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Background and Motivation

Tracing systems, tools originally designed to debug and profile the performance of large

systems with minimal disruption, are now used increasingly for behaviour monitoring [1, 5]

and security auditing [2, 6]. Because of security-critical use and complex semantics, a

formal description of such a system is required. In this work we target the most widely

deployed tracing system, DTrace, and formalise its semantics in HOL4 [3].
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DTrace accepts scripts written in D (below); these express probes and are compiled to

bytecode (actions and DTrace Intermediate Format (DIF)) in consumers. The following

script tracks write operations to a Unix file descriptor (files, standard output, socket, etc.):

Interpret DIF Action Probe Other Action

syscall:*:write:entry
{

self->fd = arg0;
}
syscall:*:write:return /self->fd == $1 && errno == 0/
{

printf("%s wrote to %d", execname, self->fd);
}

Probe specification (signature, 4-tuple)

ldgs arg0, r1
sttaa r1, fd

Predicate

ldtaa fd, r1

(DIF code)

The Formal Model

P, Q, R ::= Semantic Probes (S-Probes)

| 0 null probe

| A sequence of DTrace actions

| P | Q parallel composition

| P.Q sequential composition

| !P replication

α ::= Transition labels

| d, t : W x[Θ] = V write TLS

| d, t : R x[Θ] = V read TLS

| d : W x[Θ] = V write global

| d : R x[Θ] = V read global

| d : τ internal

DTrace probes fire concurrently (even self-concurrently) and can non-deterministically dis-

card data and stop executing any further code as a result of a failure (we denote this as

FAIL in our presentation). We model them as S-Probes (concurrent processes) and present

their run-time semantics as a labelled transition system of form ` P α−→ P ′.

` P1
α−→ P ′

1
` P1 | P2

α−→ P ′
1 | P2

` P1
α−→ P ′

1
` P1.P2

α−→ P ′
1.P2

` A α−→ A′

` A α−→ A′
` A α−→ FAIL

` A α−→ 0
` P ≡ P ′ ` P ′ α−→ Q′ ` Q ≡ Q′

` P α−→ Q

P | (Q | R) ≡ (P | Q) | R

P | Q ≡ Q | P !P ≡ P |!P
P.(Q.R) ≡ (P.Q).R

P | 0 ≡ P 0.P ≡ P

Dynamic D variables (compiled to DIF variables in probes) have complex semantics (see

forthcoming paper for full definition) and can be either global or thread-local. Reading an

unmapped variable returns the value 0, while allocation is performed upon writing a value

to a variable the first time. Allocation may fail if name resolution (e.g. an associative array)

causes a page fault (hard failure, stops executing any further code in the probe) or if there

is no memory to allocate a new variable (soft failure).

T [(x, Θ) 7→ V ]

G[(x, Θ) 7→ V ]

G

Tldtaa x, rd

ldgaa x, rd

stgaa x, rs

sttaa x, rs

Hard Fail or Load Value G(x, Θ)

Hard Fail or Soft Fail (G unchanged)

Update G(x, Θ) with value of rs

Hard Fail or Soft Fail (T unchanged)

Hard Fail or Load Value T (x, Θ)

Update T (x, Θ) with value of rs
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Insights — DTrace as a Protocol

P, Q, R ::= S-Probes

| ...
| (νc)P new channel c, c ∈ fv(P )
| c?.P receive on c
| c!.P send on c
| c = v̄ static channel value

| (c, D)?.P receive on (c, D)
| (c, D)!.P send on (c, D)
| (c, Θ) = v̄ dynamic channel value

` P
d:W c=v2−−−−−→ P ′

` c!.P | c = v1 −→ P ′|c = v2

` P
d:R c=v1−−−−→ P ′

` c?.P | c = v1 −→ P ′ | c = v1

` P
d:W (c,Θ)=v2−−−−−−−→ P ′ ` D ↓ Θ

` (c, D)!.P | (c, Θ) = v1 −→ P ′ | (c, Θ) = v2

` P
d:R (c,Θ)=v1−−−−−−−→ P ′ ` D ↓ Θ

` (c, D)?.P | (c, Θ) = v1 −→ P ′ | (c, Θ) = v1

We observe that loads and stores to DIF variables can be modelled as communication.

Our grammar and inference rules are inspired by Honda, et. al [4]. We use ↓ to denote

evaluation of a sequence of DIF actions (D) to a list of values (Θ). Each of the variables in

a D script is represented as a named channel. We split channels into two distinct categories:

1. Static channels – used for variables that can be named at compile-time. They are

specified syntactically and are not subject to run-time name resolution failures.

2. Dynamic channels – used for variables with least one run-time dependency on their

name (e.g. associative arrays, thread-local variables).

Let P be an arbitrary S-Probe. We define a happens-before (vP
s ) relation dependent on a

static channel s and P to be:

p1 vP
s p2 ⇐⇒ s!.p1 | s?.p2 ∨ (∃ p3 ∈ P . s!.p1.p3.s?.p2)

We use that to define data races with respect to s and P as p1 vP
s p2 ∧p2 vP

s p1 which we

can statically detect. However, with dynamic channels we face the following challenges:

1. Name resolution failure: Non-deterministic selection of publishing a value or

ending the protocol for a given probe.

2. Out-of-memory condition: Non-deterministic addition of a branch.

3. Programmer assumptions about the run-time portions of channel names, making

it difficult to statically detect data races.

Using the Formal Model as an Implementation

While the formal model itself gives a better understanding of DTrace, we have started

leveraging the existing HOL4 implementation of the formal model in order to generate

executable Standard ML. We plan to use that in order to implement symbolic execution

and use that as a test oracle for DTrace implementations. Moreover, we hope to imple-

ment NuD, a safer exploratory language as an alternative to D which is more amenable to

automated reasoning. We have started formulating a type system inspired by multi-party

session types for which NuD will serve as an implementation.
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