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1 Introduction

Renewed interest in studying human language from an evolutionary perspective
stems in large part from a growing understanding that not only the language
faculty but also languages themselves can be profitably modelled as evolving
systems. Deacon (1997) offers persuasive arguments for, and an extended in-
troduction to, this approach. Working withiin this framework, a number of re-
searchers have proposed that the language faculty evolved via genetic assimilation
(sometimes referred to as the Baldwin Effect) in response to the emergence of
(proto)languages – see Briscoe (2003) for a detailed review of these proposals and
counter arguments.

Yamauchi (2000, 2001) argues that accounts of the fit between the language
faculty and languages which invoke genetic assimilation are suspect because they
assume correlation between the genetic encoding of the language faculty and the
phenotypic encoding of nativised linguistic constraints. He describes a simulation
in which he shows that progressively decorrelating the encodings slows, and finally
prevents, genetic assimilation of linguistic information. In this paper, I argue that
the decorrelation argument does not undermine the account of the evolution of
the language faculty via genetic assimilation, nor the extended coevolutionary
account in which the evolving language faculty in turn exerts linguistic selection
pressure on languages.

Briscoe (1999, 2000a, 2002) describes a correlated simulation model in which
coevolution of the language faculty and language(s) reliably occurs, shortening
the learning period and exerting linguistic selection pressure on language change.
Here I report the results of new experiments using the extant simulation in which
the genotypic encoding of the language faculty and the phenotypic encoding of
the starting point for language learning are progressively decorrelated. The re-
sults show that decorrelation generally increases the probability of preemptive
rather than assimilative evolution of the language faculty. However, because lan-
guages coevolve rapidly, preemptive mutations which spread genetically lead to
rapid compensatory linguistic changes, so that the ‘fit’ between language and the
language faculty remains close. As it is only the detailed timing of genetic and
linguistic changes which can discriminate preemptive from assimilative genetic
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change, it is likely that these two scenarios will never be discriminated empiri-
cally. However, high degrees of decorrelation lead to overall higher failure rates in
language acquisition, and eventually either to breakdown in communication or to
highly restricted linguistic systems which are largely genetically-encoded. In re-
ality, language acquisition and communication are very robust aspects of human
behaviour and languages appear, if anything, to accrue complexity rather than
lose expressiveness (e.g. McWhorter, 2001), making the predicted evolutionary
dynamic implausible.

Section 2 describes genetic assimilation and its putative role in the evolution
of the language faculty, arguing for a coevolutionary model in which languages
themselves both influence and are influenced by the evolution of the language
faculty. Section 3 describes my correlated simulation model and section 4 sum-
marises results demonstrating genetic assimilation of grammatical information
and analyses the critical assumptions behind these results. Section 5 evaluates
extant work on decorrelation, describes modifications to my model to allow for
progressive decorrelation, and details how this affects the original results. Sec-
tion 6 argues that consideration of decorrelation strengthens the case for a coevo-
lutionary account of the emergence and evolution of the language faculty based
primarily on genetic assimilation.

2 From Genetic Assimilation to Coevolution

Genetic assimilation is a neo-Darwinian mechanism supporting apparent ‘inher-
itance of acquired characteristics’ (e.g. Waddington, 1942, 1975). The funda-
mental insights are that: 1) plasticity in the relationship between phenotype and
genotype is under genetic control, 2) novel environments create selection pressures
which favour organisms with the plasticity to allow within-lifetime (so-called epi-
genetic) developmental adaptations to the new environment, 3) natural selection
will function to ‘canalise’ these developmental adaptations by favouring genotypic
variants in which the relevant trait develops reliably on the basis of minimal en-
vironmental stimulus, providing that the environment, and consequent selection
pressure, remains constant over enough generations. For example, humans are
unique amongst mammals in their ability to digest milk in adulthood. Durham
(1991) argues that the development of animal husbandry created an environment
in which this ability conferred fitness, as milk now became a particularly reli-
able source of nutrition. This created selection pressure for individuals with a
genetic make-up for increased ability to digest milk later in life. The apparent
‘feedback’ from environment to genotype is nothing more (nor less) than natural
selection for a hitherto neutral variant within the human genotype which became
advantageous as a consequence of cultural innovation.

Waddington (1975:305f) suggests that genetic assimilation provided a possible
mechanism for the evolution of a language faculty:
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‘If there were selection for the ability to use language, then there
would be selection for the capacity to acquire the use of language, in
an interaction with a language-using environment; and the result of
selection for epigenetic responses can be, as we have seen, a gradual
accumulation of so many genes with effects tending in this direction
that the character gradually becomes genetically assimilated.’

In other words, the ability to learn is a genetic endowment with slight variation
between individuals, and individuals with hitherto neutral variants allowing more
rapid and/or reliable language acquisition would be selected for in the novel
language-using environment.

Briscoe (1999, 2000a) speculates that an initial language acquisition proce-
dure emerged via recruitment (exaptation) of preexisting (preadapted) general-
purpose learning mechanisms to a specifically-linguistic cognitive representation
capable of expressing mappings from decomposable meaning representations to
realisable, essentially linearised, encodings of such representations (see also Bick-
erton, 1998; Worden, 1998). The selective pressure favouring such a development,
and its subsequent maintenance and refinement, is only possible if some protolan-
guage(s) had already emerged within a hominid population, supporting successful
communication and capable of cultural transmission, that is, learnable without
a language-specific faculty (e.g. Deacon, 1997; Kirby and Hurford, 1997).

Protolanguage(s) may have been initially similar to those advocated by Wray
(2000) in which complete, propositional messages are conveyed by undecompos-
able signals. However, to create selection pressure for the emergence of grammar,
and thus for a faculty incorporating language-specific grammatical bias, protolan-
guage(s) must have evolved at some point into decomposable utterances, broadly
of the kind envisaged by Bickerton (1998). Several models of the emergence of
syntax have been developed (e.g. Kirby, 2001, 2002; Nowak et al 2000). At the
point when the environment contains language(s) with minimal syntax, genetic
assimilation of grammatical information becomes adaptive, under the assumption
that mastery of language confers a fitness advantage on its users, since genetic
assimilation will make grammatical acquisition more rapid and reliable.

Given that genetic assimilation only makes sense in a scenario in which evolv-
ing (proto)languages create selection pressure, Waddington’s notion of genetic
assimilation should be embedded in the more general one of coevolution (e.g.
Kauffman, 1993:242f). Waddington, himself, (1975:307) notes that if there is an
adaptive advantage to shortening the acquisition period, then we might expect ge-
netic assimilation to continue to the point where no learning would be needed, be-
cause a fully-specified grammar had been encoded. In this case acquisition would
be instantaneous and fitness would be maximised in a language-using population.
However, given a coevolutionary scenario, in which languages themselves are com-
plex adaptive systems (e.g. Kirby, 1998; Briscoe, 2000b), a plausible explanation
for continuing grammatical diversity is that social factors favouring innovation
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and diversity create conflicting linguistic selection pressures (e.g. Nettle, 1999).
Genetic transmission, and thus assimilation, are much slower than cultural trans-
mission. Therefore, continued plasticity in grammatical acquisition is probable,
because assimilation will not be able to ‘keep up with’ all grammatical change.
Furthermore, too much genetic assimilation, or canalisation to use Waddington’s
term, will reduce individuals’ fitness, if linguistic change subsequently makes it
hard or impossible for them to acquire an innovative grammatical (sub)system.

3 The Coevolutionary Simulation Model

The model is a stochastic computational simulation consisting of an evolving
population of language agents (LAgts). LAgts are endowed with the ability to
acquire a grammar by learning. However, the starting point for learning, and
thus LAgts’ consequent success, is determined to an extent by an inherited geno-
type. Furthermore, the fitness of a LAgt (that is, the likelihood with which LAgts
will produce offspring) is determined by their communicative success. Offspring
inherit starting points for learning (genotypes) which are based on those of their
parents. Inheritance of starting points for learning prevents any form of actual
(Lamarckian) inheritance of acquired characteristics, but allows for genetic as-
similation, in principle. Inheritance either takes the form of crossover of the
genotypes of the parents, resulting in a shared, mixed inheritance from each par-
ent, and overall loss of variation in genotypes over generations, and/or random
mutation of the inherited genotype, introducing new variation.

3.1 Language Agents

A language agent (LAgt) is a model of a language learner and user consisting of a
1) learning procedure, LP , which takes a definition of a universal grammar, UG,
and a surface-form:logical-form (LF ) pair or ‘trigger’, t and returns a specific
grammar, g; 2) a parser, P which takes a grammar and a trigger, t, and returns
a logical form, LF , for t, if t is parsable with g, and otherwise reports failure;
and 3) a generator, G, which given a grammar, g, and a randomly selected LF
produces a trigger compatible with this LF .

I have developed several accounts of LP based on a theory of UG utilising a
generalised categorial grammar and an associated parsing algorithm P (Briscoe,
2000a). In what follows, I assume the Bayesian account of parametric learning
developed in Briscoe (1999, 2002) with minor modifications. Grammatical acqui-
sition consists of incrementally adopting the most probable grammar defined by
UG compatible with the nth trigger in the sequence seen so far:

g = argmaxg∈UG p(g) p(tn | g)
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Briscoe (1999, 2002) shows how this formula can be derived from Bayes’ theorem
and how prior probability distributions can be placed on g ∈ UG in terms of the
number and type of parameters required to define g, broadly favouring smaller
grammars and greater linguistic regularity. The probability of t given g is defined
in terms of the posterior probabilities of the grammatical categories required to
parse t and recover the correct LF . These posterior probabilities are updated
according to Bayes’ theorem after each new trigger is parsed and LP has searched
a local space or neighbourhood around g, defined parametrically, to find a parse
for t, if necessary. Although the evidence in favour of a given parameter setting
is thus statistical, all parameters have finite, discrete values. So at any point,
LAgts use a single grammar, though learning LAgts incrementally reassess the
evidence in favour of all possible parameter settings.

In the experiments reported below, LP does not vary – however, the starting
point for learning and the hypothesis space are varied. This starting point is 20
binary-valued individual p-settings, representing principles or parameters, which
define possible grammars and the exact prior probability distribution over them.
P-setting(UG) encodes both prior and posterior probabilities for p-setting values
during LAgt learning and thus defines both the starting point for learning (initial
p-settings) and which grammar if any a LAgt has currently internalised. Each
individual p-setting is represented by a fraction: 1

2
maps to an unset parameter

with no prior bias on its value; 1
5

and 4
5

represent default parameters with a prior
bias in favour of one or other specific setting. However, this bias is low enough
that consistent evidence for the alternative setting during learning will allow LP
to move the posterior probability of this parameter through the 1

2
(unset) point

to take on its other setting. Principles, which have been nativised, have prior
probabilities sufficiently close to 1 or 0, typically 1

50
or 49

50
, that LP will not see

enough evidence during learning to alter their (absolute) settings.
How a p-setting is initialised for specific LAgts determines their exact learning

bias and hypothesis space. The ‘weakest’ language faculty variant is one in which
all p-settings are unset parameters, so there is no prior bias or constraint in favour
of any specific grammar. If all p-settings are principles, either a single grammar
is already internalised or no grammar is learnable (as some ‘off’ settings preclude
any form of sentence decomposition or are mutually incompatible). Mutation and
one-point crossover operators are defined over p-settings and designed not to bias
evolution towards adoption of any one of the three types of p-setting. However, if
default settings or principles evolve this clearly constitutes genetic assimilation of
grammatical information because it creates either learning biases or constraints
in favour of subclasses of grammars with specific grammatical properties. This is
additional to a general and domain-independent bias in favour of small grammars,
and thus linguistic generalisation and regularity, which is a consequence of the
Bayesian formulation of LP (see Briscoe, 1999, 2002).

The space of possible grammars in UG is defined in terms of canonical con-
stituent order, possible non-canonical ordering, and categorial complexity. The
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account of UG and associated p-settings is based on the typological literature on
attested variation (e.g. Croft, 1990) and treats most variation as, in principle,
independent (as each individual default or unset p-setting can be (re)set indepen-
dently during learning). UG defines 70 full languages and a further 200 subset
languages of these full languages, generated by subset grammars which have some
parameters unset or off so that some triggers from the corresponding full language
cannot be generated or parsed. Further details of these grammars and language
fragments are given in Briscoe (2000a). Default or absolute p-settings, therefore
create clear and concrete forms of specifically grammatical learning bias or con-
straint in favour of specific constituent orders, and so forth. Simulation of LP
on samples of the full languages confirms that there are many prior distributions
which allow successful acquisition given sufficient triggers, where success is de-
fined as convergence to the target grammar gt ∈ UG with high probability P −ε,
given an arbitrary sequence of n triggers drawn randomly from a fair sample for
the target language (see Briscoe, 2002 for more details of the learning framework).

In addition, each LAgt has an age, between 1 and 10, and a fitness, between
0 and 1. LAgts can learn until they exceed age 4 and pairs of LAgts can linguis-
tically interact (INT i.e. parse or generate) with whatever grammar they have
internalised between 1 and 10. The simplest version of fitness measures LAgts’
communicative success as a ratio of successful to all interactions, but other fac-
tors can be included in the fitness function, such as the degree of expressiveness
of the grammar acquired. A successful interaction (SUCC-INT) occurs when the
trigger generated by one LAgt can be parsed by the other LAgt to yield the same
LF . This does not necessarily require that the LAgts share identical grammars.
In summary, a language agent has the following components:

LAgt:
LP (UG, t) = g
P (g, t) = LF
G(g, LF ) = t
Age : [1− 10]
Fitness : [0− 1]

3.2 Populations and Speech Communities

The operations which define the simulation model for an evolving population of
linguistically interacting LAgts, such as INT and SUCC-INT above, and the other
(capitalised) ones described below are summarised at the end of this section.

A population (POP) is a changing set of LAgts. Time steps of the simulation
consist of interaction cycles (INT-CYCLE) during which each LAgt participates
in a prespecified number of interactions. On average each LAgt generates (parses)
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for half of these interactions. LAgts from the entire population interact randomly
without bias. After each cycle of interactions, the age of each LAgt is incremented
and those over age 10 are removed, the fitness of each LAgt over that interaction
cycle is computed, and LAgts aged 4 or over who have greater than mean fitness
reproduce (REPRO) a new LAgt by single-point crossover of their P-setting with
another such LAgt with whom they have successfully interacted at least once.
The resulting p-setting may also optionally undergo random unbiased single-point
mutation creating new p-setting values at specific loci. The number of new LAgts
per timestep is capped to prevent the proportion of learning LAgts exceeding one-
third of the overall population. Capping is implemented by random selection from
the pool of offspring created from the fitter, interacting LAgts. Alternatively, in
order to simulate the situation in which there is no natural selection for LAgts
based on communicative success, a prespecified number of new LAgts can be
created by unbiased random selection of parent LAgts.

The mean number of interactions (INT) per interaction cycle is set (typically,
at 30 INT per LAgt per INT-CYCLE) so that, despite stochastic sampling vari-
ation, accurate grammatical acquisition by all learning LAgts is highly probable
from many of the possible initialisations of UG, including the ‘weakest’ language
faculty in which all p-settings are unset parameters.

If a simulation run is initialised with no mutation and a mixed age population
of adult LAgts sharing the same initial p-setting and same internalised full gram-
mar, then grammatical acquisition by subsequent generations of learning LAgts
will be >99% accurate, and communicative success (i.e. the proportion of suc-
cessful interactions) will average 98%, the 2% accounting for learners who have
temporarily internalised a subset grammar. Under these conditions, the popula-
tion constitutes a stable homogeneous speech community, in which no significant
grammatical variation is present and no grammatical change takes place.

If grammatical variation is introduced into such a speech community, then lin-
guistic drift, analogous to genetic drift, means that the population will reconverge
on one variant within around 2N time steps (where N is population size) due to
sampling effects on LAgts’ input during learning (Briscoe, 2000b). Grammatical
variation can be introduced by initialising the simulation with LAgts who have
internalised different grammars or by periodic migrations (MIGRATE) of groups
of such adult LAgts. Such migrations (crudely) model contact between speech
communities. However, the dynamic of the simulation is always to recreate a sin-
gle homogeneous speech community with a high overall communicative success
because all LAgts in the current population interact with each other with equal
probability, regardless of the grammar they have internalised, their provenance,
or their age.

Linguistic selection, as opposed to drift, occurs whenever any factor, other
than the proportion of LAgts who have internalised a grammatical variant, plays
a role in this variant’s ability to be passed on to successive generations of learn-
ing LAgts. Such factors might be the relative parsability of variants and their
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consequent learnability, the probability with which they are generated, the de-
gree to which any learning bias or constraint militates for or against them, their
expressiveness, social prestige, and so forth. In simple cases of linguistic selection
(Briscoe, 2000a), the population typically converges on the more adaptive vari-
ant within N timesteps (where N is population size). In this simulation model,
once linguistic variation is present there is a tendency for populations to converge
on subset grammars and the languages associated with them. These grammars
require fewer parameters to be set and thus can be learnt faster. However, if all
LAgts utilise the same subset language, then communicative success will remain
high. This tendency can be countered by introducing a further factor into LAgt
fitness which adds an extra cost for utilising a subset grammar each time a LAgt
generates a sentence, as in the fitness function defined below. This creates se-
lection for grammars able to economically express the widest range of LF s (see
Briscoe, 2000a for more detailed discussion).

Linguistic selection can occur without natural selection for, or any genetic
evolution of, LAgts so long as their initial P-setting contains principles or default
parameters and thus creates learning constraint or bias. If genetic mutation is
enabled and reproduction is random, then simulation runs inevitably end with
populations losing the ability to communicate because accumulated genetic drift
in p-settings eventually prevents learning LAgts acquiring any compatible gram-
mars. However, if LAgt reproduction is fitness-guided and genetic evolution is
possible via crossover with or without mutation, then there is 1) modest natural
selection for p-settings which shorten the learning process and increase fitness
at age 4, since LAgts who have yet to acquire a full grammar are unlikely to
have higher than average fitness and thus reproduce at the end of this interaction
cycle, and 2) more severe natural selection for p-settings which allow reliable, ac-
curate grammatical acquisition by the end of the learning period at age 5, since
non-communicators will not reproduce at all and subset language speakers are
likely to have below average fitness for the remainder of their lives.

Figure 3.2 illustrates how the model incorporates both biological evolution
of LAgt p-settings and linguistic evolution of languages, represented as sets of
triggers which form the data for successive generations of learners. The model’s
principal components, operations and parameters are defined more succinctly
below:

LAgt: <P-setting(UG),Parser,Generator,Age,Fitness>

AGE: 1-4 LAgt = Learning lLAgt / 4-10 = adult reproducing aLAgt

POPn: {LAgt1, LAgt2, . . . LAgtn}
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INT: (LAgti,LAgtj), i 6= j, Gen(LAgti, tk),Parse(LAgtj, tk)

SUCC-INT: Gen(LAgti, tk) 7→ LFk ∧ Parse(LAgtj, tk) 7→ LFk

INT-CYCLE: ≈ 30 ints. / LAgt

REPRO: (aLAgti,aLAgtj), i 6= j,
Create-lLAgt(Mutate(Crossover(P-setting(aLAgti,P-setting(aLAgtj)))))

MIGRATE: (POPn), For i=0 to n/3
Create-aLAgt(Flip(P-setting(Dominant-Lg-LAgt(POPn))))

LAgt Fitness (Costs/Benefits per INT):

1. Generate cost: 1 (GC)

2. Generate subset cost: 1 (GSC)

3. Parse cost: 1 (PC)

4. Success benefit: 1 (SI)

5. Fitness function: SI
GSC+GC+PC

4 Results and Critical Assumptions

Previous experiments (Briscoe, 1999, 2000a, 2002) a variety of different initial P-
setting configurations and several variants of LP have demonstrated that genetic
assimilation occurs with natural selection for communicative success and that
populations continue to utilise full grammars and associated languages if there is
also natural selection for expressiveness. Inducing rapid linguistic change through
repeated migrations does not prevent genetic assimilation, though it does cause it
to asymptote rather than reach a point where the entire population fixates on a P-
setting defining a single nativised grammar. Rapid linguistic change also creates
a preference for the genetic assimilation of default parameters over principles,
since the latter are potentially more damaging when subsequent linguistic change
renders a principle maladaptive for learners. If the population were exposed to
the entire space of grammatical variation within the time taken for a variant
p-setting to go to fixation, then assimilation would not occur. However, for this
to happen, the rate of linguistic change would be so great that communication
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Figure 1: Simulation Model: Linguistic Selection (LS), Genetic Assimilation
(GA), Initial P-settings (psettN), Trigger sentence types (triggerN)

would breakdown and the population would not consitute a speech community
in which the majority of interactions are successful. Below I describe one such
experiment using the LP and simulation model outlined above, first reported in
Briscoe (1999).

Populations of adult LAgts were created with initial p-settings consisting of
3 principles and 17 unset parameters. In each simulation run, the first genera-
tion of LAgts all utilised one of seven typologically-attested full grammars (see
Briscoe, 2000a for the linguistic details). 70 runs were performed – 10 under each
condition. Simulation runs lasted for 2000 interaction cycles (about 500 genera-
tions of LAgts). Constant linguistic heterogeneity was ensured by migrations of
adult LAgts speaking a distinct full language at any point where the dominant
(full) language utilised by the population accounted for over 90% of interactions
in the preceding interaction cycle. Migrating adults accounted for approximately
one-third of the adult population and were set up to have an initial P-setting
consistent with the dominant settings already extant in the population; that is,
migrations were designed to increase linguistic, and decrease genetic, variation.

Over all these runs, the mean increase in the proportion of default parameters
was 46.7%. The mean increase in principles was 3.8%. Together these accounted
for an overall decrease of 50.6% in the proportion of unset parameters in the initial
p-settings of LAgts. Qualitative behaviour in all runs showed increases in default
parameters and either maintenance or increase in principles. Figure 2 shows
the relative proportions of default parameters, unset parameters and principles
in the overall population and also mean fitness for one such run. Overall fitness
increases as the learning period is truncated, though there are fluctuations caused
by migrations and/or by higher proportions of learners.
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Figure 2: Proportions of P-setting Types and Mean fitness

In these experiments, linguistic change (defined as the number of interaction
cycles taken for a new parameter setting to be acquired by all adult LAgts in
the population) is about an order of magnitude faster than the speed with which
a genetic change (i.e. a new initial p-setting) can go to fixation. Typically,
2-3 grammatical changes occur during the time taken for a principle or default
parameter to go to fixation. Genetic assimilation remains likely, however, because
the space of grammatical variation (even in this simulation) is great enough that
typically the population is only sampling about 5% of possible variations in the
time taken for a single p-setting variant to go to fixation (or in other words, 95%
of the environmental pressure is constant during this period).

Many contingent details of the simulation model are arbitrary and unverifi-
able, such as the size of the evolving population, the number of learnable gram-
mars, and relative speed at which LAgts and languages can change. These have
been varied as far as possible to explore whether they affect the results. Impor-
tantly, it seems likely that the simulation model massively underestimates the
true space of grammatical possibilities. Thus, there would very probably have
been more opportunity to restrict the hypothesis space by genetic assimilation
than is predicted by the simulation model as more of this space would have gone
unsampled during the period of adaptation for the language faculty. Nevertheless,
there is a limit to genetic assimilation in the face of ongoing linguistic change:
in simulation runs with LAgts initialised with all default parameters, popula-
tions evolve away from this ‘fully-assimilated’ P-setting when linguistic variation
is maintained. Briscoe (2000a) reports variant experiments and discusses these
issues in more detail.
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5 Decorrelation

The relationship between genes and traits is rarely one-to-one, so epistasis (or
‘linkage’ of several genes to a single trait) and pleiotropy (or ‘linkage’ of a sin-
gle gene to several traits) are the norm. In general, one effect of epistasis and
pleiotropy will be to make the pathways more indirect from selection pressure
acting on phenotypic traits to genetic modifications increasing the adaptiveness
of those traits. Therefore, in general terms, we would expect a more indirect
and less correlated genetic encoding of a trait to impede, slow or perhaps even
prevent genetic assimilation. Mayley (1996) explores the effects of manipulat-
ing the correlation between genotype (operations) and phenotype (operations)
on genetic assimilation. In his model, individuals are able to acquire better phe-
notypes through ‘learning’ (or another form of within-lifetime plasticity), thus
increasing their fitness. However, Mayley demonstrates that in his model the
degree to which the acquired phenotype can be assimilated into the genotype of
future generations, thus increasing overall fitness, depends critically on the degree
of correlation.

Yamauchi (2000, 2001) replicates Turkel’s (2002) simulation demonstrating
genetic assimilation of grammatical principles. However, he then manipulates the
degree of correlation in the encoding of genotype and phenotype. He represents
grammar space as a sequence of N principles or parameters but determines the
initial setting at each locus of the phenotype from a look-up table which uses K
0/1s (where K can range from 1 to N−1 to encode each setting (one of two binary
values or unset, i.e. a parameter), and to ensure that all possible phenotypes can
be encoded. A genotype is represented as a sequence of N 0/1s. A translator
reads the first K genes from the genotype and uses the look-up table to compute
the setting of the first locus of the phenotype. To compute, the setting of the
second locus of the phenotype, the K genes starting at the second locus of the
genotype are read and looked up in the table, and so on. The translator ‘wraps
around’ the genotype and continues from the first gene locus when K exceeds the
remaining bits of the genotype sequence.

Yamauchi claims, following Kauffman (1993), that increases in K model in-
creases in pleiotropy and epistasis. Increased K means that a change to one locus
in the genotype will have potentially more widespread and less predictable effects
on the resulting phenotype (as the translator will ‘wrap around’ more frequently).
It also means that there is less correspondence between a learning operation, al-
tering the value of single phenotypic locus, and a genetic operation. The latter
may potentially alter many phenotypic loci in differing ways, or perhaps alter
none, depending on the look-up table. For low values of K, genetic assimila-
tion occurs, as in Turkel’s and my model, for values of K around N/2 genetic
assimilation is considerably slowed, and for very high values (K = N − 1) it is
stopped.

Yamauchi does not consider how the progressive decorrelation of phenotype
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from genotype affects the language acquisition process, the degree of communica-
tive success achieved, or how linguistic systems might be affected. In part, the
problem here is that the abstract nature of Turkel’s simulation model does not
support any inference from configurations of the phenotype to concrete linguistic
systems. Yamauchi, however, simply does not report whether increasing decorre-
lation, that is higher values of K, affects the ability of the evolving population to
match phenotypes via learning. The implication, though, is that, for high values
of K, the population cannot evolve to a state able to match phenotypes and thus
to support reliable communication.

Kauffman’s original work with the NK model was undertaken to find optimal
values of K for given N to quantify the degree of epistasis and pleiotropy likely
to be found in systems able to evolve most effectively. Both theoretical analysis
and experiments which allow K itself to evolve suggest intermediate values of
K are optimal (where the exact value can depend on N and other experimental
factors). To stop assimilation, Yamauchi decorrelates his model to an extent to
which Kaufmann’s (1993) results suggest will yield a dynamically chaotic and
evolutionarily highly suboptimal system. But despite these caveats, Yamauchi’s
simulation suggests that (lack of) correlation of genotype and phenotype with
respect to the language faculty is as important an issue for accounts of genetic
assimilation of grammatical information as it is for accounts of genetic assimila-
tion generally.

My modified model supporting decorrelation does not distinguish genotype
and phenotype, instead it utilises a single P-setting which encodes both the ini-
tial and subsequent states of the learning process. Initial p-settings (i.e. those
encoded by the genotype) are defined by a sequence of fractions which define
the prior probability of each of three possible p-setting types: unset parameter,
default parameter and absolute principle. Arbitrary manipulation of the denom-
inators and numerators of these fractions is very likely to result in values outside
the range 0-1. For example, a NK-like scheme based on a binary sequential ‘ge-
netic’ encoding of these fractions with single-point mutation by bit flipping will
nearly always produce new absolute principles (under the fairly natural assump-
tion that values outside the range 0-1 are interpreted this way).

Instead the mutation operator was modified to create unbiased movement of
parameters between default and unset settings at multiple random points in a
P-setting. The maximum number of p-settings that could be modified in a single
mutational event is the decorrelation factor varied in these simulation runs. The
fractional values defining prior probabilities remained prespecified, as defined in
section 3.1 above, but the exact number modified, the points in the p-setting
modified and the resultant settings, are all independent stochastic variables of
each such event. Just as increasing K in Yamauchi’s model increases the maxi-
mum number of possible changes to the phenotype given a genetic mutation, so
does increasing the decorrelation factor. Similarly, the possible values of pheno-
typic loci are not biased or otherwise altered by decorrelation in either scheme.
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The actual number of loci altered by any given mutation depends on the look up
table in stochastic interaction with the mutated gene in Yamauchi’s simulation
and on stochastic variables in mine. However, in both cases this number cannot
exceed the absolute value of K or of the decorrelation factor.

New simulation runs were performed, identical to those reported in section 4
except that the degree of decorrelation between mutation of p-settings and pa-
rameter (re)setting was varied. Half the runs did not include migrations, as their
general effect is to add greater linguistic variation and therefore to increase the
potential for linguistic selection. Linguistic selection will also occur in a popula-
tion in which the language faculty is evolving because different p-setting variants
can force even a homogeneous speech community to shift to a new language.
For example, if a new LAgt inherits a mutated p-setting which alters a default
parameter setting, that learner may acquire a variant grammar compatible with
the new default setting if the input sample does not exemplify the non-default
setting reliably enough to override it. If that LAgt and some of its descendents
achieve better than mean fitness, because the new setting is only relevant for
a small subset of possible triggers, or because these LAgts reset it successfuly
during learning, then the default initial setting may spread through the popula-
tion. The likelihood of such LAgts achieving better than mean fitness is lower in
an environment where the remaining population are learning accurately and effi-
ciently, but is increased in one in which other LAgts are also inheriting mutated
p-settings some of which disadvantage them more seriously.

The main effect of progressively decorrelating the mutation operator is to in-
crease the rate of linguistic selection and, despite natural selection on the basis
of expressiveness, to cause populations to converge on successively less expres-
sive subset languages. Often, linguistic change is coextensive with a few LAgts
appearing who fail to learn any language. However, swift shifts to other (often
less expressive) languages mean that other genetically similar LAgts do acquire
a language. Thus, although decorrelation modestly increases the number of sub-
set learning, mislearning and nonlearning LAgts, this, in turn, creates linguistic
selection for other more learnable languages. When the decorrelation rate is very
high, potentially affecting all of the p-settings during one mutational event, then
the number of non-learners appears to go through a phase transition increasing
about a thousand-fold over the previous increment. The mean percentage of
mislearning LAgts who do not acquire a full grammar or any grammar manifest
in the environment is under 1% for low rates of decorrelation, rising to 4.5%
for intermediate rates and to 24% for the highest rate. In 100% of the high
decorrelation runs, populations converge on a minimal subset language, which is
acquired by setting three p-settings, and in most cases, the population has fixated
on correct default parameters for several of these settings. For intermediate rates
of decorrelation less than 5% of runs end with the majority of the population
acquiring a subset language, and for low rates none do.

Tracking the rate at which default parameters replace unset ones over these
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runs reveals that this rate increases by about 5% over runs with correlated encod-
ings, as measured by the number of default parameters in the population at the
end of each run. This increase is broadly constant across all the runs regardless
of the level of decorrelation and the presence or absence of migrations. How-
ever, as the decorrelation rate increases, the standard deviation of the mean also
increases, reflecting the randomness of the potential changes induced by the in-
creasingly dramatic mutational events. That is, for higher rates of decorrelation,
distinct runs diverge more as the stochastic factors in the mutational operator
affect the exact behaviour of individual runs to a greater extent. Similarly, even
without migration and starting from a homogeneous linguistic environment, the
mean number of distinct languages acquired by LAgts across a run increases with
decorrelation from a mean of 20 for lower rates to 40 for intermediate rates, to
63 for the highest rate.

An increase in the number of default parameters in the language faculty only
counts as genetic assimilation if the mutated defaults are compatible with the
language(s) in the environment. Examining the timing of changes in the ini-
tial p-setting with linguistic changes reveals that decorrelated mutation is often
the cause of a linguistic change, rather than assimilatory. These preemptive,
non-assimilative mutations which spread and become adaptive are ones which
drive rapid linguistic change, so that they rapidly become indistinguishable from
assimilative ones. A default setting which is correct, and thus assimilative, in
the current linguistic environment reduces the number of parameter settings re-
quired to learn the language, shortening the acquisition period and making it
more robust against sampling variation in learner input.

If a correct default setting emerges via mutation, then it is likely to spread
through the population, creating added linguistic selection pressure for subse-
quent linguistic change to remain compatible with the default setting. If a mu-
tated default is incompatible with the current linguistic environment but manages
to spread to other LAgts, either because grammatical acquisition is generally less
accurate or because sampling variation allows enough learners to override the
default without significant fitness cost, then it will exert increasing linguistic
selection pressure, both because more learners will have the default setting and
because less LAgts will generate the counterexamples that would cause the default
setting to be overridden. For low rates of decorrelation a mean 20% of mutations
going to fixation are preemptive, so 80% remain assimilatory. The mean percent-
age of preemptive mutations going to fixation rises to 45% for intermediate rates
and to 99% for the highest rate of decorrelation.

The lefthand plot in Figure 3 shows the rate of increase of default parameter
settings within the population for a low and high degree of decorrelation in two
runs with no migrations and otherwise identical initialisations. The righthand
plot shows the corresponding decrease in the number of parameters which are
(re)set by learners in the same two runs. Although the overall increase in defaults
is consistently higher, and the number of (re)sets is mostly correspondingly lower
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Figure 3: Change in Defaults and Resets with Low/High Decorrelation

with more decorrelation, in these runs the number of resets converge towards the
end, because the ‘fit’ between the languages of the speech community and the
language faculty tends to become less close with higher degrees of decorrelation.
This is also a tendency in other runs with no migrations. However, the effect is
removed and to some extent even reversed in runs with migrations, presumably
because migrations provide linguistic variation supporting more rapid linguistic
selection of variants more compatible with the continuously mutating language
faculty.

One conclusion that can be drawn from these experiments is that if non-
assimilatory random mutations were a factor in the evolution of the language
faculty, then these mutations would rapidly mesh with linguistic systems, because
of the greater speed and responsiveness of linguistic selection. Subsequently such
mutations will appear to be cases of genetic assimilation of grammatical infor-
mation, unless one has access to the precise nature and timing of the mutational
event, linguistic environment and any subsequent linguistic change – something
one cannot realistically hope to have access to outside the simulation ‘laboratory’.
Preemptive mutations are quite compatible with the coevolutionary approach to
the evolution of the language faculty and languages presented here. However,
the experiments also suggest that high degrees of decorrelation (and thus non-
assimilatory mutations) are unlikely, in line with Kauffman’s (1993) more general
results. The predicted consequence of such changes is that linguistic (pre)history
would be punctuated by the periodic emergence of mislearners and nonlearners
sometimes coupled with bursts of rapid linguistic change, often in the direction
of less expressive languages. This is contrary to what most non-assimilationists
have argued (see Briscoe, 2003) and certainly not supported by the available
evidence, which suggests that languages, if anything, accrue expressiveness and
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hence complexity, and that acquisition remains robust.
A simulation model in which greater expressiveness, or acquisition of innova-

tive grammatical variants, outweighed learnability in LAgt fitness might predict
natural selection for a less restrictive language faculty. A model which integrated
some of the social pressures maintaining linguistic diversity discussed, for ex-
ample, by Nettle (1999), might counterbalance the tendency for learnability to
outweigh expressiveness. However, given the inalienable relationship between the
size of the hypothesis space and the amount of data required to reliably acquire
a specific grammar (e.g. Nowak et al 2001), a model in which expressiveness
regularly overcame learnability would predict that the learning period would in-
crease over time or, if a critical period had been nativised, that the reliability
of grammatical acquisition would degrade. The existence of a critical period for
grammatical acquisition, the accuracy of grammatical acquisition, and its selec-
tivity in the face of variant input (e.g. Lightfoot, 1999) all suggest that this is
an implausible evolutionary dynamic. Nevertheless, integration of a more real-
istic account of expressiveness into the simulation model would certainly be a
worthwhile extension of these experiments.

A further set of similar experiments was undertaken in which the mutational
operator was modified so that the fractional values defining initially unset param-
eters mutated randomly by increasingly large amounts. The increasing bias of
this operator is to create more principles as the base of the fractions increases and
as they exceed the 0-1 range (see discussion above), so that LP becomes unable
to move them through the 1

2
threshold which alters a setting. Unsurprisingly, in

these experiments, there were many more cases of nonlearners, since principles
rather than just default settings were acquired. This mutation operator is ex-
ceedingly unlikely to create new unset parameters, and increasingly likely to only
create principles with greater degrees of decorrelation. Overall the rate of increase
in defaults and principles was slightly higher in these experiments. However, just
as in the previous ones, many of the mutational events are preemptive rather
than assimilative, and where the preemption results in principles incompatible
with the linguistic environment, a learning LAgt has less chance of reproducing,
unless the overall accuracy of grammatical acquisition in the population has de-
graded significantly. Thus, as in the previous experiments, the trend in linguistic
change is towards successive reconvergence on subset languages until the popula-
tion is speaking a minimal subset language compatible with the principles or any
remaining default parameter settings on which the population has converged.

In general, the greater the degree of decorrelated mutational events involv-
ing preemptive non-assimilatory changes, the more the simulation model predicts
that the coevolutionary dynamic would bias the hypothesis space until only one
grammatical system remained. If the mutation operator is prevented from creat-
ing principles or increasingly stronger defaults, as in the first series of experiments,
then there is a limit to this effect, but removing this, as in the second series of
experiments, simply strengthens this tendency.
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6 Conclusions

In summary, extant models predict that genetic assimilation of grammatical in-
formation would have occurred given three crucial but plausible assumptions.
Firstly, communicative success via expressive languages with compositional syn-
tax conferred a fitness benefit on their users. Secondly, the linguistic environment
for adaptation of the language faculty consistently provided grammatical gener-
alisations to be genetically assimilated. Thirdly, at least some of these generalisa-
tions were neurally and genetically encodable with sufficient correlation to enable
genetic assimilation. The simulation experiments I describe show that these as-
sumptions can be incorporated in a precise model, that reliably shows genetic
assimilation under conditions which support ongoing successful communication
with an expressive language.

The simulation model predicts that if language confers no fitness benefit but
the acquisition procedure is under genetic control, genetic drift would result in
evolution of nonlearners and thus non-linguistic populations. It also predicts
that, for there to be no grammatical generalisations capable of being genetically
assimilated, language change would need to be impossibly rapid, to the point
where speech communities would breakdown. Finally, it predicts that, if geno-
type and phenotype are decorrelated to the extent that assimilation is blocked,
the resultant coevolutionary dynamic would lead inexorably towards simpler but
less expressive subset languages. Thus, the case for genetic assimilation as the
primary mechanism of the evolution of the language faculty remains, in my opin-
ion, strong.

Nevertheless, the coevolutionary perspective on genetic assimilation of gram-
matical information raises two important caveats. Firstly, as languages them-
selves are adapted to be learnable (as well as parsable and expressive) and as
languages change on a historical timescale, some of the grammatical properties
of human languages were probably shaped by the process of cultural transmis-
sion of (proto)language via more general-purpose learning (e.g. Kirby, 1998,
Brighton, 2002) prior to the evolution of the fully-formed language faculty. Sec-
ondly, whether the subsequent evolution of this faculty was assimilative, encoding
generalisations manifest in the linguistic environment, or preemptive, with mu-
tations creating side-effects causing linguistic selection for new variants, the fit
between the learning bias of the language faculty and extant languages is pre-
dicted to be very close.

It is important to emphasise that modelling and simulation, however careful
and sophisticated, are not enough to establish the truth of what remains a partly
speculative inference about prehistoric events. The value of the simulations,
and related mathematical modelling and analysis, lies in uncovering the precise
set of assumptions required to predict that genetic assimilation of grammatical
information will or will not occur. Some of these assumptions relate to cognitive
abilities or biases which remain in place today – these are testable. Others,
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such as the relative weight of factors relating to learnability and expressiveness
in the LAgt fitness function in my simulation model remain largely speculative,
though not, in principle, untestable, since they should, for example, affect attested
grammatical changes, including those under intensive study right now (e.g. Kegl
et al 1999). Other assumptions, such as the degree of correlation between genetic
and neural encoding are theoretically plausible but empirically untestable using
extant techniques.
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