
Locking Machine Learning Models into Hardware
Eleanor Clifford*1, Adhithya Saravanan*2, Harry Langford*2, Cheng Zhang1,
Yiren Zhao1, Robert Mullins2, Ilia Shumailov3, Jamie Hayes3

* Equal contribution

1

2

3

In this paper, we investigate the feasibility of mechanisms that restrict machine learning (ML) models to
only be usable on specific hardware. We demonstrate that against an attacker who has access to themodel’s
parameters and architecture but no authorized hardware, such ML Hardware Locking mechanisms are
feasible, including soft locking methods which make model performance or efficiency worse at different
pruning or quantization levels, and hard locking methods which cryptographically tie the model’s oper-
ation to unique properties of authorized hardware. We demonstrate that ML Hardware Locking comes
with little overhead, while significantly restricting use of the model on unauthorized hardware.

0.42

Authorised hardware Unauthorised hardware

convert model into representations unique to hardware
use hardware fingerprint to condition model

NaN

Specialised model cannot run or is inefficient on unauthorised hardware 

Hard Locking
These mechanisms cryptographically link the model to prop-
erties of authorized hardware. They have two parts:

1. Fingerprint: A high-entropy key generated from unique
properties of the target configuration.

2. Parameter transform: a transformation on the model
parameters, that requires the fingeprint to invert.

Fingerprints

1. Clock fingerprint The number of clock cycles taken by a
CUDA device for a series of operations. Entropy: < 20.

2. Finite precision fingerprint The exact numerical errors
after a series of floating point operations.
Entropy: requires large-scale experiment to estimate

3. SRAM PUF fingerprint The state of the SRAM on boot.
Requires missing firmware support. Entropy: > 256.

Parameter transforms

There are three ideal properties of a parameter transform:
1. Destruction: The performance without access to the fin-

gerprint should be equivalent to random guessing.
2. Encryption: No information about the original param-

eters should be obtainable without the fingerprint.
3. Indistinguishability: Correct and incorrect detransfor-

mation should be statistically indistinguishable.

Table 1: Comparison of our parameter transforms. Cracking
cost is on FP16 ResNet18. b is the fingerprint entropy.

Method Indistin-
guishablity

Encryption Destruction Cracking
cost (s)

Plain AES 7 3 3 0.3× 2b

Shuffling 3 7 3 2.7× 2b

Pre-transformed AES 3 3 3 1.3× 2b

−0.1 0.0 0.1
0

1

1e6
Original

−0.1 0.0 0.1
0

1

1e6
Transformed

−0.1 0.0 0.1
0

1

1e6

Correctly
Detransformed

−0.1 0.0 0.1
0

1

1e6

Incorrectly
Detransformed

Figure 1: Indistinguishability of Pre-transformed AES

Soft Locking
These mechanisms do not fully restrict model use, but make
it less performant and/or efficient on unauthorized hardware.
We use the loss function:

Llock = L(fa(x), y) + λ(ϵ− L(fu(x), y))2

L(·) e.g. cross-entropy loss f(·) model

a authorized configuration u unauthorized configuration

x input y target output

ϵ target unauthorized loss λ tuning parameter

Results

A
cc

ur
ac

y

Original NN

SW-locked NN +
authorised HW

SW-locked NN +
unauthorised HW

Cost of softlocking

Penalty for unauth-
orised deployment

Network &
Hardware

Figure 2: Soft locking evaluation metrics

Table 2: Acclockedauthorized(∆orig,∆lock), sparsity-aware.

Pruning Levels (ResNet50)

Dataset 0.05 0.25 0.50

CIFAR10 0.92 (0.01, 0.81) 0.93 (-0.01, 0.83) 0.94 (-0.01, 0.84)
CIFAR100 0.69 (0.09, 0.63) 0.78 (0.00, 0.77) 0.78 (0.00, 0.77)
Flowers102 0.76 (0.10, 0.74) 0.86 (0.00, 0.84) 0.86 (0.00, 0.84)

Table 3: Acclockedauthorized(∆orig,∆lock), quantization-aware.

Authorized → Unauthorized Resnet18 Resnet50

FP32 → 8-bit MiniFloat 0.90 (-0.02, 0.65) 0.92 (-0.04, 0.67)
Int8 → 8-bit MiniFloat 0.47 (+0.41, 0.06) 0.50 (+0.39, 0.07)
FP16 → Int8 0.90 (-0.02, 0.62) 0.91 (-0.04, 0.61)
16-bit MiniFloat?? → Int8 0.90 (-0.01, 0.72) 0.91 (-0.03, 0.81)

Emulation attack

We show that emulating the authorized configuration to
escape soft locking results significantly reduces efficiency.

Table 4: Emulation costs for soft locking

Sparsity-aware Quantisation-aware

Workload Metric Real Emulated Real Emulated

Single Matmul Throughput (TOPS) 49.97 18.85 79.22 22.72
Latency (ms) 0.43 1.14 0.27 0.95

OPT inference Throughput (TPS) 4692.20 2468.31 3505.22 1865.41
Latency (ms) 436.47 829.72 584.27 1097.88

Retraining attack

We show that re-training a locked model takes similar com-
pute to initial training, and may not recover performance.

Figure 3: Re-training sparsity-locked BERT/GLUE

unlocked

Figure 4: Re-training sparsity-locked ResNet50/CIFAR100

Noise attack

We show that adding noise to destabilise the lock may be par-
tially effective, depending on hyperparameters.

Figure 5: Attacking soft locking by adding noise

Scalability
Soft locking adds no compute cost to using the model regard-
less of model size. The compute cost of creating a soft-locked
model scales with the cost of fine-tuning the model.

The compute cost of creating or loading a hard locked model
is of order 1s for our small test models, and scales as O(n).
This cost is incurred only when the model is first loaded.

However, the compute cost of brute-forcing a hard-locked
model is ≫ O(n), because indistinguishability forces the
attacker to test the model’s performance on each attempt,
rather than use a much cheaper statistical test.

2025-04-09


