
Foundations of Computer Science
Supervision 3 – Solutions

7. Dictionaries and functional arrays
7.1. Conceptual questions

1. Draw the binary search tree that arises from successively inserting the following pairs into the
empty tree: (Alice, 6), (Tobias, 2), (Gerald, 8), (Lucy, 9). Then repeat this task
using the order (Gerald, 8), (Alice, 6), (Lucy, 9), (Tobias, 2). Why are results
di�erent? How could we avoid the issue encountered in the first case?

1. (Alice, 6) 2. (Gerard, 8)
/ \ / \

Lf (Tobias, 2) (Alice, 6) (Lucy, 9)
/ \ / \ / \

(Gerald, 8) Lf Lf Lf Lf (Tobias, 2)
/ \ / \

Lf (Lucy, 9) Lf Lf
/ \

Lf Lf

The di�erence in the two is the order in which we add the elements to the tree. The binary
ordering means that the first element added will always be the root, and if that element is
the first element in the ordering, its left subtree will be empty. In the extreme case, we may
end up with a non-branching binary tree which is e�ectively a list. Ideally we want the root
of the tree to be the middle element of the ordering so the subtrees are balanced, but of
course we can’t know that a priori. This is exactly the same issue we had with choosing a
pivot for quicksorting, so we can use similar heuristics: for example, choosing the median
of 3/5/7 randomly chosen elements.

7.2. Exercises
2. Code an insertion function for binary search trees (with keys of string type, and values of

polymorphic 'a type). It should resemble the existing update function except that it should
raise the exception Collision if the item to be inserted is already present. Now try modifying
your function so that Collision returns the value previously stored in the dictionary at the
given key. What problems do you encounter and why?

The insertion function is very similar to the update function.

exception Collision
let rec insert t (b: string) y = match t with

F O U N D AT I O N S O F CO M P U T E R S C I E N C E S U P E R V I S I O N 3 – S O LU T I O N S

| Lf -> Br ((b,y), Lf, Lf)
| Br ((a,x), lt, rt) ->

if b < a then Br ((a,x), insert lt b y, rt)
else if a < b then Br ((a,x), lt, insert rt b y)
else raise Collision

The problem with returning the previous value in the exception is that exceptions cannot
be polymorphic: we would need to fix the type of the argument to Collision, which
means the type of the values in the tree will have to match this type. We would give up the
polymorphic nature of the insert function, which is undesirable.

3. Describe and code an algorithm for deleting an entry from a binary search tree. Comment on
the suitability of your approach. There are two reasonable methods – one is simple, the other
is e�cient but a bit more tricky.

Locating the required node uses the same sequence of comparisons and recursive calls as
the insertion and update operations. However, the di�culty with removing a node from
a tree is that it might break up our tree: the two (possibly nonempty) subtrees would
need to be reattached while retaining the ordering constraint of binary trees. Consider
deleting the root of the tree (which is ultimately what any deletion will be like, once all
the recursive calls reach the required element): we are left with a left and right subtree,
where all elements in lt are less than all elements in rt. One way to combine the two
trees is to attach rt as the right subtree of the rightmost lowermost element of lt: by the
ordering condition, that element will be the greatest node in the left subtree, so all the
greater elements in rt must be its right subtree.

let rec join t1 t2 = match t1 with
| Lf -> t2
| Br (n, lt, rt) -> Br (n, lt, join rt t2)

let rec delete t x = match t with
| Lf -> raise (Missing x)
| Br ((n,v), lt, rt) ->

if x < n then Br ((n,v), delete lt x, rt)
else if n < x then Br ((n,v), lt, delete rt x)
else join lt rt

While this approach is quite simple, it’s drawback is that it modifies the shape of the tree
quite significantly: it makes the tree deep and unbalanced, which hinders performance.

The trick comes from our previous observation that the rightmost lowermost element of
the left subtree is the greatest element in that subtree. This means that it must come
immediately before the root element in the ordering of elements (indeed, inorder traversal

F O U N D AT I O N S O F CO M P U T E R S C I E N C E S U P E R V I S I O N 3 – S O LU T I O N S

would put these one after the other). Therefore, if a node has two nonempty subtrees,
we can delete the node (while retaining the ordering) by replacing it with the “previous”
element, the rightmost lowermost node of the left subtree. To find (and remove) this
element in a tree, we can use the function below. It returns two results (the maximum
element, and the tree without the maximum element) at the same time, but we can also
define two independent functions to find the maximum and remove it from the tree (though
this would require two traversals). When the right subtree is empty, the maximal element
is the root node; otherwise we recurse into the right subtree.

let rec remove_max = function
| Br (x, lt, Lf) -> (x, lt)
| Br (x, lt, rt) ->

let (m,t) = remove_max rt in (m, Br (x, lt, t))

We use the function above to locate and remove the maximal element in a tree, which we
have to use when deleting a node with two nonempty subtrees. If a node has one subtree,
it can be replaced by the root of its subtree (this handles the case when both subtrees are
leaves, since then we replace the node with a leaf). This suggests the three patterns for
our deletion function:

let rec delete t x = match t with
| Lf -> raise (Missing x)
| Br ((n,v), Lf, rt) -> if n = x then rt

else if n < x then Br ((n,v), Lf, delete rt x)
else raise (Missing x)

| Br ((n,v), lt, Lf) -> if n = x then lt
else if x < n then Br ((n,v), delete lt x, Lf)

else raise (Missing x)
| Br ((n,v), lt, rt) -> if n = x then

let (m, lt2) = remove_max lt in Br (m, lt2, rt)
else if n < x then Br ((n,v), lt, delete rt x)

else Br ((n,v), delete lt x, rt)

The final case uses the remove_max function above, getting the last element of the left
subtree and putting it in place of the removed node. This approach, while a bit more
complicated, keeps the tree balanced and makes the minimum number of changes to its
structure (moving at most one node).

4. Write a function to remove the first element from a functional array. All the other elements are
to have their subscripts reduced by one.

F O U N D AT I O N S O F CO M P U T E R S C I E N C E S U P E R V I S I O N 3 – S O LU T I O N S

The solution exploits the indexing convention of functional arrays: the first index is the
root, all even indices are in the left subtree and all odd indices are in the right. If all the
indices in the subtrees are divided by two (rounding down), we get back the same indexing
convention. The parity separation means that if all indices are decreased by one, every
odd-indexed element will be even-indexed, and vice versa. Thus, after deleting the first
element and shifting everything back by an index, the whole right subtree (of odd-indexed
elements) moves to the left unchanged, while the original left subtree moves to the right
with a recursive call removing its root element (which becomes the root of the whole array,
at position 1).

let top = function
| Lf -> raise Subscript
| Br (v,_,_) -> v

let rec pop = function
| Lf -> raise Subscript
| Br (_, Lf, Lf) -> Lf
| Br (_, lt, rt) -> Br (top lt, rt, pop lt)

7.3. Optional questions
5. Show that the functions preorder, inorder and postorder all require O(n2) time in the

worst case, where n is the size of the tree.

The worst case for each case is when the tree is left-linear, i.e. when the right subtree
of every node is a leaf. In that case, every append will have the form xs @ [], with xs
increasing linearly for every level. As appending is linear in the length of the first argument,
we get the linear sum n+ (n− 1) + · · ·1 which makes the complexity quadratic.

6. Show that the functions preord, inord and postord take linear time in the size of the tree.

At every step, the functions examine one tree element and perform a constant-time consing
operation. Hence the runtime is 1+ 1+ ·+ 1= n so the algorithm is linear.

8. Functions as values
8.1. Conceptual questions

1. Consider the following polymorphic functions. Infer the types of sw, co and cr (without asking
OCaml) and the give the definitions of id, ap and ucr based on their types. What do these
functions do and what are their uses?

let sw f x y = f y x
let co g f x = g (f x)
let cr f a b = f (a,b)

F O U N D AT I O N S O F CO M P U T E R S C I E N C E S U P E R V I S I O N 3 – S O LU T I O N S

val id : 'a -> 'a = <fun>
val ap : ('a -> 'b) -> 'a -> 'b = <fun>
val ucr : ('a -> 'b -> 'c) -> 'a * 'b -> 'c = <fun>

The functions introduced in this exercise are all higher-order function combinators: func-
tions that take functions as arguments and return functions as results, thereby giving a
flexible way of manipulating functions to fit our needs. They are all polymorphic functions,
so we know that their implementations will be either unique or very limited in form (in
this case the definitions are all fully determined by the type).

There are two ways to read the types of these functions, which are equivalent by the right-
associativity of the function type constructor ->. We can either read them as functions of
type ('a -> 'b -> 'c) -> 'a * 'b -> 'c that take a function (e.g. 'a -> 'b -> 'c)
and various arguments (e.g. 'a * 'b), then returning the result by applying the function
to the arguments in some way (resulting in a 'c). This is how we view the implementation
of the functions. However, a more high-level way is to simply see these functions as
combinators which modify functions in some way: ucr : ('a -> 'b -> 'c) -> ('a *
'b -> 'c) takes a function f of type ('a -> 'b -> 'c) and returns a modified function
of type ('a * 'b -> 'c). Therefore, the partial application ucr f is simply a function of
type ('a * 'b -> 'c).

Swap Swapping the order of two arguments of a function

let sw f x y = f y x
val sw : ('a -> 'b -> 'c) -> ('b -> 'a -> 'c) = <fun>

Partial application is a very powerful feature of functional languages, and should be
used as much as possible – it encourages abstraction and code reuse. However, one
apparent limitation is that the order in which we can partially apply arguments is fixed:
we cannot (by default) supply the second argument to create a function of the first
argument. The trick is a higher-order function which swaps the order of the arguments:
it takes a two-argument function and returns the same function, but with the order
of the arguments swapped. This is reflected in the definition and the type as well.
For example, if we want to partially apply the list consing function cons : 'a ->
'a list -> 'a list to the tail of a list instead, and get a function which adds an
element to the beginning, we use sw cons : 'a list -> 'a -> 'a list which has
the tail as the first argument and the head as second. Then, sw cons [2,3,4] : 'a
-> 'a list is a function that takes a head and conses it to [2,3,4].

Composition Applying two functions one after another

let co g f x = g (f x)
val co : ('b -> 'c) -> ('a -> 'b) -> ('a -> 'c) = <fun>

F O U N D AT I O N S O F CO M P U T E R S C I E N C E S U P E R V I S I O N 3 – S O LU T I O N S

Writing functional programs is about composing smaller functions into bigger ones. The
actual operation of composition makes this concrete: it takes two functions and applies
them one after the other. This is like the definition of the mathematical operation

(g ◦ f)(x) = g(f (x))

The main benefit of this operation is point-free style programming which is covered
in the last part of this exercise sheet. In brief, we can define functions by glueing
together smaller functions, instead of explicitly defining the function on its arguments
(or points). For example, we can define the (ine�cient) last function (the head of the
reverse of a list) as val last = co head rev.

Currying Converting from a tuple-argument function to a curried function

let cr f a b = f (a,b)
val cr : ('a * 'b -> 'c) -> ('a -> 'b -> 'c) = <fun>

As discussed above, currying is the operation of transforming an “old-style” two-
argument function (taking a pair) into a “new-style” two-argument function (taking the
first and second arguments one after the other). This operation can be made explicit
with the function cr, which takes a non-curried function and returns a curried function.
This is useful if we want to partially apply a non-curried function f : 'a * 'b ->
'c: as we know, we have to supply both arguments in the pair, but if we curry the
function, we can partially apply it to just the first argument: cr f : 'a -> 'b -> 'c.
For example, the fst : 'a * 'b -> 'a function returns the first element of a tuple.
If we curry the function to get cr fst : 'a -> 'b -> 'a, we simply get the constant
function that returns its first argument and ignores the second: let const5 = cr
fst 5 : 'a -> int.

Identity Do-nothing function

let id x = x
val id : 'a -> 'a = <fun>

While not strictly a function combinator (and not obviously a useful function), the
identity function nevertheless often comes in handy as the “do nothing” operation.
One important property is that id is the only polymorphic function with the type
'a -> 'a, which also means that given any type T, we know that there must be at
least one function of type T -> T, namely id (this is true even if T is the so-called
empty type, which has no inhabitants). The identity function also acts in a predictable
way when given as an argument to higher-order function; in fact, one of the correctness
properties of the map function for any “container” type (such as lists, sequences, trees,

F O U N D AT I O N S O F CO M P U T E R S C I E N C E S U P E R V I S I O N 3 – S O LU T I O N S

etc.) is that mapping the identity over a value must not change the value: map id l =
l. Surprisingly enough, the id function and function composition form the basis for

a recent, very abstract field of mathematics called category theory, which generalises
diverse areas such as logic, algebra and set theory, and has surprisingly close ties with
the theory of programming.

Application Applying the first argument to the second

let ap f x = f x
val ap : ('a -> 'b) -> 'a -> 'b = <fun>

The function application function is quite strange: all it does is take a function and
an argument, and applies the function to the argument. But actually, an analogous
function in the Haskell programming language (written as f $ x instead of ap f x)
is probably the most often used construct in any piece of code. The reason for this
is that in realistic programs we often end up calling functions on very complicated
expression arguments, but given that the precedence of normal OCaml function ap-
plication (denoted simply by juxtaposition, as in f x) is very high, we have to surround
the argument with parentheses. As the nesting increases, the parentheses become
quite obnoxious and the code can be di�cult to read. Instead, we use the ap or $
function, which has very low precedence – this means that its two arguments get
evaluated before the function application happens. So instead of f (...) we write
f $..., thereby avoiding one set of parentheses. Similarly, instead of writing nes-
ted parentheses like f (g (...)), we can do f (g $...) or f $ g $... or even
co f g $ Another interesting use for ap is reverse function application with
sw ap : 'a -> ('a -> 'b) -> 'b. Partially applying this function to an x gives us
a function that takes another function and applies it to x. A slightly contrived example
of this is given at the end of this exercise sheet.

Uncurrying Converting a curried function to a tuple-argument function

let ucr f (a,b) = f a b
val ucr : ('a -> 'b -> 'c) -> ('a * 'b -> 'c) = <fun>

Sometimes we have a curried function, but we actually want to uncurry it to get a
function from pairs. The function ucr can be used to accomplish this. For example,
given a function f : 'a -> 'b -> 'c and a list of pairs l : ('a * 'b) list, we
cannot map f over l because map f has type 'a list -> ('b -> 'c) list. How-
ever, ucr f : 'a * 'b -> 'c, so map (ucr f) : ('a * 'b) list -> 'c list is
just what we need.

F O U N D AT I O N S O F CO M P U T E R S C I E N C E S U P E R V I S I O N 3 – S O LU T I O N S

8.2. Exercises
2. Ordered types are OCaml types T with a comparison operator < : T -> T -> bool such that

a < b returns true if a : T is “smaller than” b : T. Many OCaml types – such as string
and int – can be ordered and compared with the < operator in the obvious way. We often
want to combine two such orderings to get comparison operators for compound types such as
string * int. Two ways of doing this are pairwise ordering, which compares elements of the
pair individually:

(x , y)<p (x
′, y ′) ⇐⇒ x < x ′ ∧ y < y ′

and lexicographic ordering, which orders by the first elements, and if they are equal, by the
second element (for an arbitrary number of elements we get the familiar word ordering used in
dictionaries):

(x , y)<` (x
′, y ′) ⇐⇒ x < x ′ ∨ (x = x ′ ∧ y < y ′)

a) Write OCaml functions implementing a comparison operator for pairwise and lexicographic
ordering for the type of pairs string * int.

Straightforward translation of the specification into OCaml code.

let pairwise_s_i (x1,y1) (x2,y2) =
(x1 < x2) && (y1 < y2)

let lex_s_i (x1,y1) (x2,y2) =
(x1 < x2) || (x1 = x2 && (y1 < y2))

b) Hardcoding the comparison operator < makes these functions a bit inflexible: for example,
we cannot order a list of pairs in increasing order on the first element, but decreasing
order on the second. We can make the functions more abstract by taking the comparison
operators as higher-order arguments, and using them instead of <. Write two higher-order
OCaml functions to perform pairwise and lexicographic comparison of values of type
'a * 'b, where the comparison operators for types 'a and 'b are passed as arguments.

We are looking for higher-order functions to combine two ordering relations 'a * 'a
-> bool and 'b * 'b -> bool into a lexicographic ordering on pairs ('a * 'b) *
('a * 'b) -> bool. As usual, this is just a direct translation of the mathematical

definition into OCaml. Note how instead of x1 <= x2 and y1 <= y2, we are using the
parameterised ordering operations that are given to lex as arguments.

let pairwise o1 o2 (x1,y1) (x2,y2) =
(o1 x1 x2) && (o2 y1 y2)

let lex o1 o2 (x1,y1) (x2,y2) =
(o1 x1 x2) || (x1 = x2 && (o2 y1 y2))

val lex : ('a * 'a -> bool) -> ('b * 'c -> bool)
-> (('a * 'b) * ('a * 'c) -> bool)

F O U N D AT I O N S O F CO M P U T E R S C I E N C E S U P E R V I S I O N 3 – S O LU T I O N S

The inferred type of lex is interesting for two reasons. The inferred type of the first
argument is 'a in both cases, as the values need to be compared for equality. Second,
it lets the two arguments of the second ordering to be di�erent – we would usually
not need this in an ordering, but we can see that the definition is more general.

c) Explain how you would use your functions in the previous part, and the higher-order sorting
function insort, to sort a list of type (string * (int * string)) list according to
the following specification:

(s1, (m, s2))<
�

s′1, (n, s′2)
�

⇐⇒ s1 ≤ s′1 ∧
�

m> n ∨ (m= n ∧ s2 < s′2)
�

This is a nice example of the higher-order programming style common in the functional
paradigm: we build more complex functions by combining several smaller, simpler
operations with higher-order function combinators. Notice how the list argument is
not even mentioned – see more details in the last part of this exercise sheet. The
type annotation is optional – without it, OCaml would infer a more general, (weakly)
polymorphic type for the function.

let weird_sort : (string * (int * string)) list
-> (string * (int * string)) list

= insort (pairwise (<=) (lex (>) (<)))

3. Without using (or redefining!) map, write a function map2 such that map2 f is equivalent to
the composition map (map f). Make use of nested pattern matching and let-declarations if
needed.

One solution uses nested pattern-matching and local bindings: in the most general case,
we call the function recursively on the tail of the outside list and the tail of the head
element, pattern-match on the result, then add back the head with f applied to it.

let rec map2 f = function
| [] -> []
| []::xss -> [] :: map2 f xss
| (x::xs)::xss ->

let (fs::fss) = map2 f (xs::xss)
in (f x :: fs) :: fss

4. The built-in type option, shown below, can be viewed as a type of lists having at most one
element. (It is typically used as an alternative to exceptions.) Declare a function that works
analogously to map but on option types rather than lists.

type 'a option = None | Some of 'a

F O U N D AT I O N S O F CO M P U T E R S C I E N C E S U P E R V I S I O N 3 – S O LU T I O N S

Mapping is a very general operation that can be specialised to container types such as
lists, trees, option types, etc. It can be seen as a way to “lift” an operation over a container
structure: instead of applying a function to a list, we lift it over the list structure and apply
it to the things contained in the list. In the same vein, we can lift a function f : 'a -> 'b
over the option structure of a value v : 'a option to get a value map_opt f v : 'b
option. If the option contains a value, we apply the function to the value and repackage
it into Some. If not, there is nothing to apply the function to, so we just return None again.
Note that in the None case, the input has type 'a option, while the returned None has
type 'b option – as None is a nullary constructor, its type variable is not fixed.

let map_opt f = function
| None -> None
| Some x -> Some (f x)

8.3. Optional questions
5. Recall the making change function of Lecture 4:

let rec change till amt = match till, amt with
| _, 0 -> [[]]
| [], _ -> []
| c::till, amt ->

if amt < c then change till amt else
let rec allc = function

| [] -> []
| (cs::css) -> (c::cs) :: allc css

in allc (change (c::till) (amt-c))
@ change till amt

The function allc applies the function “cons a c” to every element of a list. Eliminate it by
declaring a curried cons function and applying map.

We replace allc with map cons, where cons is a curried version of ::.

let cons x xs = x::xs
let rec change till amt = match till, amt with
| _, 0 -> [[]]
| [], _ -> []
| c::till, amt ->

if amt < c then change till amt
else map (cons c) (change (c::till) (amt-c))

@ change till amt

https://www.cl.cam.ac.uk/teaching/2324/FoundsCS/focs-202324-v1.5.pdf#page=34

F O U N D AT I O N S O F CO M P U T E R S C I E N C E S U P E R V I S I O N 3 – S O LU T I O N S

Instead of declaring a new named function cons, we could have used an anonymous
function map (fun cs -> c::cs).

Very optional question
Make sure that you complete Question 8.1.1 before reading this exercise! Don’t worry if you can’t finish
it, but do give it a try sometime – it shows you the real power of functional programming.

Pointfree (or tacit) programming is a style of writing functional programs by composing and combining
smaller functions instead of defining a function by giving its value at every point (argument). In
practice, point-free functions do not mention all of their arguments before the = so the expression
after the = will be a function of the hidden arguments. The basic example is simplifying a function
that calls another function on its argument:

let firstElem xs = List.hd xs
> val firstElem : 'a list -> 'a = <fun>

The value of the function firstElem on each of its points (arguments) xs is the head of xs. The
property of function extensionality states that two functions are equal if their values are equal at every
point. That is, with the definition above, firstElem has exactly the same behaviour as List.hd
and it can therefore be simply defined as a value that equals List.hd. The types do not change, as
firstElem simply inherits the type of List.hd.

let firstElem = List.hd
> val firstElem : 'a list -> 'a = <fun>

Similarly, pointfree style can be combined with partial application to create specialised functions
from more general ones. A special case of this are the auxiliary functions we define for tail recursion:
to get a function of the required type we need to specify the initial value of the accumulator in the
auxiliary function. The most idiomatic way of doing this would be with partial application (as long as
the accumulator is the first argument):

let rec sum_aux acc = function
| [] -> acc
| x::xs -> sum_aux (acc + x) xs

> val sum_aux : int -> int list -> int = <fun>
let sum = sum_aux 0
> val sum : int list -> int = <fun>

That is, the sum function is equal to sum_auxwhen partially applied to 0. Note that we do not mention
the list argument on either side, just like we didn’t always mention the list argument of insort on
Page 67.

Before you move on, I would recommend that you go through these and similar examples to make
sure you understand how partial application and pointfree programming follows from currying. Feel

https://www.cl.cam.ac.uk/teaching/2324/FoundsCS/focs-202324-v1.5.pdf#page=67

F O U N D AT I O N S O F CO M P U T E R S C I E N C E S U P E R V I S I O N 3 – S O LU T I O N S

free to write some notes about this.

The functions in Question 8.1.1 are all utilities for combining and transforming smaller functions. For
example, co g f is the composition of two functions f and g, mathematically defined as

(g ◦ f)(x) = g(f (x))

There is no built-in composition operator in OCaml, but to simplify writing pointfree code, it’s worth
defining it ourselves as an infix operator (so instead of co g f we can write g << f).

let (<<) g f x = g (f x)
> val (<<) : ('b -> 'c) -> ('a -> 'b) -> 'a -> 'c = <fun>

Composition is one of the fundamental ways of building larger functions out of smaller ones, the crux
of functional programming. Notice that using composition brings the function application to the “top
level” instead of nested in several levels of parentheses, which means it plays well with pointfree
style programming.

let last xs = List.hd (List.rev xs)
let last xs = (List.hd << List.rev) xs
let last = List.hd << List.rev

That is, getting the last element of a list is the same as reversing it first and then getting the head
element. (Remember, this is not an e�cient implementation of this function!)

Your task will be to transform the functions given below into pointfree style. You may (and should!)
use the combinators from 8.1.1, various list functionals and list processing functions from lectures
and exercises such as map and sum. You may also want to remove pattern matching if it becomes
redundant due to your definition of choice, or rewrite the function entirely. Basically, make it as
simple and as elegant as possible – all of the functions can be made into concise almost-one-liners.

1. Apply the function twice (you can leave the f argument).

let applyTwice f x = f (f x)

Remove the first and last elements of a list.

let peel xs = List.rev (List.tl (List.rev (List.tl xs)))

As a side-note, you can use List.(...) to open the List module locally in the parentheses
to avoid having to write List. in front of every list function:

let peel xs = List.(rev (tl (rev (tl xs))))

F O U N D AT I O N S O F CO M P U T E R S C I E N C E S U P E R V I S I O N 3 – S O LU T I O N S

The function applyTwice is a simple example of function composition: applying a function
twice is just applying it after itself, which is compositionally expressed as f << f. That is,

let applyTwice f = f << f

The peel function alternates List.tl and List.rev twice. Again, using composition,
this can be rewritten as (List.rev << List.tl) ((List.rev << List.tl) xs). But
this is just applying the composite function List.tl << List.rev twice, so in fact

let peel = applyTwice List.(tl << rev)

2. Count the number of vowels in a sentence represented as a list of strings. The following
declarations can be used freely, no need to transform them.

let vowels = ['a'; 'e'; 'i'; 'o'; 'u']
let strToCharList s = List.init (String.length s) (String.get s)
let rec sum = function | [] -> 0 | x::xs -> x + sum xs

The functions isVowel, getVowels and countVowels can be combined into one short ex-
pression – try transforming them individually first, then write a single function that does the
same thing as countVowels.

let isVowel ch = List.mem ch vowels

let rec getVowels = function
| [] -> []
| x::xs -> if isVowel x then x :: getVowels xs

else getVowels xs

let rec countVowels = function
| [] -> 0
| w::ws -> List.length (getVowels (strToCharList w)) +

countVowels ws

To simplify isVowel, we would like to partially apply List.mem (the list membership
function) to vowels, but it is the second argument. This is exactly what the function
argument swapping function sw can be used for:

let isVowel = sw List.mem vowels

getVowels is a simple instance of list filtering:

F O U N D AT I O N S O F CO M P U T E R S C I E N C E S U P E R V I S I O N 3 – S O LU T I O N S

let getVowels = List.filter isVowel

In the function countVowelswe apply three functions to the head element of the list, then
add the number to the recursively computed sum of vowels in the tail. We can achieve the
same result by mapping the function List.length << getVowels << strToCharList
over the list of words to get a list of vowel counts, then adding together the elements of
that list with sum. To make the function pointfree, we compose the mapping and summing
with <<.

let countVowels =
sum << List.map (List.length << getVowels << strToCharList)

Given that the first two functions are quite simple, we can inline them to make one closed
expression (using the List.(...) syntax to open the List module):

let countVowels = List.(
sum << map (length << (filter (sw mem vowels))

<< strToCharList))

We can see how even a fairly complicated expression can be implemented in a purely
compositional, pointfree style. That said, this is not necessarily what you should do!

3. Quite contrived, but also quite neat. In this case you can keep the x argument, but change the
function so that x only appears once in the body!

let calc x = [x; x +. 1.0; 2.0 *. x; x *. x; x /. 2.0;
Float.pow 2.0 x; Float.sin x; Float.cosh x]

Pointfree style is often a balancing act between conciseness and readability: forcing a
function to be pointfree may often result in a messy, unreadable expression, where the
“plumbing” needed to get the implicit arguments to their right place hides the actual
workings of the function. The calc function can also be made pointfree, but it would be
rather complicated. However, we can simplify (?) it to only refer to the argument once in
the RHS expression.

Every expression in the list is some float-valued function of x. Given that functions are
values, we can abstract out the argument x and create a list of functions of type (float ->
float) list. To do this, we can create helper functions at the top level, use anonymous

functions, or the function combinators and existing OCaml operators. For demonstration
purposes, I will use the latter two techniques (though they are clearly rather undesirable
here, the function itself is kinda silly anyway).

[id; (+.) 1.0; (*.) 2.0; (fun y -> y *. y); sw (/.) 2.0;

F O U N D AT I O N S O F CO M P U T E R S C I E N C E S U P E R V I S I O N 3 – S O LU T I O N S

Float.pow 2.0; Float.sin; Float.cosh]

For example, instead of x : float, we write id : float -> float and instead of x /.
2.0 : float, we swap the arguments of the division operator (treated as a function by
wrapping it in parentheses) and partially apply it to the denominator 2.0 to get sw (/.)
2.0 : float -> float (other languages, such as Haskell, o�er shorthand notation for
partially applied operators, so this would simply be written as (/ 2.0)). Note the extra
space needed in (*.), otherwise OCaml interprets (* as a comment.

Now the question is: how do we apply all these functions to a single argument? We es-
sentially want to turn a list of functions into a list of floats, using some operation of type
(float -> float) list -> float list. One function that can have this type is map f
for some f : (float -> float) -> float: that is, by applying f to every function in
the list, we get the list of values resulting from applying every function in the list to x. The
mapped function f therefore takes a function (an element of the list) and applies it to x, so
f = fun g -> g x. Can we write this without using anonymous functions? Indeed we can:
this is where the strange “function application function” ap comes in handy. Remember that
ap : ('a -> 'b) -> 'a -> 'b, and swapping the arguments around we get the reverse
function application function sw ap : 'a -> ('a -> 'b) -> 'b. Partially applying this
to x fixes the type to sw ap x : (float -> float) -> float, which is exactly the type
we need. In short, sw ap x is a function that takes another function and applies it to x.
Thus our final answer is

let calc x =
List.map (sw ap x) [id; (+.) 1.0; (*.) 2.0;

(fun y -> y *. y); sw (/.) 2.0;
Float.pow 2.0; Float.sin; Float.cosh]

	Dictionaries and functional arrays
	Conceptual questions
	Exercises
	Optional questions

	Functions as values
	Conceptual questions
	Exercises
	Optional questions

