
Foundations of Computer Science
Supervision 4 – Solutions

9. Sequences and laziness
9.1. Conceptual questions

1. Consider the list function concat, which concatenates a list of lists to form a single list. Can it
be generalised to concatenate a sequence of sequences? What can go wrong?

let rec concat = function
| [] -> []
| l::ls -> l @ concat ls

There are two problems that may arise with the obvious implementation below. If any of
the sequences is infinite, the concatenation will never proceed past this sequence. There
is no problem if there are an infinite number of nonempty but finite sequences, as they
will be diligently consumed and streamed out one by one in an infinite lazy sequence. An
error case however is an infinite sequence of Nils, which will trigger the second pattern
repeatedly and lead to nontermination (without a stack overflow, as the body is a tail call).

let rec concat = function
| Nil -> Nil
| Cons (Nil, yf) -> concat (yf ())
| Cons (Cons (x, xf), yf) -> Cons (x, fun () ->

concat (Cons (xf (), yf)))

The first problem can be solved by a generalised “interleave” function that looks at the
heads of every list one-by-one, so it will never get stuck on an infinite list. However, this
would not work for an infinite sequence of finite lists, as the second elements of the
sub-sequences will never be reached.

2. Why are lazy lists (sequences) useful and why are they not “natively” supported by OCaml? How
do we simulate lazy lists in OCaml and why does that not have the issues you described above?

Lazy lists are lists where the tail is evaluated lazily: it is not touched if the tail elements are
not required, and can even be infinite. OCaml does not support lazy lists due to its eager
evaluation strategy: it always evaluates the tail of the list and keeps all the elements in
memory, even if we only need the first few elements. We simulate lazy lists using sequences,
which have a tail function instead of the tail: the tail function is a value so it’s not evaluated
by default, but we can force evaluation by applying it to () (the only inhabitent of the type
unit) and get the tail sequence (of which only the head is available). This trick enables us
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to put the tail behind a “wall”, and only look at it (evaluate it) if we need to.

9.2. Exercises
3. Code an analogue of map for sequences.

As before, the aim of the mapping is to lift a function f : 'a -> 'b to sequences: map_seq
f : 'a seq -> 'b seq. The function is very similar in structure to the list version of map,

though we have to do some extra work to handle the tail function.

let rec map_seq f = function
| Nil -> Nil
| Cons (x, xf) -> Cons (f x, fun () -> map_seq f (xf()))

4. A lazy binary tree is either empty or is a branch containing a label and two lazy binary trees,
possibly to infinite depth. Present an OCaml datatype to represent lazy binary trees, along with
a function that accepts a lazy binary tree and produces a lazy list that contains all of the tree’s
labels. The order of the elements in the lazy list does not matter, as long as it contains all
potential tree nodes.

The datatype for lazy binary trees combines the structure of normal binary trees with the
delayed evaluation trick of sequences: instead of subtrees, we have subtree functions.

type 'a ltree =
Lf | Br of 'a * (unit -> 'a ltree) * (unit -> 'a ltree)

The flattening function resembles inorder tree traversal, in that we flatten the (lazy) subtrees
and combine them with the root. However, given that the subtrees may be infinite, we
cannot use stream concatenation; instead, we use the interleave function to ensure
that both subtrees get involved. The order of the elements will be somewhat unusual, but
we were not required to adhere to any specific ordering.

let rec flatten = function
| Lf -> Nil
| Br (n, ltf, rtf) -> Cons (n, fun () ->

interleave (flatten (ltf())) (flatten (rtf())))

9.3. Optional questions
5. Code a function to make change using lazy lists, delivering the sequence of all possible ways

of making change. Using sequences allows us to compute solutions one at a time when there
exists an astronomical number. Represent lists of coins using ordinary lists. (Hint: to benefit
from laziness you may need to pass around the sequence of alternative solutions as a function
of type unit -> (int list) seq.)



F O U N D AT I O N S O F CO M P U T E R S C I E N C E S U P E R V I S I O N 4 – S O LU T I O N S

The main di�erence between the list and sequence implementation is that map and append
need to be replaced with sequence-specific variations. One simple way is to use an auxiliary
function which performs the map and append at the same time, but mapping only over
the first sequence, and taking the second sequence as a function, thereby delaying the
evaluation.

let rec mapapp f s yf = match s with
| Nil -> yf ()
| Cons (x, xf) -> Cons (f x, fun () -> mapapp f (xf()) yf)

let rec change till amt = match till, amt with
| _, 0 -> Cons ([], fun () -> Nil)
| [], _ -> Nil
| c::till, amt ->

if amt < c then change till amt
else mapapp (cons c) (change (c::till) (amt-c))

(fun () -> change till amt)

6. Code the lazy list whose elements are all ordinary lists of zeroes and ones, namely [], [0],
[1], [0;0], [0;1], [1;0], [1;1], [0;0;0], ....

The idea is that given a list of length n, we create two new lists of length n+1 by attaching
either 0 or 1. Starting with [], we get [0] and [1], then doing the same on these two gives
us [0;0], [0;1], [1;0] and [1;1], which are all possible two-element lists. Continuing
the same for each generation will give us a complete list of all possible lists of 0 and 1 (or
binary numbers).

The following function encapsulates this idea: given an initial list xs, it returns the (infinite)
sequence starting with the given list, then the interleaved sequences of of the recursive calls
on 0::xs and 1::xs. We need the interleave function because each of the recursive
calls returns an infinite sequence.

let rec binaryLists xs =
Cons (xs, fun () -> interleave (binaryLists (0::xs))

(binaryLists (1::xs)))
let allBinaryLists = binaryLists []

7. (Continuing the previous exercise.) A palindrome is a list that equals its own reverse. Code the
lazy list whose elements are all palindromes of 0s and 1s, namely [], [0], [1], [0;0],
[0;0;0], [0;1;0], [1;1], [1;0;1], [1;1;1], [0;0;0;0], ... You can use the list
reversal function List.rev.
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One simple, but rather ine�cient solution is to filter the result of the previous exercise,
allBinaryLists, removing every non-palindrome list. Of course, the longer the list, the
“rarer” the palindromes, so the number of lists skipped increases exponentially. Instead,
we can generate the palindromes from allBinaryLists in the following way: given a list
xs, we can create the palindromes xs @ rev xs, xs @ (0 :: rev xs) and xs @ (1 ::
rev xs). That is, every binary list gives rise to three unique palindromes: one of even

length and two of odd length, with either a 0 or a 1 in the middle. The following function
accomplishes this, given an initial nonempty sequence:

let rec genPalindromes (Cons(x, xf)) =
Cons (x @ List.rev x,

fun () -> Cons (x @ (0 :: List.rev x),
fun () -> Cons (x @ (1 :: List.rev x),
fun () -> genPalindromes (xf()))))

let allBinaryPalindromes = genPalindromes allBinaryLists

8. With some exceptions (such as appending or concatenation), we can adapt many common list
operations to work on lazy lists. In addition, lazy lists can be used to generate infinite sequences
without the risk of nontermination. This exercise explores some interesting examples using the
seq type.

a) Define the analogues of filter and zipWith for sequences. The zipWith list functional
is similar to zip but it applies a binary function to the pair it constructs. For example,
zipWith (+) [1;2;3;4] [5;6;7;8] = [6;8;10;12] where (+) is the function ver-
sion of the + operator.

val filterS : ('a -> bool) -> 'a seq -> 'a seq = <fun>
val zipWithS : ('a -> 'b -> 'c) -> 'a seq -> 'b seq -> 'c seq

= <fun>

Straightforward translation of the list operations to sequences.

let rec filterS p = function
| Nil -> Nil
| Cons (x, xf) ->

if p x then Cons (x, fun () -> filterS p (xf()))
else filterS p (xf())

let rec zipWithS opr xs ys = match xs, ys with
| Nil, _ -> Nil
| _, Nil -> Nil
| (Cons (x, xf)), (Cons (y, yf)) ->
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Cons (opr x y, fun () -> zipWithS opr (xf()) (yf()))

b) Consider the following two definitions. What do they represent and how do they work?

let s = let rec s_aux (Cons (x, xf)) =
Cons (x * x, fun () -> s_aux (xf()))

in s_aux (from 0)

let rec f = Cons (0, fun () ->
Cons (1, fun () -> zipWithS (+) f (tail f)))

Both of these are infinite sequences generated from some initial value. The first
one takes a sequence and returns a sequence of squared elements; when called on
from 0, it gives the infinite sequence of square numbers. Note that the same can
be achieved by using map_seq, applying the squaring function to every element of
from 0.

The second is more interesting, as it does not start from an initial value since it’s
not even a function: f is a recursively defined value. This is quite unusual, but the
technique arises naturally when dealing with lazy infinite data structures, where the
sub-structure is some modified version of the whole structure. The sequence starts
o� with 0 and 1, then we perform pairwise addition (with zipWithS (+)) on the
sequence itself, and its tail. Hence, the third value will be 0 + 1 = 1, the fourth will be
1 + 1 = 2, then 1 + 2 = 3, 2 + 3 = 5, 3 + 5 = 8 and so on, giving us the Fibonacci
sequence. This definition exploits the property that pairwise adding the elements of
the Fibonacci sequence with itself shifted by one, we also get the elements of the
Fibonacci sequence:

0, 1, 1, 2, 3, 5, 8, 13
+ 0, 1, 1, 2, 3, 5, 8
= 1, 2, 3, 5, 8, 13, 21

The value f uses this property as a way to generate the elements of the sequence by
initialising the first two elements, then performing pairwise additions. Even though
the sequence is referencing itself as it is being constructed, laziness means that we
only ask for elements that have already been created, so there is no inconsistency.
This almost-one-liner is often used to show o� the power of lazy computation.

c) Define the lazy list sieve : int seq that uses the Sieve of Eratosthenes to calculate the
infinite sequence of prime integers. Hint: Define an auxiliary function sieve_aux such
that sieve = sieve_aux (from 2). You may want to use filterS for the “sieving”.



F O U N D AT I O N S O F CO M P U T E R S C I E N C E S U P E R V I S I O N 4 – S O LU T I O N S

In previous examples, the infinite stream was generated from some existing stream
(e.g. square numbers), or the stream itself (Fibonacci sequence). Prime numbers are
di�erent in that they cannot be generated from a simple stream or defined recursively:
they are irregular and there is no known algorithm for finding the k-th prime number.
The best we can do is filtering – this is exactly what the Sieve of Eratosthenes does.

The inner function sieve_aux does most of the work. It takes an initial input stream,
and returns a stream starting with the head of the input, but continuing by the
recursively constructed tail filtered by removing everything that is divisible by the
head. That is, we add the first element to the list of primes, and cross out everything
divisible by this prime. This would of course only work if the first element is a prime,
so we initialise the list with the sequence starting from 2.

let sieve =
let rec sieve_aux (Cons (p, pf)) = Cons (p, fun () ->

sieve_aux (filterS (fun x -> x mod p <> 0) (pf())))
in sieve_aux (from 2)

It is worth noting that this is far from an e�cient method of generating the prime
numbers, but it is quite amazing how it’s all done using a few simple lines of code.

10. Queues and search strategies
10.1. Conceptual questions

1. Suppose that we have an implementation of queues, based on binary trees, such that each
operation takes logarithmic time in the worst case. Outline the advantages and drawbacks of
such an implementation compared with one presented in the notes.

Binary tree operations usually take logarithmic time due to the branching structure of trees.
This is a constant cost: although each operation may take more or less time (depending,
for example, on the location of the element that we are searching for), the worst-case
time complexity for the operations is logarithmic. In contrast, the list implementation of
queues is constant amortised cost: we have to perform linear-time normalisation in the
worst case, but most of the time the constant-time consing and unconsing operations are
su�cient. The di�erence is that the second implementation has two modes of operation,
one of which is more expensive but occurs rarely; the first implementation has just normal
binary tree lookup which might take longer or shorter depending not on the structure of
the collection, but on the element we are looking for. The binary tree version is therefore
logarithmic, while the list implementation is constant amortised: while we might need to
perform expensive normalisation, this “evens out” over the lifetime of the collection. That
said, if some performance guarantees are required (e.g. in real-time critical systems), it
may be worthwhile to give up constant amortised cost for a more consistent runtime that
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doesn’t spike at hard-to-predict intervals.

2. The traditional way to implement queues uses a fixed-length array. Two indices into the array
indicate the start and end of the queue, which wraps around from the end of the array to the
start. How appropriate is such a data structure for implementing breadth-first search?

While arrays allow for constant-time access to any element (including the front and end of
the queue), its length is fixed: we would have a limit on what size tree we can traverse, or
need to initialise a very large array that might end up being unnecessary for our purposes.

3. Why is iterative deepening inappropriate if b ≈ 1, where b is the branching factor? What search
strategy would make more sense in this case?

A tree with branching factor b ≈ 1 is almost like a list with one element at every depth.
Given that iterative deepening is appropriate when the number of nodes at each level
increases exponentially, it would be wasteful for a linear structure such as a list. Normal
depth-first or breadth-first search is suitable.

4. An interesting variation on the data structures seen in the lectures is a deque, or double-ended
queue 1. A deque supports e�cient addition and removal of elements on both ends (either its
front or back). Suggest a suitable implementation of deques, justifying your decision.

Double-ended queues must support enqueuing and dequeuing operations on both ends,
so we need to find an implementation that gives constant-time access to both the “front”
and “back” of the deque. Conveniently, our double list implementation for queues would
work nicely for deques as well, as we can cons to and uncons from both halves of the list.
The only di�erence is the normalisation algorithm: as we can get elements from both ends
of the deque, we cannot just move every element to the first list and leave the second one
empty. The alternative is to evenly split the normalised list between the two halves, so we
always have elements we can access in constant time on both ends.

10.2. Exercises
5. Mathematical sets can be treated as an abstract data type for an unordered collection of unique

elements. One approach we may take is to represent a set as an ordered list without duplicates:
{5, 3, 8, 1, 18, 9 } would become the OCaml list [1;3;5;8;9;18]. Code the set operations of
membership test, subset test, union and intersection using this ordered-list representation.
Remember that you can assume the ordering invariant for the inputs (and thereby make your
functions more e�cient), and your output should maintain this invariant.

The membership test is similar to the usual member function for lists, except we can “short-
circuit” if the first element is less than the head of the list. Given that the lists are ordered
(here we assume an increasing order), the head of the list must be its smallest element;
if we ask if an element smaller than the smallest element is in the list, we can say “no”

1Deque is usually pronounced "deck", which is convenient because a deck of cards is a good example of a double-ended
queue – computer scientists are often way too clever with naming things.
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right away. Hence we can add the y < x constraint as a conjunct to the recursive call, so
we stop as soon as an element is found or if the element cannot be in the list.

let rec member x = function
| [] -> false
| y::ys -> (x = y) || (y < x && member x ys)

An empty set is a subset of anything, and nothing is a subset of the empty set. The general
case checks the heads of the lists and makes the appropriate recursive call. We make use of
the ordering constraint by comparing the heads: if x < y, the first list contains an element
that cannot be in the second list, so we can short-circuit.

let rec subset xs ys = match xs, ys with
| [], _ -> true
| _ , [] -> false
| x::xs, y::ys -> (y <= x) && if x = y then subset xs ys

else subset (x::xs) ys

Set union on ordered lists eliminates all the membership tests, as we can determine the
elements contained by the union by simple comparison. The same can be done with set
intersection as well.

let rec union xs ys = match xs, ys with
| [], ys -> ys
| xs, [] -> xs
| x::xs, y::ys ->

if x < y then x :: union xs (y::ys)
else if x > y then y :: union (x::xs) ys
else x :: union xs ys

let rec inter xs ys = match xs, ys with
| x::xs, y::ys ->

if x < y then inter xs (y::ys)
else if x > y then inter (x::xs) ys
else x :: inter xs ys

| _, _ -> []

10.3. Optional questions
6. Implement deques as an abstract data type in OCaml (including a type declaration and suitable

operations). Estimate the amortised complexity of your solution.
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As explained before, we can use the same double list implementation we gave for queues,
with similar operations. The only function that needs changing is normalisation, as we
want to evenly divide the elements between the two lists when either of the lists becomes
empty. To accomplish this, we need to find the halfway point of the list where we can
perform a split, which is a linear operation. One slight e�ciency improvement we can make
is a common trick when dealing with sized collections: instead of recalculating the length
every time we need it, we keep track of it in the data structure itself as a separate field.
Then, a length operation simply returns this known value, and we don’t need to find the
length of the list in the normalisation function. There might be some extra bookkeeping
required in the definitions below, but the point of abstract data types is that the actual
implementation is hidden from view.

We make use of the helper function split which splits a list into two at a given index.
Here we give a definition from scratch, but the result should have the property that split
l i = (take l i, drop l i). In norm we have two cases which need to be handled:

when either the first or second list is empty. In those cases, we split the other list in
half, and reverse one half based on which end of the deque we are looking at. The other
operations are all straightforward, though we need to increment or decrement the length
if we enqueue or dequeue and element.

let rec split xs n = match xs, n with
| [], _ -> ([], [])
| x::xs, 0 -> ([], x::xs)
| x::xs, i -> match split xs (i-1) with

(ys, zs) -> (x::ys, zs)

type 'a deque = D of 'a list * 'a list * int

let norm = function
| D ([], tls, l) -> (match split tls (l / 2) with

(h1, h2) -> D (List.rev h2, h1, l))
| D (hds, [], l) -> (match split hds (l / 2) with

(h1, h2) -> D (h1, List.rev h2, l))
| d -> d

let dnull = function (D ([],[],0)) -> true | _ -> false
let enqFront (D (hds, tls, l), x) = norm (D (x::hds, tls, l+1))
let enqEnd (D (hds, tls, l), x) = norm (D (hds, x::tls, l+1))
let deqFront (D (x::hds, tls, l)) = norm (D (hds, tls, l-1))
let deqEnd (D (hds, x::tls, l)) = norm (D (hds, tls, l-1))
let length (D (_, _, l)) = l
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11. Elements of procedural programming
11.1. Conceptual questions

1. What is the e�ect of while (C1; B) do C2 done? Where would such a formulation be useful?

The sequencing operator ; executes the commands left-to-right, and ignores the return
value of all statements apart from the last one, which becomes the return value of the whole
sequencing. Hence C1 is executed on every iteration, but its value is replaced by the value
of the Boolean condition B. The body of the while loop, C2, is executed on every iteration
as well. In addition, C1 is executed before the Boolean condition, so its side-e�ects are
performed even if B evaluates to false right away. Therefore the expression is equivalent
to C1; while B do (C2; C1) done. This formulation would be useful whenever we want
to repeat instructions at least once; for example, making C2 the empty instruction would
result in a construct equivalent to a do-while loop, which checks the Boolean condition
after the first iteration.

11.2. Exercises
2. Comment, with examples, on the di�erences between an int ref list and an int list ref.

How would you convert between the two? Hint: (!) : 'a ref -> 'a is a function.

The first one is a list of references, e.g. [ref 1, ref 2, ref 3] : int ref list. Each
reference can be individually assigned, but the list itself is immutable. The second one is a
reference to a list, e.g. ref [1,2,3] : int list ref. We cannot change the elements
individually, but we can change the whole list.

Converting from a list of references to a reference to a list would involve dereferencing the
list elements, and creating a reference to the resulting list. Since (!) : 'a ref -> 'a is
just a function, we can map it over elements of a list:

let reflistToListref rs = ref (List.map (!) rs)

The other way is similar, except we dereference first and map ref after:

let listrefToReflist lr = List.map ref (!lr)

Of course, working with state and mutability means that the behaviour of these functions
may not always be predictable.

3. Write a version of the e�cient power function (Page 10) using while instead of recursion.

Instead of tail-recursion, we use imperative iteration with a while-loop. We initialise an
accumulator reference accr and references for our two inputs to allow mutability. What
was an argument to the recursive call before becomes a reference assignment.

let power x n =

https://www.cl.cam.ac.uk/teaching/2324/FoundsCS/focs-202324-v1.5.pdf#page=10
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let accr = ref 1.0
and xr = ref x
and nr = ref n
in while !nr <> 1 do

if !nr mod 2 = 0
then (xr := !xr *. !xr; nr := !nr / 2)
else (accr := !accr *. !xr;

xr := !xr *. !xr; nr := !nr / 2)
done;
!accr *. !xr

4. Write a function to exchange the values of two references, xr and yr.

While there are some type-specific hacks to perform the exchange “in-place”, we generally
need a temporary reference to avoid overwriting a value that we need to use later.

let swap xr yr = let v = !xr in xr := !yr; yr := v

5. Arrays of multiple dimensions are represented in OCaml by arrays of arrays. Write functions
to (a) create an n× n identity matrix, given n, and (b) to transpose an m× n matrix. Identity
matrices have the following form:











1 0 · · · 0
0 1 · · · 0
...

... . . . ...
0 0 · · · 1











In both cases we make use of the Array.init : int -> (int -> 'a) -> 'a array
function, which initialises an array with values calculated from the array index using

a higher-order function argument. Matrices can be created by nesting these functions
together, and using the current matrix index in the function argument of the inner init
function. For example, an element of an identity matrix is 1 if its row and column index is
equal, and 0 otherwise.

let ident n = Array.init n (fun i ->
Array.init n (fun j ->

if i = j then 1 else 0))

There are several approaches to transpose a matrix: we can use references to perform
the transposition in-place, but Array.init allows us to use a more elegant, functional
solution. Matrices are represented as an array of rows, so getting a single row of the matrix
is just indexing into the outer matrix. Selecting an individual column c is harder, since we
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need to return the cth element of each of the rows. However, if we have a function that can
do that, we can transpose the matrix by selecting the columns of the matrix and turning
them into rows (by simply putting them in an array).

The helper function below uses init to return a given column of the input matrix. Given
an n×m matrix, it returns an array of size n (which is just the length of the outer array),
with its elements being the cth element of the individual rows. “Looping” through the rows
is done using init and get.

let getCol c arr = Array.(init (length arr)
(fun i -> get (get arr i) c))

The actual transpose function now uses getCol to create a new array of columns. The
size of the outer array is the length of any of the inner arrays, and its r th element is just
the r th column of the input matrix.

let transpose arr = Array.(init (length (get arr 0))
(fun r -> getCol r arr))
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