The Final-over-Final Constraint: An Evolutionary Linguistic Perspective

Ted Briscoe

Computer Laboratory Natural Language and Information Processing Group University of Cambridge

Cambridge Institute for Language Research Workshop Jan 2010

An Analogy

A drunk had lost his keys on the street and was frantically searching for them under a streetlamp. 'Where did you drop them?' asked a concerned passer by. 'Over there' he replied, indicating a spot 30 yards away. 'So why are you looking here under the lamp?' 'The light is better here'.

Epistemology / Philosophy of Science

Karl Popper: No logic of <mark>discovery</mark> Logic of justification (methodological falsification)

Kantian Spectacles: We interpret and attempt to explain data in terms of our favourite theories / intellectual training

FoFC Scientific Method

Hypothesis Space(s)

How do we weight the contribution of different factors / theories?

Universal Darwinism

Languages don't just change they *evolve*. And children themselves are the rigged game. Languages are under powerful selection pressure to fit children's likely guesses, because children are the vehicle by which a language gets reproduced. Languages have to adapt to children's spontaneous assumptions... because children are the only game in town. ... languages need children more than children need languages. (Terry Deacon, *The Symbolic Species*, 1997:109)

- **1** Linguistic Variation +
- 2 Language Acquisition +
- 3 Linguistic Selection =
- 4 Linguistic Evolution

Linguistic Selection

- **1** Learnability frequency, interpretability, learning bias...
- 2 Expressiveness processing economy, memorability, prestige...
- 3 Interpretability processing efficiency, distance, ambiguity...

Languages are complex adaptive systems – Multipeaked and dynamic fitness landscapes:

Generalized Categorial Grammar

Forward/Backward Application (F/B A):X|Y Y \Rightarrow X λ y [X(y)] (y) \Rightarrow X(y)Forward/Backward/Mixed Composition (F/B/M C):X|Y Y|Z \Rightarrow X/Z λ y [X(y)] λ z [Y(z)] \Rightarrow λ z [X(Y(z))]Lexical/Derivational (Generalized Weak) Permutation (L/D P):(X|_1Y_1)...|_nY_n \Rightarrow (X|_nY_n)|_1Y_1... λ y_n...,y_1 [X(y_1...,y_n)] \Rightarrow λ ...y_1,y_n [X(y_1...,y_n)]

Derivation with Application

Derivation with Permutation

Derivation with Composition

... who I want e to succeed

F₀FC └─_{GCG+LP}

Absolute (UG) Universals

- Compositionality, Productivity...
- Mild Context Sensitivity: nesting (aⁿ bⁿ, aabb), cross-serial (aⁿ bⁿ cⁿ, aabbcc), intersecting (aⁿ,bⁿ,cⁿ, cabbca)
- The guy Kim kissed smiled (A)
- Kim-NOM the house-DAT helped paint (A+C)
- document-ACC spy-DAT police-NOM journalist-NOM handed reported (A+C+P)

The ...-ACC (<7) kissed / kissed the ...-ACC (>7) (S...\NP)/S

Bayesian Parametric Learning of GCG

FoFC GCG+LP Learning

- Input finite noisy form-meaning pairs (fm_n): Daddy gave you the sock throw'(daddy' you' x) ∧ sock'(x)
- Hypothesis Space F/B A+C, L/D P + Cat. + Lex.
- Learning Bias / Occam's Razor prior distribution on set of finite-valued parameters (A,C,P + Cat. set):
 p(g ∈ G) = ∏_{parami∈g} p(param_i = x)
- Incremental Learning, posterior distribution given input: for 0 < i < n, $argmax_{g \in G} p(g) p(fm_i | g)$ $p(fm_i | g) = \prod_{param_j \in fm_i} p(param_j)$ $p(param_j = x) = \frac{f(param_j = x)+1}{f(param_j = X)+N}$

Parametric Specification of Category Sets

Finite Feature / Category Set:

NP	=	[CAT=N, BAR=1, CASE=X, PERNUM=Y]			
S	=	[CAT=V, BAR=0, PERNUM=X]			
$\setminus NP$	=	[DIR = left, CAT=N,]			
$S_{pernum=x} \setminus NP_{pernum=x}$					
$S \setminus NP_{pernum=3sg} \sqcap NP_{case=nom} = NP_{3sg,nom}$					

Chomskyan vs. Bayesian Learning

Learning Universal: Irregularity correlated with frequency

go+ed / went, ((S $\mbox{IT})/\mbox{NP})/\mbox{S}$ annoy, bother,...

Convergent Evolution: Irng biases walk thru' parameter space

(1,1)-Bounded Context Parser

Stack Cells		Lookahead	Input Buffer
2	1		
(who) (N\N)/(S/NP)	(you want) (S/NP)/(S\NP) S/(S\NP)	to $(S\NP)/(S\NP)$	succeed

Costs / cell 4

2

3 Shifts, 1 Reduce to reach this configuration Onset of the shift-reduce ambiguity at the first potential gap

Working Memory Cost Metric

After each parse step (Shift, Reduce, Halt):

- Assign any new Stack entry in the top cell (introduced by Shift or Reduce) a cost of 1 multiplied by the number of CCG categories for the constituent represented (Recency/Recoding)
- Increment every Stack cell's cost by 1 multiplied by the number of CCG categories for the constituent represented (Decay)
- Push the sum of the current costs of each Stack cell onto the Cost-record (complexity at each step, sum = tot. Complexity)

FoFC GCG+LP Processing

Processing Complexity of Constructions / Sentences

- The students who the police who the reporters interviewed arrested laughed (161/547)
- The students who the reporters interviewed who the police arrested laughed (87)
- daB Peter dem Kunden den Kuhlschrank zu reparieren zu helfen versucht (294)
- daB Peter versucht dem Kunden den Kuhlschrank zu reparieren zu helfen (117)
- He donated the largest single sum ever given by a private individual to the university (C)
- He donated to the university the largest single sum ever given by a private individual (C+20)
- Short < Long (Dependencies & Constituents) convergent evolution (heavy np shift, extraposition)

Tense-Verb-Object Cases

LP - Complexity

• Hierarchy:

OVT < TVO (Comp.) < OTV (Less-Incr.) < VTO (Non-Harm.) < *VOT (O-Non-Incr.) < TOV (Non-Incr.)

Extraposition:

*VOT \rightarrow VTO but TOV \rightarrow TVO

Historical Pathways:

Down Hierarchy < more probable: e.g. $OVT \rightarrow ?TOV \Rightarrow TVO$ $OVT \rightarrow *VOT \Rightarrow TVO$ Tense less stable than Verb: $OTV \Rightarrow OVT$ $VTO \Rightarrow TVO$

UG - Constraint

■ Feature-based FoFC Constraint: *((Head_α Obj) Head_α) *((X/Y Y) X'\X)

OBJDIR: X[OBJDIR right]/Y[OBJDIR X] X'\X[OBJDIR left])

Non-local Feature:

*((...(Head_{α} Obj)) Head_{α}) Like Gap features in GPSG/HPSG

- Increased overall expressive power despite enforcing FoFC
- Black Swans 'absence of evidence is not evidence of absence' in (a sample of) attested languages

OV+Prep/Post without processing costs

OV+Prep/Post with processing costs

Conclusions and References

- FoFC is hard to formalise as a constraint within UG without increasing generative capacity and thus learning complexity
- FoFC violation is predicted to be dispreferred because it is both disharmonic and non-incremental and is not ameliorated by extraposition
- Convergent evolution of languages is an alternative non-UG / non-nativist explanation for (apparently) exceptionless universals

Steedman, M. *The Syntactic Process* MIT Press, 2000. Briscoe, E.J. "Grammatical Acquisition: Inductive Bias and Coevolution of Language and the Language Acquisition Device", *Language* 76.2, 2000. Briscoe, E.J. "Evolutionary Perspectives on Diachronic Syntax", In Pintzuk, S., Tsoulas, G. and Warner, A. *Diachronic Syntax: Models and Mechanisms*, OUP, 2000. Briscoe, E.J. and Buttery, P. "Linguistic Adaptations for Resolving Ambiguity", in *Procs. of Evolang* 7, World Scientific, 2008 (eds.) Smith, Smith & Ferrer i Cancho www.cl.cam.ac.uk/users/ejb/