
Foundations of Computer Science
Exercises

2023

Contents

1. Introduction to programming . 1
1.1. Conceptual questions . 1
1.2. Exercises . 1
1.3. Optional questions . 1

2. Recursion and e�ciency . 2
2.1. Conceptual questions . 2
2.2. Exercises . 2
2.3. Optional questions . 2

3. Lists . 2
3.1. Conceptual questions . 2
3.2. Exercises . 2
3.3. Optional questions . 3

4. More on lists . 3
4.1. Conceptual questions . 3
4.2. Exercises . 4
4.3. Optional questions . 4

5. Sorting . 4
5.1. Conceptual questions . 4
5.2. Exercises . 4
5.3. Optional questions . 4

6. Datatypes and trees . 5
6.1. Conceptual questions . 5
6.2. Exercises . 5
6.3. Optional questions . 5

7. Dictionaries and functional arrays . 6
7.1. Conceptual questions . 6
7.2. Exercises . 6
7.3. Optional questions . 6

8. Functions as values . 6
8.1. Conceptual questions . 6
8.2. Exercises . 7
8.3. Optional questions . 7

9. Sequences and laziness . 10
9.1. Conceptual questions . 10
9.2. Exercises . 11
9.3. Optional questions . 11

10. Queues and search strategies . 12
10.1. Conceptual questions . 12

F O U N D AT I O N S O F CO M P U T E R S C I E N C E E X E R C I S E S

10.2. Exercises . 12
10.3. Optional questions . 12

11. Elements of procedural programming . 13
11.1. Conceptual questions . 13
11.2. Exercises . 13

1. Introduction to programming
1.1. Conceptual questions

1. What is the main idea behind abstraction barriers? Why are they useful?

2. Why is it silly to write an expression of the form if b then true else false? What about
expressions of the form if b then false else true? How about if b then 5 else 5?
(You’d be surprised how many times I have to refer back to this exercise!)

3. Briefly discuss the meaning of the the terms expression, value, command and e�ect using the
following examples:

• true
• 57 + 9
• print_string "Hello world!"
• print_float (8.32 *. 3.3)

4. Which of these is a valid OCaml expression and why? Assume that you have a variable x declared,
e.g. with let x = 1.

• if x < 6 then x + 3 else x + 8

• if x < 6 then x + 3

• if x < 6 then x + 3 else "A"

• x + (if x < 6 then 3 else 8)

1.2. Exercises
5. One solution to the year 2000 bug mentioned in Lecture 1 involves storing years as two digits,

but interpreting them such that 50 means 1950, 0 means 2000 and 49 means 2049.

a) Comment on the merits and drawbacks of this approach.

b) Using this date representation, code an OCaml function to compare two years (just like
the <= operator compares integers).

c) Using this date representation, code an OCaml function to add/subtract some given
number of years from another year.

1.3. Optional questions
6. Because computer arithmetic is based on binary numbers, simple decimals such as 0.1 often

cannot be represented exactly. Write a function that performs the computation

x + x + · · ·+ x
︸ ︷︷ ︸

n

where x has type float. (It is essential to use repeated addition rather than multiplication!)
See what happens when you call the function with n= 1000000 and x = 0.1.

https://www.cl.cam.ac.uk/teaching/2324/FoundsCS/focs-202324-v1.5.pdf#page=6

F O U N D AT I O N S O F CO M P U T E R S C I E N C E E X E R C I S E S

7. Another example of the inaccuracy of floating-point arithmetic takes the golden ratio ϕ =
1.618 . . . as its starting point:

γ0 =
1+
p

5
2

and γn+1 =
1

γn − 1

In theory, it is easy to prove that γn = · · · = γ1 = γ0 for all n > 0. Code this computation in
OCaml and report the value of γ50. Hint: in OCaml,

p
5 is expressed as sqrt 5.0.

2. Recursion and e�ciency
2.1. Conceptual questions

1. Use a recurrence relation to find an upper bound for the recurrence given by T(1) = 1 and
T (n) = 2T (n/2) + 1. Prove that your solution is an upper bound for all n using mathematical
induction.

2.2. Exercises
2. Code an iterative version of the e�cient power function from Section 1.6.

2.3. Optional questions
3. Let g1, . . . , gk be functions such that gi(n)≥ 0 for i = 1, . . . , k and all su�ciently large n. Show

that if f (n) = O(a1 g1(n) + · · ·+ ak gk(n)) then f (n) = O(g1(n) + · · ·+ gk(n)).

3. Lists
3.1. Conceptual questions

1. I often see some recurring stylistic/syntactic mistakes and “code smells” in students’ work.
Learn to avoid them by pointing out what is incorrect, redundant, or suspicious in the following
fragments. (Note: you can assume that x : int and xs : int list and the relevant List
functions are in scope.)

• 1 :: [2, 3, 4]

• "hello " @ "world"

• xs @ [x]

• [x] @ xs

• let rec f xs = if len xs = 0 then 0 else hd xs + f (tl xs)

2. We’ve seen how tail-recursion can make some list-processing operations more e�cient. Does
that mean that we should write all functions on lists in tail-recursive style?

3.2. Exercises
3. Code a recursive and an iterative function to compute the sum of a list’s elements. Compare

their relative e�ciency.

https://www.cl.cam.ac.uk/teaching/2324/FoundsCS/focs-202324-v1.5.pdf#page=10

F O U N D AT I O N S O F CO M P U T E R S C I E N C E E X E R C I S E S

4. Code a function to return the last element of a non-empty list. How e�ciently can this be done?
See if you can come up with two di�erent solutions.

5. Code a function to return the list consisting of the even-numbered elements of the list given as
its argument. For example, given [a,b,c,d] it should return [b,d]. Hint: pattern-matching is
a very flexible concept.

6. Code a function tails to return the list of the tails of its argument. For example, given the
input list [1, 2, 3] it should return [[1, 2, 3], [2, 3], [3], []].

3.3. Optional questions
7. Consider the polymorphic types in these two function declarations:

let id x = x
val id : 'a -> 'a = <fun>
let rec loop x = loop x
val loop : 'a -> 'b = <fun>

Explain why these types make logical sense, preventing runtime type errors, even for expressions
like id [id [id 0]] or loop true / loop 3.

8. Looking at the tail-recursive functions you’ve seen or written so far, think about why they are
called tail-recursive: what is the common feature of their evaluation that would explain this
terminology? If you have previous understanding of how functions are evaluated in a computer
(stack frames), can you explain why tail-recursive functions are often more space-e�cient than
recursive ones?

4. More on lists
4.1. Conceptual questions

1. Suppose we use a variant of the list zipping function which takes the two list arguments as a pair
and has the type zip : 'a list * 'b list -> ('a * 'b) list. This way, the functions zip
and unzip seem like they are each other’s opposites. Mathematically, two functions f : A→ B
and g : B→ A are inverses of each other if for all arguments a ∈ A, g(f (a)) = a, and if for all
arguments b ∈ B, f (g(b)) = b. If only the first condition holds, we call g the left inverse of f ,
and if only the second condition holds, we call g the right inverse of f . Is unzip the inverse,
right inverse or left inverse of zip? Justify your answer.

2. We know nothing about the functions f and g other than their polymorphic types:

> val f : 'a * 'b -> 'b * 'a = <fun>
> val g : 'a -> 'a list = <fun>

Suppose that f (1, true) and g 0 are evaluated and return their results. State, with reasons,
what you think the resulting values will be, and how the functions can be defined. Can any of

https://www.cl.cam.ac.uk/teaching/2324/FoundsCS/focs-202324-v1.5.pdf#page=32

F O U N D AT I O N S O F CO M P U T E R S C I E N C E E X E R C I S E S

the definitions be changed if termination wasn’t a requirements?

4.2. Exercises
3. a) Use the member function on Page 31 to implement the function inter that calculates the

intersection of two OCaml lists – that is, inter xs ys returns the list of elements that
occur both in xs and ys. You may assume xs and ys have no repeated elements.

b) Similarly, code a function to implement set union. It should avoid introducing repetitions,
for example the union of the lists [4;7;1] and [6;4;7] should be [1;6;4;7] (though
the order should not matter).

4. Code a function that takes a list of integers and returns two lists, the first consisting of all
nonnegative numbers found in the input and the second consisting of all the negative numbers.
How would you adapt this function so it can be used to implement a sorting algorithm?

4.3. Optional questions
5. How does this version of zip di�er from the one in the course?

let rec zip xs ys = match xs, ys with
| (x::xs, y::ys) -> (x,y) :: zip (xs,ys)
| ([], []) -> []

6. What assumptions do the “making change” functions make about the variables till and amt?
What could happen if these assumptions were violated?

5. Sorting
5.1. Conceptual questions

1. You are given a long list of integers. Would you rather:

a) Find a single element with linear search or sort the list and use binary search?

b) Find a lot of elements with linear search or sort the list and use binary search?

c) Find all duplicates by pairwise comparison or sort the list and check for adjacent values?

2. Another sorting algorithm (bubble sort) consists of looking at adjacent pairs of elements,
exchanging them if they are out of order and repeating this process until no more exchanges
are possible. Analyse the time complexity of this approach.

5.2. Exercises
3. Implement bubble sort in OCaml.

5.3. Optional questions
4. Another sorting algorithm (selection sort) consists of looking at the elements to be sorted,

identifying and removing a minimal element, which is placed at the head of the result. The tail
is obtained by recursively sorting the remaining elements.

https://www.cl.cam.ac.uk/teaching/2324/FoundsCS/focs-202324-v1.5.pdf#page=31

F O U N D AT I O N S O F CO M P U T E R S C I E N C E E X E R C I S E S

a) State, with justification, the time complexity of this approach.

b) Implement selection sort using OCaml.

6. Datatypes and trees
6.1. Conceptual questions

1. Examine the following function declaration. What does ftree (1,n) accomplish?

let rec ftree k = function
| 0 -> Lf
| n -> Br(k, ftree (2*k) (n-1), ftree (2*k+1) (n-1))

6.2. Exercises
2. Write an function taking a binary tree labelled with integers and returning their sum.

3. Give the declaration of an OCaml datatype for arithmetic expressions that have the following
possible shapes: floats, variables (represented by strings), or expressions of the form

−E or E + E or E × E

Hint: recall how expressions di�er from statements, and how their characteristic structure could
be captured as a data type. It’s a lot simpler than it may seem!

4. Continuing the previous exercise, write a function eval : expr -> float that evaluates an
expression. If the expression contains any variables, your function should raise an exception
indicating the variable name.

6.3. Optional questions
5. Prove the inequality involving the depth and size of a binary tree t from Page 53.

∀ trees t. count(t)≤ 2depth(t) − 1

Hint: One way to do this is with a generalisation of mathematical induction called structural
induction, where you analyse the shape (top-level constructor) of the tree t, and prove the
property for the base case (leaf) and recursive case (branch). You can also try standard math-
ematical induction on some numerical property of the tree, but be careful with that you are
assuming and what you are proving!

6. Give a declaration of the data type day for the days of the week. Comment on the practicality
of such a datatype in a calendar application.

7. Write a function dayFromDate : int -> int -> int -> day which calculates the day of the
week of a date given as integers. For example, dayFromDate 2020 10 13 would evaluate to
Tuesday (or whatever encoding you used in your definition of day above). Hint: Using Zeller’s
Rule might be the easiest approach.

https://www.cl.cam.ac.uk/teaching/2324/FoundsCS/focs-202324-v1.5.pdf#page=53

F O U N D AT I O N S O F CO M P U T E R S C I E N C E E X E R C I S E S

7. Dictionaries and functional arrays
7.1. Conceptual questions

1. Draw the binary search tree that arises from successively inserting the following pairs into the
empty tree: (Alice, 6), (Tobias, 2), (Gerald, 8), (Lucy, 9). Then repeat this task
using the order (Gerald, 8), (Alice, 6), (Lucy, 9), (Tobias, 2). Why are results
di�erent? How could we avoid the issue encountered in the first case?

7.2. Exercises
2. Code an insertion function for binary search trees (with keys of string type, and values of

polymorphic 'a type). It should resemble the existing update function except that it should
raise the exception Collision if the item to be inserted is already present. Now try modifying
your function so that Collision returns the value previously stored in the dictionary at the
given key. What problems do you encounter and why?

3. Describe and code an algorithm for deleting an entry from a binary search tree. Comment on
the suitability of your approach. There are two reasonable methods – one is simple, the other
is e�cient but a bit more tricky.

4. Write a function to remove the first element from a functional array. All the other elements are
to have their subscripts reduced by one.

7.3. Optional questions
5. Show that the functions preorder, inorder and postorder all require O(n2) time in the

worst case, where n is the size of the tree.

6. Show that the functions preord, inord and postord take linear time in the size of the tree.

8. Functions as values
8.1. Conceptual questions

1. Consider the following polymorphic functions. Infer the types of sw, co and cr (without asking
OCaml) and the give the definitions of id, ap and ucr based on their types. What do these
functions do and what are their uses?

let sw f x y = f y x
let co g f x = g (f x)
let cr f a b = f (a,b)
val id : 'a -> 'a = <fun>
val ap : ('a -> 'b) -> 'a -> 'b = <fun>
val ucr : ('a -> 'b -> 'c) -> 'a * 'b -> 'c = <fun>

F O U N D AT I O N S O F CO M P U T E R S C I E N C E E X E R C I S E S

8.2. Exercises
2. Ordered types are OCaml types T with a comparison operator < : T -> T -> bool such that

a < b returns true if a : T is “smaller than” b : T. Many OCaml types – such as string
and int – can be ordered and compared with the < operator in the obvious way. We often
want to combine two such orderings to get comparison operators for compound types such as
string * int. Two ways of doing this are pairwise ordering, which compares elements of the
pair individually:

(x , y)<p (x
′, y ′) ⇐⇒ x < x ′ ∧ y < y ′

and lexicographic ordering, which orders by the first elements, and if they are equal, by the
second element (for an arbitrary number of elements we get the familiar word ordering used in
dictionaries):

(x , y)<` (x
′, y ′) ⇐⇒ x < x ′ ∨ (x = x ′ ∧ y < y ′)

a) Write OCaml functions implementing a comparison operator for pairwise and lexicographic
ordering for the type of pairs string * int.

b) Hardcoding the comparison operator < makes these functions a bit inflexible: for example,
we cannot order a list of pairs in increasing order on the first element, but decreasing
order on the second. We can make the functions more abstract by taking the comparison
operators as higher-order arguments, and using them instead of <. Write two higher-order
OCaml functions to perform pairwise and lexicographic comparison of values of type
'a * 'b, where the comparison operators for types 'a and 'b are passed as arguments.

c) Explain how you would use your functions in the previous part, and the higher-order sorting
function insort, to sort a list of type (string * (int * string)) list according to
the following specification:

(s1, (m, s2))<
�

s′1, (n, s′2)
�

⇐⇒ s1 ≤ s′1 ∧
�

m> n ∨ (m= n ∧ s2 < s′2)
�

3. Without using (or redefining!) map, write a function map2 such that map2 f is equivalent to
the composition map (map f). Make use of nested pattern matching and let-declarations if
needed.

4. The built-in type option, shown below, can be viewed as a type of lists having at most one
element. (It is typically used as an alternative to exceptions.) Declare a function that works
analogously to map but on option types rather than lists.

type 'a option = None | Some of 'a

8.3. Optional questions
5. Recall the making change function of Lecture 4:

let rec change till amt = match till, amt with
| _, 0 -> [[]]

https://www.cl.cam.ac.uk/teaching/2324/FoundsCS/focs-202324-v1.5.pdf#page=34

F O U N D AT I O N S O F CO M P U T E R S C I E N C E E X E R C I S E S

| [], _ -> []
| c::till, amt ->

if amt < c then change till amt else
let rec allc = function

| [] -> []
| (cs::css) -> (c::cs) :: allc css

in allc (change (c::till) (amt-c))
@ change till amt

The function allc applies the function “cons a c” to every element of a list. Eliminate it by
declaring a curried cons function and applying map.

Very optional question
Make sure that you complete Question 8.1.1 before reading this exercise! Don’t worry if you can’t finish
it, but do give it a try sometime – it shows you the real power of functional programming.

Pointfree (or tacit) programming is a style of writing functional programs by composing and combining
smaller functions instead of defining a function by giving its value at every point (argument). In
practice, point-free functions do not mention all of their arguments before the = so the expression
after the = will be a function of the hidden arguments. The basic example is simplifying a function
that calls another function on its argument:

let firstElem xs = List.hd xs
> val firstElem : 'a list -> 'a = <fun>

The value of the function firstElem on each of its points (arguments) xs is the head of xs. The
property of function extensionality states that two functions are equal if their values are equal at every
point. That is, with the definition above, firstElem has exactly the same behaviour as List.hd
and it can therefore be simply defined as a value that equals List.hd. The types do not change, as
firstElem simply inherits the type of List.hd.

let firstElem = List.hd
> val firstElem : 'a list -> 'a = <fun>

Similarly, pointfree style can be combined with partial application to create specialised functions
from more general ones. A special case of this are the auxiliary functions we define for tail recursion:
to get a function of the required type we need to specify the initial value of the accumulator in the
auxiliary function. The most idiomatic way of doing this would be with partial application (as long as
the accumulator is the first argument):

let rec sum_aux acc = function
| [] -> acc
| x::xs -> sum_aux (acc + x) xs

F O U N D AT I O N S O F CO M P U T E R S C I E N C E E X E R C I S E S

> val sum_aux : int -> int list -> int = <fun>
let sum = sum_aux 0
> val sum : int list -> int = <fun>

That is, the sum function is equal to sum_auxwhen partially applied to 0. Note that we do not mention
the list argument on either side, just like we didn’t always mention the list argument of insort on
Page 67.

Before you move on, I would recommend that you go through these and similar examples to make
sure you understand how partial application and pointfree programming follows from currying. Feel
free to write some notes about this.

The functions in Question 8.1.1 are all utilities for combining and transforming smaller functions. For
example, co g f is the composition of two functions f and g, mathematically defined as

(g ◦ f)(x) = g(f (x))

There is no built-in composition operator in OCaml, but to simplify writing pointfree code, it’s worth
defining it ourselves as an infix operator (so instead of co g f we can write g << f).

let (<<) g f x = g (f x)
> val (<<) : ('b -> 'c) -> ('a -> 'b) -> 'a -> 'c = <fun>

Composition is one of the fundamental ways of building larger functions out of smaller ones, the crux
of functional programming. Notice that using composition brings the function application to the “top
level” instead of nested in several levels of parentheses, which means it plays well with pointfree
style programming.

let last xs = List.hd (List.rev xs)
let last xs = (List.hd << List.rev) xs
let last = List.hd << List.rev

That is, getting the last element of a list is the same as reversing it first and then getting the head
element. (Remember, this is not an e�cient implementation of this function!)

Your task will be to transform the functions given below into pointfree style. You may (and should!)
use the combinators from 8.1.1, various list functionals and list processing functions from lectures
and exercises such as map and sum. You may also want to remove pattern matching if it becomes
redundant due to your definition of choice, or rewrite the function entirely. Basically, make it as
simple and as elegant as possible – all of the functions can be made into concise almost-one-liners.

1. Apply the function twice (you can leave the f argument).

let applyTwice f x = f (f x)

Remove the first and last elements of a list.

https://www.cl.cam.ac.uk/teaching/2324/FoundsCS/focs-202324-v1.5.pdf#page=67

F O U N D AT I O N S O F CO M P U T E R S C I E N C E E X E R C I S E S

let peel xs = List.rev (List.tl (List.rev (List.tl xs)))

As a side-note, you can use List.(...) to open the List module locally in the parentheses
to avoid having to write List. in front of every list function:

let peel xs = List.(rev (tl (rev (tl xs))))

2. Count the number of vowels in a sentence represented as a list of strings. The following
declarations can be used freely, no need to transform them.

let vowels = ['a'; 'e'; 'i'; 'o'; 'u']
let strToCharList s = List.init (String.length s) (String.get s)
let rec sum = function | [] -> 0 | x::xs -> x + sum xs

The functions isVowel, getVowels and countVowels can be combined into one short ex-
pression – try transforming them individually first, then write a single function that does the
same thing as countVowels.

let isVowel ch = List.mem ch vowels

let rec getVowels = function
| [] -> []
| x::xs -> if isVowel x then x :: getVowels xs

else getVowels xs

let rec countVowels = function
| [] -> 0
| w::ws -> List.length (getVowels (strToCharList w)) +

countVowels ws

3. Quite contrived, but also quite neat. In this case you can keep the x argument, but change the
function so that x only appears once in the body!

let calc x = [x; x +. 1.0; 2.0 *. x; x *. x; x /. 2.0;
Float.pow 2.0 x; Float.sin x; Float.cosh x]

9. Sequences and laziness
9.1. Conceptual questions

1. Consider the list function concat, which concatenates a list of lists to form a single list. Can it
be generalised to concatenate a sequence of sequences? What can go wrong?

F O U N D AT I O N S O F CO M P U T E R S C I E N C E E X E R C I S E S

let rec concat = function
| [] -> []
| l::ls -> l @ concat ls

2. Why are lazy lists (sequences) useful and why are they not “natively” supported by OCaml? How
do we simulate lazy lists in OCaml and why does that not have the issues you described above?

9.2. Exercises
3. Code an analogue of map for sequences.

4. A lazy binary tree is either empty or is a branch containing a label and two lazy binary trees,
possibly to infinite depth. Present an OCaml datatype to represent lazy binary trees, along with
a function that accepts a lazy binary tree and produces a lazy list that contains all of the tree’s
labels. The order of the elements in the lazy list does not matter, as long as it contains all
potential tree nodes.

9.3. Optional questions
5. Code a function to make change using lazy lists, delivering the sequence of all possible ways

of making change. Using sequences allows us to compute solutions one at a time when there
exists an astronomical number. Represent lists of coins using ordinary lists. (Hint: to benefit
from laziness you may need to pass around the sequence of alternative solutions as a function
of type unit -> (int list) seq.)

6. Code the lazy list whose elements are all ordinary lists of zeroes and ones, namely [], [0],
[1], [0;0], [0;1], [1;0], [1;1], [0;0;0],

7. (Continuing the previous exercise.) A palindrome is a list that equals its own reverse. Code the
lazy list whose elements are all palindromes of 0s and 1s, namely [], [0], [1], [0;0],
[0;0;0], [0;1;0], [1;1], [1;0;1], [1;1;1], [0;0;0;0], ... You can use the list
reversal function List.rev.

8. With some exceptions (such as appending or concatenation), we can adapt many common list
operations to work on lazy lists. In addition, lazy lists can be used to generate infinite sequences
without the risk of nontermination. This exercise explores some interesting examples using the
seq type.

a) Define the analogues of filter and zipWith for sequences. The zipWith list functional
is similar to zip but it applies a binary function to the pair it constructs. For example,
zipWith (+) [1;2;3;4] [5;6;7;8] = [6;8;10;12] where (+) is the function ver-
sion of the + operator.

val filterS : ('a -> bool) -> 'a seq -> 'a seq = <fun>
val zipWithS : ('a -> 'b -> 'c) -> 'a seq -> 'b seq -> 'c seq

= <fun>

F O U N D AT I O N S O F CO M P U T E R S C I E N C E E X E R C I S E S

b) Consider the following two definitions. What do they represent and how do they work?

let s = let rec s_aux (Cons (x, xf)) =
Cons (x * x, fun () -> s_aux (xf()))

in s_aux (from 0)

let rec f = Cons (0, fun () ->
Cons (1, fun () -> zipWithS (+) f (tail f)))

c) Define the lazy list sieve : int seq that uses the Sieve of Eratosthenes to calculate the
infinite sequence of prime integers. Hint: Define an auxiliary function sieve_aux such
that sieve = sieve_aux (from 2). You may want to use filterS for the “sieving”.

10. Queues and search strategies
10.1. Conceptual questions

1. Suppose that we have an implementation of queues, based on binary trees, such that each
operation takes logarithmic time in the worst case. Outline the advantages and drawbacks of
such an implementation compared with one presented in the notes.

2. The traditional way to implement queues uses a fixed-length array. Two indices into the array
indicate the start and end of the queue, which wraps around from the end of the array to the
start. How appropriate is such a data structure for implementing breadth-first search?

3. Why is iterative deepening inappropriate if b ≈ 1, where b is the branching factor? What search
strategy would make more sense in this case?

4. An interesting variation on the data structures seen in the lectures is a deque, or double-ended
queue 1. A deque supports e�cient addition and removal of elements on both ends (either its
front or back). Suggest a suitable implementation of deques, justifying your decision.

10.2. Exercises
5. Mathematical sets can be treated as an abstract data type for an unordered collection of unique

elements. One approach we may take is to represent a set as an ordered list without duplicates:
{5, 3, 8, 1, 18, 9 } would become the OCaml list [1;3;5;8;9;18]. Code the set operations of
membership test, subset test, union and intersection using this ordered-list representation.
Remember that you can assume the ordering invariant for the inputs (and thereby make your
functions more e�cient), and your output should maintain this invariant.

10.3. Optional questions
6. Implement deques as an abstract data type in OCaml (including a type declaration and suitable

operations). Estimate the amortised complexity of your solution.
1Deque is usually pronounced "deck", which is convenient because a deck of cards is a good example of a double-ended

queue – computer scientists are often way too clever with naming things.

F O U N D AT I O N S O F CO M P U T E R S C I E N C E E X E R C I S E S

11. Elements of procedural programming
11.1. Conceptual questions

1. What is the e�ect of while (C1; B) do C2 done? Where would such a formulation be useful?

11.2. Exercises
2. Comment, with examples, on the di�erences between an int ref list and an int list ref.

How would you convert between the two? Hint: (!) : 'a ref -> 'a is a function.

3. Write a version of the e�cient power function (Page 10) using while instead of recursion.

4. Write a function to exchange the values of two references, xr and yr.

5. Arrays of multiple dimensions are represented in OCaml by arrays of arrays. Write functions
to (a) create an n× n identity matrix, given n, and (b) to transpose an m× n matrix. Identity
matrices have the following form:











1 0 · · · 0
0 1 · · · 0
...

...
0 0 · · · 1











https://www.cl.cam.ac.uk/teaching/2324/FoundsCS/focs-202324-v1.5.pdf#page=10

	Introduction to programming
	Conceptual questions
	Exercises
	Optional questions

	Recursion and efficiency
	Conceptual questions
	Exercises
	Optional questions

	Lists
	Conceptual questions
	Exercises
	Optional questions

	More on lists
	Conceptual questions
	Exercises
	Optional questions

	Sorting
	Conceptual questions
	Exercises
	Optional questions

	Datatypes and trees
	Conceptual questions
	Exercises
	Optional questions

	Dictionaries and functional arrays
	Conceptual questions
	Exercises
	Optional questions

	Functions as values
	Conceptual questions
	Exercises
	Optional questions

	Sequences and laziness
	Conceptual questions
	Exercises
	Optional questions

	Queues and search strategies
	Conceptual questions
	Exercises
	Optional questions

	Elements of procedural programming
	Conceptual questions
	Exercises

