4.4/1 (sp), 6.3/1 (wr), $\chi^2_1 = 1.61, p = 0.20$
5. Long/Short: av. lgth 2.81 (sp), 4.07 (wr), t-test, $p = 0.0005$
Results

1. Ambiguous non-actual medial gaps not marked by PBs (35/35 egs)
2. Ambiguous actual medial gaps are marked with inter./minor PBs (39/40 egs)
3. SRCs/NSRCs: 6.9/1 (sp), 6.4/1 (wr), $\chi^2_1 = 3.2 p = 0.07$
4. Unambig/Ambig NSRCs: 4.4/1 (sp), 6.3/1 (wr), $\chi^2_1 = 1.61 p = 0.20$
5. Long/Short: av. lgth 2.81 (sp), 4.07 (wr), t-test, $p = 0.0005$
Results

1. Ambiguous non-actual medial gaps not marked by PBs (35/35 egs)
2. Ambiguous actual medial gaps are marked with inter./minor PBs (39/40 egs)
3. SRCs/NSRCs: 6.9/1 (sp), 6.4/1 (wr), $\chi^2_1 = 3.2 p = 0.07$
4. Unambig/Ambig NSRCs: 4.4/1 (sp), 6.3/1 (wr), $\chi^2_1 = 1.61 p = 0.20$
5. Long/Short: av. lgth 2.81 (sp), 4.07 (wr), t-test, $p = 0.0005$
Conclusions

1. Trade-off between en/de-coding (grammar) and inference
2. Parallel coding reduces ambiguity without increasing complexity or inference (predicting typological facts)
3. Optimal strategy creates linguistic selection for lgs & utts. which are organised to support it
4. On-line overriding of default late gap preference correctly predicts location of PBs in ambiguous NSRCs
5. Written and spoken usage reflects the predicted costs
6. Are ambiguous medial attachment NSRCs in writing resolved at onset by lexical, semantic or contextual information?
7. Direct testing of on-line processing of ambig. NSRCs with(out) appropriate PBs
Conclusions

1. Trade-off between en/de-coding (grammar) and inference

2. Parallel coding reduces ambiguity without increasing complexity or inference (predicting typological facts)

3. Optimal strategy creates linguistic selection for lgs & utts. which are organised to support it

4. On-line overriding of default late gap preference correctly predicts location of PBs in ambiguous NSRCs

5. Written and spoken usage reflects the predicted costs

6. Are ambiguous medial attachment NSRCs in writing resolved at onset by lexical, semantic or contextual information?

7. Direct testing of on-line processing of ambig. NSRCs with(out) appropriate PBs
Conclusions

1. Trade-off between en/de-coding (grammar) and inference
2. Parallel coding reduces ambiguity without increasing complexity or inference (predicting typological facts)
3. Optimal strategy creates linguistic selection for lgs & utts. which are organised to support it
4. On-line overriding of default late gap preference correctly predicts location of PBs in ambiguous NSRCs
5. Written and spoken usage reflects the predicted costs
6. Are ambiguous medial attachment NSRCs in writing resolved at onset by lexical, semantic or contextual information?
7. Direct testing of on-line processing of ambig. NSRCs with(out) appropriate PBs
Conclusions

1. Trade-off between en/de-coding (grammar) and inference
2. Parallel coding reduces ambiguity without increasing complexity or inference (predicting typological facts)
3. Optimal strategy creates linguistic selection for lgs & utts. which are organised to support it
4. On-line overriding of default late gap preference correctly predicts location of PBs in ambiguous NSRCs
5. Written and spoken usage reflects the predicted costs
6. Are ambiguous medial attachment NSRCs in writing resolved at onset by lexical, semantic or contextual information?
7. Direct testing of on-line processing of ambig. NSRCs with(out) appropriate PBs
Conclusions

1. Trade-off between en/de-coding (grammar) and inference

2. Parallel coding reduces ambiguity without increasing complexity or inference (predicting typological facts)

3. Optimal strategy creates linguistic selection for lgs & utts. which are organised to support it

4. On-line overriding of default late gap preference correctly predicts location of PBs in ambiguous NSRCs

5. Written and spoken usage reflects the predicted costs

6. Are ambiguous medial attachment NSRCs in writing resolved at onset by lexical, semantic or contextual information?

7. Direct testing of on-line processing of ambig. NSRCs with(out) appropriate PBs
Conclusions

1. Trade-off between en/de-coding (grammar) and inference
2. Parallel coding reduces ambiguity without increasing complexity or inference (predicting typological facts)
3. Optimal strategy creates linguistic selection for lgs & utts. which are organised to support it
4. On-line overriding of default late gap preference correctly predicts location of PBs in ambiguous NSRCs
5. Written and spoken usage reflects the predicted costs
6. Are ambiguous medial attachment NSRCs in writing resolved at onset by lexical, semantic or contextual information?
7. Direct testing of on-line processing of ambig. NSRCs with(out) appropriate PBs
Conclusions

1. Trade-off between en/de-coding (grammar) and inference.
2. Parallel coding reduces ambiguity without increasing complexity or inference (predicting typological facts).
3. Optimal strategy creates linguistic selection for lgs & utts. which are organised to support it.
4. On-line overriding of default late gap preference correctly predicts location of PBs in ambiguous NSRCs.
5. Written and spoken usage reflects the predicted costs.
6. Are ambiguous medial attachment NSRCs in writing resolved at onset by lexical, semantic or contextual information?
7. Direct testing of on-line processing of ambig. NSRCs with(out) appropriate PBs.
Not quite the end

Questions?