
Logic and Proof
Supervision 2 – Solutions

5. Formal reasoning in first-order logic
1. a) For each of the following FOL formulas, circle the free variables, and underline the bound

variables. Connect each bound variable to its binding occurrence (either graphically, by
numbering, or whatever works for you).

i. ∀x . x = x

ii. ∃x . P(x , y) ∧ ∀y. ¬P(y, x)

iii. (∀x . P(x , y))→ (∃y. P(x , y))

iv. ∃z. P(x , y)∧Q(x , z)

v. ∀x . (P(x)→Q(x)) ∧ S(x , y)

vi. P(x ,∀z. (∃x . Q(y, x))→Q(x , z))

The scope of the binding extends as far after the dot as possible, within the limits of
any outside parentheses.

i. ∀x . x = x

ii. ∃x . P(x , y) ∧ ∀y . ¬P(y , x)

iii.
�

∀x . P(x , y)
�

→
�

∃y . P(x , y)
�

iv. ∃z. P(x , y) ∧ Q(x , z)

v. ∀x . (P(x)→Q(x)) ∧ S(x , y)

vi. P
�

x ,∀z. (∃x . Q(y , x))→Q(x , z)
�

b) Apply the substitution [x 7→ f (x , y), y 7→ g(z)] to the formulas above.

Substitution occurs only for free variables. Occasionally we need to α-rename the
bound variables to avoid variable capture: free variables in terms to be substituted
must remain free.

• ∀x . x = x (all variables are bound, so no substitution happens)

• ∃x . P(x , g(z)) ∧ ∀y . ¬P(y , x)

•
�

∀x . P(x , g(z))
�

→
�

∃w. P(f (x , y), w)
�

(y has to be renamed)

• ∃w. P(f (x , y), g(z) ∧ Q(f (x , y), w) (z has to be renamed)

• ∀x . (P(x)→Q(x)) ∧ S(x , g(z))

• P
�

f (x , y),∀w. (∃x . Q(g(z), x))→Q(f (x , y), w)
�

(z renamed)

2. Consider the following proof attempt of the set-theoretic conjecture:

∀A, B. P(A∪ B) = P(A)∪P(B)

Proof. Let A, B be sets. We prove the proposition using equational reasoning:

P(A∪ B) = {X | X ⊆ A∪ B } (def. of powerset)
= {X | ∀x . x ∈ X → x ∈ A∪ B } (def. of subsets)

LO G I C A N D P R O O F S U P E R V I S I O N 2 – S O LU T I O N S

= {X | ∀x . x ∈ X → (x ∈ A ∨ x ∈ B) } (def. of union)
= {X | ∀x . (x ∈ X → x ∈ A) ∨ (x ∈ X → x ∈ B) } (lemma of prop. logic)
= {X | (X ⊆ A) ∨ (X ⊆ B) } (def. of subsets)
= {X | X ⊆ A} ∪ {X | X ⊆ B } (def. of union)
= P(A)∪P(B) (def. of powerset)

Is this a valid proof? Why or why not?

This is not a valid proof, and no “proof” of it may be correct since the theorem itself is
false. Most of the steps are actually correct, and the mistake is somewhat hidden. The
problem is going from

∀x . (x ∈ X → x ∈ A) ∨ (x ∈ X → x ∈ B) (1)

to (X ⊆ A) ∨ (X ⊆ B) (2)

Even though the definition of the subset relation S ⊆ A is ∀x . x ∈ S→ x ∈ A and we have
two similar implications in step (1), we would actually need an intermediate isomorphism

(∀x . x ∈ X → x ∈ A) ∨ (∀x . x ∈ X → x ∈ B)

to be able to get to (2), from which the rest of the proof would follow. However, universal
quantification does not distribute over disjunction, only conjunction:

∀x . P(x) ∨ Q(x) 6' (∀x . P(x)) ∨ (∀y. Q(y))

Dually, existential quantification distributes over disjunction, but does not distribute over
conjunction. These properties follow from the interpretation of universal quantification as
a generalised conjunction, and existential quantification as a generalised disjunction.

3. Verify the following equivalences by appealing to the truth definition of FOL.

¬(∃x . P(x))' ∀x . ¬P(x) (∀x . P(x)) ∧ R' ∀x . (P(x) ∧ R)

(∃x . P(x)) ∨ (∃x . Q(x))' ∃x . (P(x) ∨ Q(x))

While semantic equivalences in propositional logic can be established by comparing truth
tables (see Ex. 2.1), this is not possible in FOL due to the presence of quantifiers and
variables. The associated notion of semantic truth is therefore more involved, making
use of domains, interpretations, valuations, and a structural inductive definition of the
truth of FOL formulae. But, in essence, we interpret a FOL formula as the intuitive English
translation for what it says, and establish equivalences via this interpretation.

Assume a domain D and interpretation I . Two formulae A and B are equivalent, if �I,V A
holds if and only if �I,V B holds for some valuation V .

• ¬(∃x . P(x)) ' ∀x . ¬P(x): The LHS holds if there does not exist an element d ∈ D

https://www.cl.cam.ac.uk/teaching/current/LogicProof/logic-slides.pdf#page=42

LO G I C A N D P R O O F S U P E R V I S I O N 2 – S O LU T I O N S

such that I[P](d) = 1. The RHS holds if for all d ∈ D, I[P](d) = 1 does not hold –
that is, a d for which I[P](d) = 1 holds cannot exist, which is precisely the LHS.

• (∀x . P(x)) ∧ R ' ∀x . (P(x) ∧ R): Both sides are true if and only if I[R] = 1 and
I[P](d) = 1 for all d ∈ D.

• (∃x . P(x)) ∨ (∃x . Q(x))' ∃x . (P(x) ∨ Q(x)): Both sides are true if and only if there
exists an element d ∈ D such that either I[P](d) = 1 or I[Q](d) = 1.

4. Prove the equivalence (∀x . P(x) ∨ P(a))' P(a).

There are several approaches. We can use equivalence reasoning to show that

(∀x . P(x) ∨ P(a))↔ P(a)

is a theorem of FOL. Alternatively, we can make use of the fact that the sequent calculus
is a sound and complete proof system for FOL, so we can also establish the sequents
(∀x . P(x) ∨ P(a)) ⇒ P(a) and P(a) ⇒ (∀x . P(x) ∨ P(a)). We can even mix the two
techiques: rewrite the LHS using the FOL equivalence∀x . P(x) ∨ P(a)' (∀x . P(x))∨P(a),
then do two sequent proofs:

P(a) ⇒ P(a)
(∀l, a/x)

∀x . P(x) ⇒ P(a) P(a) ⇒ P(a)
(∨l)

(∀x . P(x)) ∨ P(a) ⇒ P(a)

P(a) ⇒ ∀x . P(x), P(a)
(∨r)

P(a) ⇒ (∀x . P(x)) ∨ P(a)

5. Prove the following sequents. Hint: the last one requires two uses of (∀l).

(∀x . P(x)) ∧ (∀x . Q(x)) ⇒ ∀y. (P(y) ∧ Q(y))

∀x . P(x) ∧ Q(x) ⇒ (∀y. P(y)) ∧ (∀y. Q(y))

∀x . P(x)→ P(f (x)), P(a) ⇒ P(f (f (a)))

These proofs are largely straightforward. Some re-ordering of the steps is allowed, though
not of the quantifier inferences.

P(y),∀x . Q(x) ⇒ P(y)
(∀l, y/x)

∀x . P(x),∀x . Q(x) ⇒ P(y)

∀x . P(x),Q(y) ⇒ Q(y)
(∀l, y/x)

∀x . P(x),∀x . Q(x) ⇒ Q(y)
(∧r)

∀x . P(x),∀x . Q(x) ⇒ P(y) ∧ Q(y)
(∀r)

∀x . P(x),∀x . Q(x) ⇒ ∀y. P(y) ∧ Q(y)
(∧l)

∀x . P(x) ∧ ∀x . Q(x) ⇒ ∀y. P(y) ∧ Q(y)

LO G I C A N D P R O O F S U P E R V I S I O N 2 – S O LU T I O N S

P(y),Q(y) ⇒ P(y)
(∧l)

P(y) ∧ Q(y) ⇒ P(y)
(∀l, y/x)

∀x . P(x) ∧ Q(x) ⇒ P(y)
(∀r)

∀x . P(x) ∧ Q(x) ⇒ ∀y. P(y)

P(y),Q(y) ⇒ Q(y)
(∧l)

P(y) ∧ Q(y) ⇒ Q(y)
(∀l, y/x)

∀x . P(x) ∧ Q(x) ⇒ Q(y)
(∀r)

∀x . P(x) ∧ Q(x) ⇒ ∀y. Q(y)
(∧r)

∀x . P(x) ∧ Q(x) ⇒ (∀y. P(y)) ∧ (∀y. Q(y))

We will write f 2(a) for f (f (a)) and Γ for ∀x . P(x)→ P(f (x)) to save space, and also
omit some parentheses.

P(a) ⇒ P(a), P(f 2a)

P(f a), P(a) ⇒ P(f a), P(f 2a) P(f 2a), P(f a), P(a) ⇒ P(f 2a)
(→ l)

P(f a)→ P(f 2a), P(f a), P(a) ⇒ P(f 2a)
(∀l, f a/x)

∀x . P(x)→ P(f x), P(f a), P(a) ⇒ P(f 2a)
(→ l)

∀x . P(x)→ P(f x), P(a)→ P(f a), P(a) ⇒ P(f 2a)
(∀l, a/x)

∀x . P(x)→ P(f x), P(a) ⇒ P(f 2a)

6. Prove the following sequents. Hint: the last one requires two uses of (∃r).

P(a) ∨ ∃x . P(f (x)) ⇒ ∃y. P(y)

∃x . P(x) ∨ Q(x) ⇒ (∃y. P(y)) ∨ (∃y. Q(y))

⇒ ∃z. P(z)→ P(a) ∧ P(b)

Once again, some reordering of steps is possible, but the quantifier steps must be done in
the other shown since otherwise the constraint on (∃l) is likely to be violated.

P(a) ⇒ P(a)
(∃r, a/y)

P(a) ⇒ ∃y. P(y)

P(f (x)) ⇒ P(f (x))
(∃r, f (x)/y)

P(f (x)) ⇒ ∃y. P(y)
(∃l)

∃x . P(f (x)) ⇒ ∃y. P(y)
(∨l)

P(a) ∨ ∃P. (f (x)) ⇒ ∃y. P(y)

P(x) ⇒ P(x),∃y. Q(y)
(∃r, x/y)

P(x) ⇒ ∃y. P(y),∃y. Q(y)

Q(x) ⇒ ∃y. P(y),Q(x)
(∃r, x/y)

Q(x) ⇒ ∃y. P(y),∃y. Q(y)
(∨l)

P(x) ∨ Q(x) ⇒ ∃y. P(y),∃y. Q(y)
(∨r)

P(x) ∨ Q(x) ⇒ ∃y. P(y) ∨ ∃y. Q(y)
(∃l)

∃x . P(x) ∨ Q(x) ⇒ (∃y. P(y)) ∨ (∃y. Q(y))

In the proof below, the right-hand side P(a) ∧ P(b), P(a) ∧ P(b) can be collapsed to the
single formula P(a) ∧ P(b). This makes sense because we regard a sequent as a set of

LO G I C A N D P R O O F S U P E R V I S I O N 2 – S O LU T I O N S

formulas, and the transformation is sound due to the idempotence of disjunction.

P(a), P(b) ⇒ P(a) P(a), P(b) ⇒ P(b)
(∧r)

P(a), P(b) ⇒ P(a) ∧ P(b), P(a) ∧ P(b)
(→ r)

P(a) ⇒ P(a) ∧ P(b), P(b)→ P(a) ∧ P(b)
(∃r, b/z)

P(a) ⇒ P(a) ∧ P(b),∃z. P(z)→ P(a) ∧ P(b)
(→ r)

⇒ P(a)→ P(a) ∧ P(b),∃z. P(z)→ P(a) ∧ P(b)
(∃r, a/z)

⇒ ∃z. P(z)→ P(a) ∧ P(b)

7. Prove the formula ¬∀y. (Q(a) ∨ Q(b)) ∧ ¬Q(y) using equivalences, and then formally using
the sequent calculus.

The semantic proof relies on standard FOL equivalences, including the expansion rules
which let us extract instances of quantified formulae with the appropriate connective
(conjunction for ∀, disjunction for ∃).

¬∀y. (Q(a) ∨ Q(b)) ∧ ¬Q(y)

' ∃y. ¬((Q(a) ∨ Q(b)) ∧ ¬Q(y)) (generalised de Morgan)
' ∃y. ¬(Q(a) ∨ Q(b)) ∨ ¬¬Q(y) (propositional de Morgan)
' ∃y. ¬(Q(a) ∨ Q(b)) ∨ Q(y) (double negation elimination)
' ¬(Q(a) ∨ Q(b)) ∨ ∃y. Q(y) (reduce scope of existential)
' ¬(Q(a) ∨ Q(b)) ∨ Q(a) ∨ Q(b) ∨ ∃y. Q(y) (expansion twice)
'> ∨ ∃y. Q(y) (law of excluded middle)
'> (truth is annihilator for disjunction)

The sequent calculus proof is as follows:

Q(a),¬Q(b) ⇒ Q(a)
(¬l)

Q(a),¬Q(b),¬Q(a) ⇒
Q(b),¬Q(a) ⇒ Q(b)

(¬l)
Q(b),¬Q(a),¬Q(b) ⇒

(∨l)
Q(a) ∨ Q(b),¬Q(a),¬Q(b) ⇒

(∧l)
Q(a) ∨ Q(b),¬Q(a), (Q(a) ∨ Q(b)) ∧ ¬Q(b) ⇒

(∧l)
(Q(a) ∨ Q(b)) ∧ ¬Q(a), (Q(a) ∨ Q(b)) ∧ ¬Q(b) ⇒

(∀l, b/y)
(Q(a) ∨ Q(b)) ∧ ¬Q(a),∀y. (Q(a) ∨ Q(b)) ∧ ¬Q(y) ⇒

(∀l, a/y)
∀y. (Q(a) ∨ Q(b)) ∧ ¬Q(y) ⇒

(¬r)
⇒ ¬∀y. (Q(a) ∨ Q(b)) ∧ ¬Q(y)

6. Clause methods for propositional logic
1. Outline the steps of the Davis–Putnam–Logeman–Loveland method. Explain the goal of the

method, and why the steps of the algorithm are sound. Why does the empty clause represent a
contradiction?

LO G I C A N D P R O O F S U P E R V I S I O N 2 – S O LU T I O N S

DPLL is an algorithm for deciding the satisfiability of propositional formulae in clausal
(conjunctive normal) form. Given a formula presented as a set of clauses, DPLL can either
determine that the formula is not satisfiable, or return a satisfying model if it is. DPLL can
also be used to determine if a formula is valid (i.e. satisfied by every interpretation) by
negating it first and trying to derive a contradiction: if DPLL reaches the contradiction, there
does not exist a falsifying interpretation of the original formula, so it must be valid. The
contradiction is represented by the empty clause { }: since a clause { P1, . . . , Pn } stands
for a disjunction P1 ∨ · · · ∨ Pn, and the disjunction of no formulae is false, deriving the
empty clause is equivalent to deriving falsity from the clauses.

The steps of the DPLL algorithm to establish the validity of a formula ϕ are as follows.

a) Negate ϕ and convert it to conjunctive normal form, then clauses.

b) Delete tautological clauses { P,¬P, . . . }. These are true for any interpretation of P ,
since the conjunct will contain P ∨ ¬P '>.

c) Unit propagation: for every unit clause containing a single literal { L } (where L = P
or L = ¬P for some P), delete every clause containing L, and delete ¬L from every
remaining clause. This is sound since any model of the clauses must assign true to L
(otherwise the corresponding conjunct would be false); any clause containing L will
therefore be true, and the negation of L (which will be assigned ⊥) will be a neutral
element in the remaining clauses.

d) Pure literal elimination: remove every clause containing a pure literal, i.e. a literal L for
which there is no clause containing ¬L. This is sound since we can always assign pure
literals to be true (it cannot lead to a contradiction, since there is no clause containing
their negation), so all clauses containing them will be automatically satisfied.

e) If an empty clause is reached, we reached a contradiction. Conversely, if all clauses
are deleted, the original clause set is satisfiable, and the model can be determined
from the assignments performed in the unit propagation and pure literal elim. steps.

f) Otherwise (no unit clauses, no pure literals, nonempty clauses left), choose a literal
L to case-split on, and recursively apply the algorithm to the L and ¬L subcases.
The clause set is satisfiable if and only if one of the subcases is satisfiable. Since we
exhaustively check both cases, this step is also sound.

2. Apply the DPLL procedure to the clause set:

{ P,Q } {¬P,Q } { P,¬Q } {¬P,¬Q }

We cannot perform unit propagation or pure literal elimination, so we need to start with a
case-split. Choosing P , we get:

• If P is true, we can unit-propagate it to get the clauses {Q }, {¬Q } which give the
empty clause by unit-propagating Q.

LO G I C A N D P R O O F S U P E R V I S I O N 2 – S O LU T I O N S

• If P is false, we again get the clauses {Q }, {¬Q } and derive a contradiction.

3. Explain the resolution algorithm and how it di�ers from DPLL.

The resolution rule is a rule inference that gives rise to a refutation theorem-proving
algorithm for propositional (and first-order) logic. The clausal resolution step combines
two clauses containing complementary literals: the clauses { Γ , P } and {¬P,∆ } can be
resolved into the single clause { Γ ,∆ }, where Γ and ∆ stand for an arbitrary sequence
of literals. The intuition behind the resolution step is nothing more than gluing together
implications: the clause { Γ , P } is equivalent to ¬Γ → P , {¬P,∆ } is equivalent to P →∆,
and the resolution step corresponds to the conclusion ¬Γ → ∆ which follows from the
transitivity of→.

{A1, . . . , Am, B } {¬B, C1, . . . , Cn }
(res B)

{A1, . . . , Am, C1, . . . , Cn }

The resolution algorithm is based on proof by contradiction, so the original formula has to
be negated before converting into clausal form. The rule is repeatedly applied to the clauses
until the empty clause is reached; if we haven’t reached the empty clause and cannot apply
any more resolution steps, the original set of formulae is satisfiable. Resolution is complete,
so if a set of clauses is unsatisfiable, resolution will be able to derive a contradiction (i.e. it
won’t get “stuck”).

DPLL and resolution are not interchangeable and should not be mix-and-matched. DPLL
modifies and consumes clauses: unit propagation and pure literal elimination removes
literals from clauses and deletes the clauses themselves, until the empty clause is created or
all clauses are deleted. Resolution simply combines clauses by making transitive inferences
and adding the resolvent to the clause set: the existing clauses are not modified or removed,
and one clause can be used several times. DPLL can be used both to find models of a
clause set (see SMT solvers), or perform refutation proofs of validity. Resolution is tailored
to refutation proofs: getting “stuck” in a resolution proof does not give us a model, and we
can never derive the empty clause set, since resolution does not decrease the number of
clauses. The main advantage of resolution is that it is very simple to automate and can be
made e�cient with heuristics for choosing the pair of clauses to resolve.

4. Use resolution (showing the steps of converting the formula into clauses) to prove at least
three of the following formulas.

(P →Q ∨ R)→ ((P →Q) ∨ (P → R))

((P →Q)→ P)→ P

(Q→ R) ∧ (R→ P ∧ Q) ∧ (P →Q ∨ R)→ (P↔Q)

(P ∧ Q→ R) ∧ (P ∨ Q ∨ R)→ ((P↔Q)→ R)

(P → R) ∧ (R ∧ P → S)→ (P ∧ Q→ R ∧ S)

LO G I C A N D P R O O F S U P E R V I S I O N 2 – S O LU T I O N S

a) (P →Q ∨ R)→ ((P →Q) ∨ (P → R))

When negating a formula, it’s useful to remember some equivalences to avoid having
to do a lot of unnecessary work. The most useful one is ¬(P → Q) ' P ∧ ¬Q,
so when negating any implication, the hypothesis can be immediately read o� as a
clause (without negation, but perhaps with some rearranging). Thus, in the first formula,
(P →Q∨R) gives one of our clauses, then¬((P →Q)∨(P → R))' (P∧¬Q)∧(P∧¬R)
gives the rest:

1© {¬P,Q, R } 2© { P } 3© {¬Q } 4© {¬R }

1©+ 2©
P
=⇒ 5© {Q, R } 5©+ 3©

Q
=⇒ 6© {R } 6©+ 4©

R
=⇒2

b) ((P →Q)→ P)→ P

Negate and convert to clauses:

¬((P →Q)→ P)→ P ' ((P →Q)→ P) ∧ ¬P ' (¬(P →Q) ∨ P) ∧ ¬P

' ((P ∧ ¬Q) ∨ P) ∧ ¬P ' (P ∨ P) ∧ (¬Q ∨ P) ∧ ¬P

1© { P } 2© {¬Q, P } 3© {¬P }

A single resolution step on 1© and 3© derives 2, so the original formula (Peirce’s law)
is valid.

c) (Q→ R) ∧ (R→ P ∧ Q) ∧ (P →Q ∨ R)→ (P↔Q)

Negate and convert to clauses. Note how negation only a�ects the consequent P↔Q;
the hypotheses can readily be read o� as clauses:

• Q→ R gives {¬Q, R }
• R→ (P ∧ Q)' (R→ P) ∧ (R→Q) gives {¬R, P } and {¬R,Q }
• P →Q ∨ R gives {¬P,Q, R }

For the negated conclusion, convert ¬(P↔Q) into clauses:

¬(P↔Q)' P↔¬Q ' (P →¬Q) ∧ (¬Q→ P)' (¬P ∨ ¬Q) ∧ (Q ∨ P)

1© {¬Q, R } 2© {¬R, P } 3© {¬R,Q } 4© {¬P,Q, R } 5© {¬P,¬Q } 6© { P,Q }

One possible sequence of resolution steps is below. This is an example of linear
resolution, where the output of one resolution step is the input to the next one – it
can also be represented as a left-branching tree.

1©+ 2©
R
=⇒ {¬Q, P } + 6©

Q
=⇒ { P } + 4©

P
=⇒ {Q, R }

+ 3©
R
=⇒ {Q } + 5©

Q
=⇒ {¬P } + { P }

P
=⇒2

LO G I C A N D P R O O F S U P E R V I S I O N 2 – S O LU T I O N S

d) (P ∧ Q→ R) ∧ (P ∨ Q ∨ R)→ ((P↔Q)→ R)

Negate and convert to clauses. Again, a lot of the formula goes untouched; we read
o� the following hypotheses:

• P ∧ Q→ R gives {¬P,¬Q, R }
• P ∨ Q ∨ R gives { P,Q, R }
• P↔Q ' (P →Q) ∧ (Q→ P) gives {¬P,Q }, { P,¬Q }

Finally, with the negated conclusion ¬R, the clause set is:

1© {¬P,¬Q, R } 2© { P,Q, R } 3© {¬P,Q } 4© { P,¬Q } 5© {¬R }

Below is one possible resolution sequence.

1©+ 5©
R
=⇒ 6© {¬P,¬Q } 2©+ 5©

R
=⇒ 7© { P,Q }

6©+ 4©
P
=⇒ 8© {¬Q } 7©+ 3©

P
=⇒ 9© {Q } 8©+ 9©

Q
=⇒2

The last few steps were analogous to the second example in Section 6.4 of the notes.
Collapsing duplicate clauses like {Q,Q } is allowed and often necessary.

e) (P → R) ∧ (R ∧ P → S)→ (P ∧ Q→ R ∧ S)

Negate and convert to clauses. Only R ∧ S gets negated, the rest of the clauses can
be read o� from the hypotheses:

• P → R gives {¬P, R }
• R ∧ P → S gives {¬R,¬P, S }
• P ∧ Q gives { P }, {Q }

With the negated conclusion ¬R ∨ ¬S, the clause set is:

1© {¬P, R } 2© {¬P,¬R, S } 3© { P } 4© {Q } 5© {¬R,¬S }

Below is a possible linear resolution sequence.

1©+ 2©
R
=⇒ {¬P, S } + 5©

S
=⇒ {¬P,¬R } + 1©

R
=⇒ {¬P } + 3©

P
=⇒2

5. Convert these axioms to clauses, showing all steps. Then prove Winterstorm→Miserable by
resolution.

Wet ∧ Cold→Miserable

Winterstorm→ Storm ∧ Cold

Storm→ Rain ∧ Windy

Rain ∧ (Windy ∨ ¬Umbrella)→Wet

The propositions listed are our knowledge base: the set of axioms that we assume to be true.
Our task is to prove Winterstorm→Miserable using resolution, i.e. that this implication

LO G I C A N D P R O O F S U P E R V I S I O N 2 – S O LU T I O N S

follows from the axioms in our knowledge base. Resolution involves negating the proof
goal, since it proceeds by refuting the negation of the proposition; importantly, our initial
axioms are not negated, as they are assumptions, not goals. Another way to see this is
to call the conjunction of the axioms Γ , and the proof goal Winterstorm→Miserable P .
We are required to prove the proposition Γ → P , i.e. P follows from the axioms Γ . To do
a resolution proof, we negate this whole implication, and as seen before, this leaves the
hypotheses Γ untouched, only negating P : ¬(Γ → P) ' Γ ∧ ¬P . Hence, the axioms are
converted to clauses without negation, then we add the clauses we get from negating
Winterstorm→Miserable and do resolution on the whole clause set.

With some practice, converting formulae into clauses “on the fly” becomes easy; it’s im-
portant to remember the standard propositional equivalences, and whether the formulae
are negated or not! Below are some of the initial steps:

• Wet ∧ Cold→Mis' ¬Wet ∨ ¬Cold ∨ Mis
• Winter→ Storm ∧ Cold' (Winter→ Storm) ∧ (Winter→ Cold)
• Storm→ Rain ∧ Wind' (Storm→ Rain) ∧ (Storm→Wind)
• Rain ∧ (Wind ∨ ¬Umb) → Wet ' (Rain ∧ Wind) ∨ (Rain ∧ ¬Umb) → Wet '
(Rain ∧ Wind→Wet) ∧ (Rain ∧ ¬Umb→Wet)

We also get two clauses from ¬(Winter→Mis), giving us the final clause set of:

1© {¬Wet,¬Cold, Mis } 2© {¬Winter, Storm } 3© {¬Winter, Cold }
4© {¬Storm,Rain } 5© {¬Storm,Wind } 6© {¬Rain,¬Wind,Wet }

7© {¬Rain,Umb, Wet } 8© {Winter } 9© {¬Mis }

One sequence of resolution steps is below. Note how we make use of unit clauses as much
as possible – resolution with a unit clause is the only way to decrease the size of the clause,
as the resolvent of clauses C and D will have size |C |+ |D| − 2. Unit clauses can also be
resolved “in bulk” with another clause containing the negation of the unit literals, as shown
in the last step (and the elimination of clause 6© beforehand).

2©+ 8©=⇒ A© {Storm } 3©+ 8©=⇒ B© {Cold } A©+ 4©=⇒ C© {Rain }
A©+ 5©=⇒ D© {Wind } C©+ 6©=⇒ E© {¬Wind, Wet } D©+ E©=⇒ F© {Wet }

F© {Wet }+ B© {Cold }+ 9© {¬Mis }+ 1© {¬Wet,¬Cold, Mis }=⇒2

7. Skolem functions, Herbrand’s Theorem and unification
1. a) Explain the process of Skolemisation on a formula of your choice.

Skolemisation is the transformation of first-order formulae that removes existential
quantifiers while maintaining the consistency of the formula. Every existentially
quantified variable is replaced by a new function symbol applied to all universally
quantified variables bound outside of the scope of the existential. For example,

LO G I C A N D P R O O F S U P E R V I S I O N 2 – S O LU T I O N S

consider the FOL formula:
�

∀x . ∃y . ∀z. (P(x) ∧ Q(z, y)) ∨ (∃w. R(w))
�

↔∃y . ∀v. S(y , v)

The variables y , w and y are existentially quantified and will be Skolemised to
constant symbols of di�erent arities:

• y variable gets bound in the scope of one universal quantification, so it gets
Skolemised to f (x)

• w is also bound in the scope of z, so it gets replaced with g(x , z)
• y is di�erent from the y on the LHS of↔ so it gets its own Skolem symbol. In

this case, the binding is top-level, so the function has arity zero – that is, it is a
constant value c.

Thus, the Skolemised formula is as follows:
�

∀x . ∀z. (P(x) ∧ Q(z, f (x))) ∨ R(g(x , z))
�

↔∀v. S(c, v)

b) The notes state that “[Skolemisation] does not preserve the meaning of a formula. However,
it does preserve inconsistency, which is the critical property”. Justify the two claims in this
statement, demonstrating them on your example above.

The justification for Skolemisation can be seen by considering the Tarskian truth
definition of a formula ∃x . P(x). We say that ∃x . P(x) is satisfiable (or consistent)
if there exists an interpretation I = (I , D) such that for all valuations V , we have
�I,V ∃x . P(x). By the truth definition, this holds if there exists an m ∈ D such that
�I,V{m/x} P(x) holds, which, in turn, is the case if I[P]((V{m/x})(x)) = I[P](m) = 1.

∃x . P(x) satisfiable ↔ ∃I , D. ∃m ∈ D. I[P](m) = 1

The Skolemised version of the formula is simply P(c) for some new constant symbol
c, and P(c) is consistent if there exists an interpretation I ′ = (I ′, D′) such that for all
valuations V ′ we have�I′,V ′ P(c). By the truth definition, this holds if I ′[P](I ′[c]) = 1.
The crucial point is that the only way I ′[c] can be defined is if there is an interpretation
of the constant c in the domain D′, i.e. an element m ∈ D′ such that I ′[c] = m. Then:

P(c) satisfiable ↔ ∃I ′, D′. ∃m ∈ D′. I ′[c] = m ∧ I[P](m) = 1

which is nothing more than the satisfiability condition of ∃x . P(x). In short, if there
is an interpretation of ∃x . P(x), there must exist an interpretation of P(c), and,
contrapositively, if P(c) is inconsistent then so is ∃x . P(x). This reasoning can be
extended to Skolem functions incorporating a sequence ~x of quantified variables in
∀~x . ∃y. P(~x , y): if for all sequences of elements ~n ∈ D corresponding to ~x there must
exist an m ∈ D such that I[P](~n, m) holds, we can construct a model for ∀~x . P(f (~x))
in which the interpretation of the function symbol f maps ~n to m as prescribed by
the model for the original formula. If we can find no model satisfying ∀~x . P(f (~x)),

LO G I C A N D P R O O F S U P E R V I S I O N 2 – S O LU T I O N S

we won’t be able to find a model satisfying ∀~x . ∃y. P(~x , y) either.

For a concrete example consider the formula ∀x . ∃y. P(x , y) (which states that P is a
total relation) and take P(x , y) to mean “y is a prime number greater than x”, where
x and y range over the naturals. By Euclid’s proof of the infinitude of primes, we
know that this is a satisfying interpretation: for any x ∈ N, there exists a prime y ∈ N
such that x < y . If there is an assignment of a prime y to every x in the domain N,
there must exist (at least one) function f : N→ N that assigns x to a larger prime y ,
for example, the next largest one. This interpretation then satisfies the Skolemised
formula ∀x . P(x , f (x)).

Now, take the formulaψ = ∃y. P(y) ∧ ¬P(y). Skolemising this gives P(c) ∧ ¬P(c).
It’s easy to see that no interpretation for P or c exists that would satisfy this formula,
which meansψ is unsatisfiable as well – there can’t exist a y such that P(y) ∧ ¬P(y).

2. Skolemize the following formulas, dropping all quantifiers.

∀u. ∃x , y . P(x , y) ∃x , y . ∀z. ∃w. P(x , y, z, w) ∀u. (∃x . P(x , x)) ∧ ∀v. ∃y. Q(u, y)

Nothing too surprising here.

P(f (u), g(u)) P(a, b, z, f (z)) P(f (u), f (u)) ∧ Q(u, g(u, v))

3. Consider a first-order language A with z and o as constant symbols, with n as a 1-place function
symbol and a as a 2-place function symbol, and with C as a 2-place predicate symbol.

a) Describe the Herbrand universe for this language.

The Herbrand universe of a first-order language is the set of all possible closed terms
that can be constructed from the constants and function symbols of the language. It
is an infinite set constructed recursively: taking any function symbol such as a, the
Herbrand universe H must contain the terms a(t1, t2) for all terms t1 and t2 taken
from H itself. Some elements of H are:

{ z, o, n(z), n(o), a(z, z), a(z, o), a(o, z), n(n(z)), n(n(o)), n(a(z, z)), a(n(o), z), . . . }

b) This language has an interpretation I in the domain D = Z of integers, with z and o
interpreted as 0 ∈ Z and 1 ∈ Z respectively, n being the negation function x 7→ −x , a
being the addition function x , y 7→ x + y , and C being the less-than comparison relation
x , y 7→ x < y . What is the Herbrand model of the symbols of the language with respect
to this interpretation I?

The Herbrand interpretation of a first-order language L with respect to a given model
I = (D, I) is the “syntactic interpretation” of L which can be directly translated
into I . It is an example of a so-called free construction in mathematics, because
the interpretation can be freely generated from the syntax; any real interpretation
would involve some “creativity” (such as interpreting a(o, z) and a(z, o) as the same

LO G I C A N D P R O O F S U P E R V I S I O N 2 – S O LU T I O N S

number 1), while the Herbrand model simply interprets a term as itself, not bothering
about actually giving it a meaning. The only place where we need to refer to the real
interpretation is giving a meaning to relation symbols, which need to return a truth
value even in the free interpretation.

In our example, the constant and function symbols are z, o, n and a; these must be
interpreted as constants and functions on the desired domain, which, in this case, is
the Herbrand universe H .

• Constant terms are interpreted as themselves: IH[z] = z ∈ H , IH[o] = o ∈ H
• IH[n]: H → H is the function that takes a term t ∈ H , and prepends it with

the symbol n (notice how we’re not talking about “negating” the element – that
happens in the standard interpretation in Z). That is, IH[n](t) = n(t).

• IH[a]: H ×H → H is the function that takes terms t1 and t2 in H , and combines
them with the symbol a. You can think of this as creating a new syntax tree with
root a and subtrees t1 and t2. That is, IH[a](t1, t2) = a(t1, t2).

The relation symbol < cannot be given such a trivial interpretation, which has to be
a relation IH[<]: H × H → B – the output must be an actual truth value, not just
a syntax tree. Without having a real interpretation in Z to refer to, we cannot make
any obvious choices on how to make sense of a formula like ϕ = C(a(o, z), n(n(o))).
Thus, we “ask” what an intended interpretation would say to this, and make that the
Herbrand interpretation as well. The choice of interpretation matters: ϕ would be
true if IZ[C](x , y) = x ≤ y , but false if IZ[C](x , y) = x < y .

Formally, the relation IH[C]: H ×H → B takes two terms t1, t2 ∈ H , interprets them
using our base model IZ, and compares the answers using the base interpretation of
C : IH[C](t1, t2) i� IZ(t1)< IZ(t2).

Herbrand interpretations are useful because every real interpretation of a set of
first-order clauses factorises through a Herbrand interpretation in a unique way.
That is, given an interpretation I = (D, I) of a set of clauses S (or a quantifier-
free formula that may contain variables), there exists a unique function Î : H → D
such that the interpretation I[t] of a term coincides with Î(IH[t]) for all terms t .
Instead of interpreting the set of clauses directly, we can take a “detour” through the
systematically generated Herbrand interpretation in a consistency-preserving way.

For example, take the clauses

S = {C(x , a(x , o)) } {C(x , x), C(z, o) }

These stand for the FOL formula (∀x . C(x , a(x , o))) ∧ (∀y. C(y, y) ∨ C(z, o)). We
have the above interpretation (Z, IZ) which satisfies S: it is indeed the case that
x < x + 1 for all x ∈ Z, and that either y < y or 0< 1 holds for all y . The claim of
Lemma 12 in the notes is that there must exist a Herbrand interpretation satisfying

https://www.cl.cam.ac.uk/teaching/current/LogicProof/logic-notes.pdf#page=20

LO G I C A N D P R O O F S U P E R V I S I O N 2 – S O LU T I O N S

S. The universe H is as described above, consisting of elements such as a(n(o), z)
and n(n(n(z))). Similarly, interpretations of the constant and functions symbols are
the identity: IH[a(n(o), z)] = a(n(o), z). The interpretation of C is where we need
to make use of IZ, as explained above. To show that IH satisfies the clauses, we
need to prove that IH[C](t, a(t, o)) holds for all terms t ∈ H (and similarly for the
second clause). How do we know that this is true? Well, IH[C](t, a(t, o))↔ IZ[t]<
IZ[a(t, o)]↔ IZ[t]< IZ[t] + 1 for all t ∈ H , but this certainly holds, since we know
that x < x + 1 for all x ∈ Z – in particular, IZ[t]. The real interpretation IZ can be
split into the “freely generated” Herbrand interpretation IH , followed by a unique
function ÎZ : H → Z, mapping the ground terms of the Herbrand universe to integers.

4. For at least three of the following pairs of terms, give a most general unifier or explain why
none exists. Do not rename variables prior to performing the unification.

f (g(x), z) f (y, h(y))

j(x , y, z) j(f (y, y), f (z, z), f (a, a))

j(x , z, x) j(y, f (y), z)

j(f (x), y, a) j(y, z, z)

j(g(x), a, y) j(z, x , f (z, z))

Things to pay attention to: occurs-check violations (e.g. trying to unify f (x) with x), and not
unifying symbols with di�erent symbols. Substitutions also need to be accumulated when
unifying arguments of an n-ary function symbol in sequence, and the final substitution is
the composition of the component substitutions (see Section 7.6 of the notes).

• The MGU of f (g(x), z) and f (y, h(y)) is [g(x)/y, h(g(x))/z], and the common in-
stance is f (g(x), h(g(x))). As noted above, substitutions accumulate: in the second
step we are unifying z[g(x)/y] = z and h(y)[g(x)/y] = h(g(x)), not just z and h(y).
Without accumulation, the substitution would be σ = [g(x)/y, h(y)/z] – but this
is not even a unifier, because f (g(x), z)[σ] = f (g(x), h(y)) but f (y, h(y))[σ] =
f (g(x), h(g(x)).

• The MGU of j(x , y, z) and j(f (y, y), f (z, z), f (a, a)) is the composition of [f (y, y)/x],
[f (z, z)/y] and [f (a, a)/z], namely:

[f (f (f (a, a), f (a, a)), f (f (a, a), f (a, a)))/x ,

f (f (a, a), f (a, a))/y,

f (a, a)/z]

This is a slightly contrived example to demonstrate how the naive unification algorithm
can take exponential time.

• The terms j(x , z, x) and j(y, f (y), z) are not unifiable. A unifier must identify the
variables x , y and z, and thus also unify y with f (y), which violates the occurs check.

LO G I C A N D P R O O F S U P E R V I S I O N 2 – S O LU T I O N S

• The terms j(f (x), y, a) and j(y, z, z) are also not unifiable. We have to unify y both
with a and f (x), but a and f (x) are not unifiable as they are di�erent function
symbols.

• The MGU of j(g(x), a, y) and j(z, x , f (z, z)) is the composition of [g(x)/z], [a/x]
and [f (z, z)/y], namely [a/x , f (g(a), g(a))/y, g(z)/z]. The common instance is
j(g(a), a, f (g(a), g(a))).

5. Which of the following substitutions are most general unifiers for the terms f (x , y, z) and
f (w, w, v)?

[x/y, x/w, v/z] [y/x , y/w, v/z] [y/x , v/z]

[x/y, x/z, x/w, x/v] [u/x , u/y, u/w, y/z, y/v]

• [x/y, x/w, v/z]: this is a unifier with the common instance f (x , x , v).
• [y/x , y/w, v/z]: this is a unifier with the common instance f (y, y, v).
• [y/x , v/z]: this is not a unifier, as the first term becomes f (y, y, v), while the other

is f (w, w, v). We’re missing [y/w], which the previous substitution had.
• [x/y, x/z, x/w, x/v]: this is a unifier with the common instance f (x , x , x). But it uni-

fies “more things” than required, that is, it’s not a most general unifier: we can get to the
same term by applying the first substitution [x/y, x/w, v/z] above to get f (x , x , v),
then also substituting x for v. Thus, [x/y, x/z, x/w, x/v] = [x/y, x/w, v/z] ◦ [x/v],
so this is not an MGU.

• [u/x , u/y, u/w, y/z, y/v]: this is a unifier with the common instance f (u, u, y). Again,
it performs more substitutions than required and can be decomposed (for example)
as [u/x , u/y, u/w, y/z, y/v] = [x/y, x/w, v/z] ◦ [u/x , y/v].

8. First-order resolution
1. What techniques allow us to convert first-order formulas into “propositional” clauses, and prove

them using resolution? How are quantifiers and variables handled?

See the First-order resolution supplement.

2. Is the clause { P(x , b), P(a, y) } logically equivalent to the unit
clause { P(a, b) }? Is the clause { P(y, y), P(y, a) } logically equivalent to { P(y, a) }? Explain
both answers.

Logical equivalence would imply that (∀x y . P(x , b) ∨ P(a, y))↔ P(a, b) is valid. Of
course, this is not the case: P(a, b)→ (∀x y . P(x , b) ∨ P(a, y)) is clearly wrong. We can
find a falsifying model over the domain {0,1 }: 0< 1 6→ (1< 1 ∨ 0< 0).

The second pair of clauses is also not equivalent: ∀y. P(y, y) ∨ P(y, a) does not imply
∀x . P(x , a) because ∀y. P(y, y) → P(y, a) is not valid. Again, a falsifying model over
{0,1 } could be: 0= 0 6→ 0= 1.

LO G I C A N D P R O O F S U P E R V I S I O N 2 – S O LU T I O N S

This shows that factoring usually results in logically weaker clauses so it’s worth retaining
the original clause if we want our proof procedure to be complete.

3. Show that every set S of definite clauses is consistent. Hint: first consider propositional logic,
then extend your argument to first order logic.

Definite clauses contain exactly one positive literal: they are of the form {¬A1, . . . ,¬An, B }
and can be interpreted as implications A1 ∧ · · · ∧ An → B. To satisfy a set of these
implications, it is su�cient to ignore the hypotheses and satisfy the consequent (since
A→> is a tautology). Thus, all we need to do is set the positive literals occurring in each
clause to true, and by the definite clause guarantee every clause will be satisfied. The same
idea works for first-order clauses, except the positive literal may contain variables: these
will need to be universally quantified. For instance, A1(x) ∧ · · · ∧ An(x)→ B(x) is satisfied
by the interpretation B(x) = > for all x ∈ D. Note that we can’t use the Herbrand logic
here: satisfying a single ground instance of a clause does not satisfy the full clause.

4. Convert the following formulas into clauses, showing each step: negating the formula, elimin-
ating→ and↔, pushing in negations, Skolemising, dropping the universal quantifiers, and
converting the resulting formula into CNF. Apply resolution (and possibly factoring) to prove or
disprove the formulas in each case.

(∃x . ∀y. R(x , y))→ (∀y. ∃x . R(x , y))

(∀y. ∃x . R(x , y))→ (∃x . ∀y. R(x , y))

∃x . ∀y, z. (P(y)→Q(z))→ (P(x)→Q(x))

¬(∃y. ∀x . R(x , y)↔¬(∃z. R(x , z) ∧ R(z, x)))

a) Negate and convert to clauses

¬((∃x . ∀y. R(x , y))→ (∀y. ∃x . R(x , y)))

' (∃x . ∀y. R(x , y)) ∧ (∃y. ∀x . ¬R(x , y)) (negate)
=⇒ (∀y. R(a, y)) ∧ (∀x . ¬R(x , b)) (Skolemise)
=⇒ R(a, y) ∧ ¬R(x , b) (drop ∀s)
=⇒ {R(a, y) } {¬R(x , b) }

The two clauses can be unified with [a/x , b/y], and resolved to the empty clause,
proving the original formula.

b) Negate and convert to clauses

¬((∀y. ∃x . R(x , y))→ (∃x . ∀y. R(x , y)))

' (∀y. ∃x . R(x , y)) ∧ (∀x . ∃y. ¬R(x , y)) (negate)
=⇒ (∀y. R(f (y), y)) ∧ (∀x . ¬R(x , g(x))) (Skolemise)
=⇒ R(f (y), y) ∧ ¬R(x , g(x)) (drop ∀s)

LO G I C A N D P R O O F S U P E R V I S I O N 2 – S O LU T I O N S

=⇒ {R(f (y), y) } {¬R(x , g(x)) } (convert to clauses)

Unifying the first argument gives [f (y)/x], but attempting to unify g(x)[f (y)/x] =
g(f (y)) and y is not possible due to the occurs check. Since no resolution steps are
possible, the original formula must be invalid.

c) Negate and convert to clauses

¬(∃x . ∀y, z. (P(y)→Q(z))→ (P(x)→Q(x)))

' ∀x . ∃y, z. (P(y)→Q(z)) ∧ P(x) ∧ ¬Q(x) (negate)
' (∃y, z. ¬P(y) ∨ Q(z)) ∧ (∀x . P(x) ∧ ¬Q(x)) (convert to miniscope)
=⇒ (¬P(a) ∨ Q(b)) ∧ (∀x . P(x) ∧ ¬Q(x)) (Skolemise)
=⇒ (¬P(a) ∨ Q(b)) ∧ P(x) ∧ ¬Q(x) (drop ∀s)
=⇒ 1© {¬P(a),Q(b) } 2© { P(x) } ¬ 3© {Q(x) } (convert to clauses)

Resolve 1© and 2© on P(a) with the unifier [a/x] to get 4© {Q(b) }. Resolve 4© and
3© on Q(b) with the unifier [b/x] to get 2.

d) Negate and convert to clauses

¬¬(∃y. ∀x . R(x , y)↔¬(∃z. R(x , z) ∧ R(z, x)))

' ∃y. ∀x . R(x , y)↔¬(∃z. R(x , z) ∧ R(z, x)) (negate)

' ∃y. ∀x . (R(x , y)→¬(∃z. R(x , z) ∧ R(z, x))) ∧ ((∃z. R(x , z) ∧ R(z, x)) ∨ R(x , y))
(expand↔)

' ∃y. ∀x . (¬R(x , y) ∨ (∀z. ¬R(x , z) ∨ ¬R(z, x))) ∧ ((∃z. R(x , z) ∧ R(z, x)) ∨ R(x , y))
(de Morgan)

=⇒∀x . (¬R(x , a) ∨ (∀z. ¬R(x , z) ∨ ¬R(z, x))) ∧ ((R(x , f (x)) ∧ R(f (x), x)) ∨ R(x , a))
(Skolemise)

=⇒ (¬R(x , a) ∨ ¬R(x , z) ∨ ¬R(z, x)) ∧ ((R(x , f (x)) ∧ R(f (x), x)) ∨ R(x , a))
(drop ∀s)

' (¬R(x , a) ∨ ¬R(x , z) ∨ ¬R(z, x)) ∧ (R(x , f (x)) ∨ R(x , a)) ∧ (R(f (x), x) ∨ R(x , a))
(convert to CNF)

=⇒ 1© {¬R(x , a),¬R(x , z),¬R(z, x) } 2© {R(x , f (x)), R(x , a) } 3© {R(f (x), x), R(x , a) }
(convert to clauses)

• There are no unit clauses, so we should see if factoring is possible. Indeed it is: the
first clause has 4© {¬R(a, a) } as a factored instance.

• Resolve 4© and 2© on R(a, a) with the unifier [a/x] to get 5© {R(a, f (a)) }
• Resolve 4© and 3© on R(a, a) with the unifier [a/x] to get 6© {R(f (a), a) }
• Resolve 6© and 1© on R(f (a), a) and R(x , a) with the unifier [f (a)/x] to get

7© {¬R(f (a), y),¬R(y, f (a)) }
• Resolve 6© and 7© on R(f (a), a) and R(f (a), y) with the unifier [a/y] to get

LO G I C A N D P R O O F S U P E R V I S I O N 2 – S O LU T I O N S

8© {¬R(a, f (a)) }
• Resolve 8© and 5© on R(a, f (a)) to get 2.

5. Refute the following set of clauses using resolution and factoring.

1© { P(x , b), P(a, y) } 2© {¬P(x , b),¬P(c, y) } 3© {¬P(x , d),¬P(a, y) }

This is an example of when “greedy” factoring is problematic. We can factor all three clauses
to get { P(a, b) }, {¬P(c, b) } and {¬P(a, d) }, but there is no way to move forward with
only these terms, since they have no variables left to unify. We need to be more strategic
and only factor when we need to. Factoring 2© yields {¬P(c, b) } which can be resolved
with 1© to get 4© { P(a, y) }. This, together with the factored clause 3©, {¬P(a, d) }, yields
the empty clause, as required.

6. Prove the following formulas by resolution, showing all steps of the conversion into clauses.
Note that P is just a predicate symbol, so in particular, x is not free in P .

(∀x . P ∨ Q(x))→ (P ∨ ∀x . Q(x)) ∃x , y . (R(x , y)→∀z, w. R(z, w))

a) Negating (∀x . P ∨ Q(x))→ (P ∨ ∀x . Q(x)) leaves the hypothesis untouched, so
we can immediately read o� the clause { P,Q(x) }. Negating the conclusion gives
¬P ∧ ∃x . ¬Q(x), and Skolemising results in ¬P ∧ ¬Q(a). The final clause set is:

1© { P,Q(x) } 2© {¬P } 3© {¬Q(a) }

Resolve 1© and 3© on Q(a) with the unifier [a/x] to get 4© { P }, which, with 2©, gives
the empty clause.

b) Negating ∃x , y . (R(x , y)→∀z, w. R(z, w)) gives ∀x , y . R(x , y) ∧ ∃z, w. ¬R(z, w).
Skolemisation introduces two 2-place Skolem functions: ∀x , y . R(x , y) ∧
¬R(f (x , y), g(x , y)). The two clauses are:

1© {R(x , y) } 2© {¬R(f (x , y), g(x , y)) }

While it seems like we cannot unify x with f (x , y) due to the occurs check, we must
always remember that variables in a clause can be renamed arbitrarily:

1© {R(u, v) } 2© {¬R(f (x , y), g(x , y)) }

Now, the two clauses resolve with the unifier [f (x , y)/u, g(x , y)/v] and yield 2.

9. Optional exercises
1. In your own words, explain the motivation behind Herbrand interpretations.

• How is a Herbrand interpretation constructed from a set of clauses S?
• Why do we need Herbrand interpretations?
• What is the significance of the Skolem–Gödel–Herbrand Theorem?

LO G I C A N D P R O O F S U P E R V I S I O N 2 – S O LU T I O N S

If you wish, consult a pre-2013 version of the course lecture notes, which discuss Herbrand
models in more detail.

This was explained in detail in Ex. 7.3 and the supplementary document.

2. Consider the Prolog program consisting of the definite clauses

P(f (x , y))←Q(x), R(y)

Q(g(z))← R(z)

R(a)←

Describe the Prolog computation starting from the goal clause ← P(v). Keep track of the
substitutions a�ecting v to determine what answer the Prolog system would return.

A Prolog program consists of a database of definite clauses (containing exactly one positive
literal, representing the conclusion of an implication) and a goal clause (containing only
negative literals, representing the set of unsolved goals). Computation happens by linear
resolution: the goal clause is repeatedly resolved with one of the definite clauses until all
goals are discharged.

In this example, the Prolog program represents the following definite clauses:

1© {¬Q(x),¬R(y), P(f (x , y)) } 2© {¬R(z),Q(g(z)) } 3© {R(a) }

The goal clause is G© {¬P(v) }; the aim of the program is to find out what value for the
variable v would give a contradiction. The advantages of the Prolog constraints are that
one of the resolvents is always the result of the previous resolution (or the goal clause at
the start), and the unifiers compose after each resolution step.

• Resolve 1© {¬Q(x),¬R(y), P(f (x , y)) } and G© with the unifier [f (x , y)/v] to get
G© {¬Q(x),¬R(y) }

• Resolve 2© {¬R(z),Q(g(z)) } and G©with the unifier [g(x)/x] to get G© {¬R(z),¬R(y) }
• Resolve 3© {R(a) } and G© with the unifier [a/z] to get G© {¬R(y) }
• Resolve 3© {R(a) } and G© with the unifier [a/y] to get 2.

The substitutions are:

[f (x , y)/v] ◦ [g(z)/x] ◦ [a/z] ◦ [a/y] = [f (g(a), a)/v, g(a)/x , a/y, a/z]

That is, the final answer is v = f (g(a), a).

https://www.cl.cam.ac.uk/teaching/1011/LogicProof/notes.pdf#page=45

	Formal reasoning in first-order logic
	Clause methods for propositional logic
	Skolem functions, Herbrand’s Theorem and unification
	First-order resolution
	Optional exercises

