
Foundations of Computer Science
Supervision 2 – Solutions

4. More on lists
4.1. Conceptual questions

1. Suppose we use a variant of the list zipping function which takes the two list arguments as a pair
and has the type zip : 'a list * 'b list -> ('a * 'b) list. This way, the functions zip
and unzip seem like they are each other’s opposites. Mathematically, two functions f : A→ B
and g : B→ A are inverses of each other if for all arguments a ∈ A, g( f (a)) = a, and if for all
arguments b ∈ B, f (g(b)) = b. If only the first condition holds, we call g the left inverse of f ,
and if only the second condition holds, we call g the right inverse of f . Is unzip the inverse,
right inverse or left inverse of zip? Justify your answer.

The two functions would be inverses of each other if their composition was the identity in
both directions, for any input. However, we can exhibit counterexamples for this: if two
lists being zipped have di�erent lengths, the “surplus” elements are dropped, so we would
not get back the two full lists after unzipping:

unzip (zip ([1;2;3;4], [5;6])) = unzip [(1,5); (2,6)]
= ([1;2], [5;6])

Hence we know that unzip cannot be the left inverse of zip, and hence it cannot be its
full inverse. However, as unzipping cannot drop any elements (the resulting two lists must
have the same length), we do have zip (unzip l) = l for all inputs, e.g.

zip (unzip [(1,5); (2,6); (3,7)]) = zip ([1;2;3], [5;6;7])
= [(1,5); (2,6); (3,7)]

This can be formally proved using structural induction on lists (see later), but should be
clear by looking at the definition of the two functions. Therefore we can conclude that
unzip is the right inverse of zip.

2. We know nothing about the functions f and g other than their polymorphic types:

> val f : 'a * 'b -> 'b * 'a = <fun>
> val g : 'a -> 'a list = <fun>

Suppose that f (1, true) and g 0 are evaluated and return their results. State, with reasons,
what you think the resulting values will be, and how the functions can be defined. Can any of
the definitions be changed if termination wasn’t a requirements?
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The crux of this exercise is that polymorphism provides flexibility for the user but serious
constraints for the implementer. If the user should be able to call a function on an input of
any type (e.g. the reverse function on a list of any type), the writer of the function cannot
assume anything about the input, i.e. they cannot call any non-polymorphic function on
those arguments. This severly limits the ways in which a polymorphic function can be
implemented, but this is a good and desired thing – the stricter our type system, the more
bugs it can catch and avoid.

In this example, the function f has a tuple argument and a tuple result, with the polymorphic
types flipped around. As we cannot assume anything about the type of the arguments, we
cannot modify them in any way – the only thing we can do is swap them around in a pair.

let f (a,b) = (b,a)

This is similar to how the only possible function of the type 'a -> 'a is the identity
function: it cannot examine or modify an argument of polymorphic type, so the only thing
it can do is return it unchanged.

Polymorphism is not just (or necessarily) about constraining the number of ways a function
can be implemented, but the way in which an implementation can be given. For example,
the second function g can have an infinite number of implementations, but they are all
quite boring: we can either just return the empty list (which would actually have the more
general type 'a -> 'b list), or the singleton list containing the input once, or the two-
element containing two copies of the input, and so on. Any return value will simply be a
list of repetitions of the input – again, because we don’t know anything about the type of
the argument, so we cannot modify it in any way.

There is actually another way to implement g, but even though the definition typechecks, it
would not return anything: an infinite list of repetitions of the input, defined as a recursive
function

let rec g x = x :: g x

Just as loop in the previous exercise sheet, the typechecker is more “lenient” if a function
doesn’t terminate, as there is no harm that can be done even if the return value of the
function is absurd – it never returns anyway.

4.2. Exercises
3. a) Use the member function on Page 31 to implement the function inter that calculates the

intersection of two OCaml lists – that is, inter xs ys returns the list of elements that
occur both in xs and ys. You may assume xs and ys have no repeated elements.

https://www.cl.cam.ac.uk/teaching/2324/FoundsCS/focs-202324-v1.5.pdf#page=31


F O U N D AT I O N S O F CO M P U T E R S C I E N C E S U P E R V I S I O N 2 – S O LU T I O N S

We recurse through one list and use the membership test to check whether the
element is in the other list as well.

let rec inter xs ys = match xs with
| [] -> []
| x::xs -> if member x ys then x::inter xs ys

else inter xs ys

b) Similarly, code a function to implement set union. It should avoid introducing repetitions,
for example the union of the lists [4;7;1] and [6;4;7] should be [1;6;4;7] (though
the order should not matter).

We can write a function that resembles inter from Slide 404, except the base case
returns the nonempty list, and if the head added to the union if it does not appear in
the second list:

let rec union xs ys = match xs with
| [] -> ys
| x::xs -> if member x ys then union xs ys

else x::union xs ys

Returning the second argument if the first list is empty somewhat resembles how
we return the accumulator in the base case of tail-recursive functions. In fact, we
can write union tail-recursively, but treating the second list as the accumulator – we
simply move the new elements from the first list to the second:

let rec union xs ys = match xs with
| [] -> ys
| x::xs -> union xs (if member x ys then ys else x::ys)

4. Code a function that takes a list of integers and returns two lists, the first consisting of all
nonnegative numbers found in the input and the second consisting of all the negative numbers.
How would you adapt this function so it can be used to implement a sorting algorithm?

The simplest solution is similar to unzip, where we want to pattern-match on the result
of the recursive call. This can be done either with case-expressions (upcoming), or local
bindings. We can avoid the binding by using tail-recursion with two accumulators, but then
we would have the resulting lists in reverse order.

let rec split = function
| [] -> ([], [])
| x::xs -> let (nonneg, neg) = split xs
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in if x < 0 then ( nonneg, x::neg)
else (x::nonneg, neg)

The implementation is very similar to the partition step of quicksort, except it “hardcodes”
the pivot to 0. To make it more general, we should take the pivot as an argument and
perform the comparison on it.

4.3. Optional questions
5. How does this version of zip di�er from the one in the course?

let rec zip xs ys = match xs, ys with
| (x::xs, y::ys) -> (x,y) :: zip (xs,ys)
| ([], []) -> []

Compiling this function gives a “Matches not exhaustive” warning, which explains the
problem with this definition. The two patterns we declare are either for two nonempty lists,
or two empty lists. The function would work fine if the two lists were of the same length
– every recursive call would happen on the two tails of the lists (which also have equal
length) so eventually the lists will become empty simultaneously. However, if one of the
lists is shorter, the recursive call will eventually happen on an empty and a nonempty list –
but we have no patterns which cover this possibility. Instead of dropping the elements of
the nonempty lists (like the normal zip function), we encounter a pattern match exception.

6. What assumptions do the “making change” functions make about the variables till and amt?
What could happen if these assumptions were violated?

Most importantly, the till contains positive coin values in nonincreasing order. Having
duplicate coin values wouldn’t cause issues, but a larger coin value will never be used if it
appears later in the list than a lower coin value. If any of the values is negative or zero, the
function will not terminate – the amount will either increase or not change, but will never
reach zero. If the amt is initially negative, the code terminates with the correct answer that
no solution is possible, but it has to perform the whole algorithm before concluding that.

5. Sorting
5.1. Conceptual questions

1. You are given a long list of integers. Would you rather:

a) Find a single element with linear search or sort the list and use binary search?

Finding the last element is linear in the worst case (the scenario being that it is
the last element), sorting can generally be considered to be O(n log n) (e.g. using
mergesort or quicksort), so for a single element sorting is wasteful.

b) Find a lot of elements with linear search or sort the list and use binary search?
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Finding k elements is k×O(n) = O(kn)≈ O(n2)with linear search, but k×O(log n) =
O(k log n)≈ O(n log n) with binary search. The latter requires a preliminary step of
sorting the list, which can be done in O(n log n) time, but this does not increase the
worst-case complexity of the second method. Hence, if we are planning to look up a
lot of elements in a list (e.g. if it models a database), it is heavily recommended to
sort the list first and then use the much more e�cient binary search.

c) Find all duplicates by pairwise comparison or sort the list and check for adjacent values?

Pairwise comparison performs O(n) comparisons for each element, giving quadratic
complexity. Sorting is O(n log n), and checking for adjacent elements is linear, so
sorting the list first is recommended.

2. Another sorting algorithm (bubble sort) consists of looking at adjacent pairs of elements,
exchanging them if they are out of order and repeating this process until no more exchanges
are possible. Analyse the time complexity of this approach.

The best-case scenario is when the list is already sorted – the algorithm will not do anything
to the list and terminate in linear time (contrast this with more e�cient algorithms, which
may nevertheless try sorting a sorted list – such as quicksort with a naive choice of the
pivot). The worst case is a reverse-sorted list: every pass of the algorithm will bubble
the head of the list up to the very end of the unsorted portion of the list. This takes
n+ (n− 1) + (n− 2) + · · ·+ 1 =

∑n
k=1 k steps, which equals n(n−1)

2 – multiplying this gives
us a quadratic runtime in the worst case.

5.2. Exercises
3. Implement bubble sort in OCaml.

The easiest approach is to split the algorithm into two functions: a single sweep across the
list which performs all possible exchanges, and a recursive sorting function that performs
the sweep until the list is sorted. The former uses nested pattern matching to compare
the first two elements, and the latter checks if the sweeping changed anything – if not, the
sort is complete.

let rec sweep = function
| [] -> []
| [x] -> [x]
| (x1::x2::xs) -> if x1 > x2 then x2::sweep (x1::xs)

else x1::sweep (x2::xs)

let rec bubblesort l = let l' = sweep l
in if l <> l' then bubblesort l' else l
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5.3. Optional questions
4. Another sorting algorithm (selection sort) consists of looking at the elements to be sorted,

identifying and removing a minimal element, which is placed at the head of the result. The tail
is obtained by recursively sorting the remaining elements.

a) State, with justification, the time complexity of this approach.

To find the minimum element in an unsorted list, we cannot do better than checking
the entire list. We need to do this for every element in the unsorted part of the list,
so there will be n+ (n− 1) + (n− 2) + · · ·+ 1 comparisons, which is characteristic of
an O(n2) algorithm.

b) Implement selection sort using OCaml.

This solution uses two mutually recursive functions which call each other (and there-
fore indirectly call themselves recursively). As before, we separate the algorithm
into a selection step and a sorting step that repeatedly performs the selection of
the minimum element. The select function traverses the list argument, moving
all the elements to the third argument (which acts as an accumulator) except the
minimum one – this is determined by keeping track of the “running minimum” in the
min argument and comparing it to the head of the list. When the list is depleted and
the minimum element is found, we mutually recursively sort the rest of the list while
adding the minimum to the front. The outer selection_sort function kicks o� the
process by calling select with the tail and the head as the running minimum.

let rec selection_sort = function
| [] -> []
| x::xs ->
let rec select min ys rest = match ys with

| [] -> min::selection_sort rest
| y::ys -> if y < min then select y ys (min::rest)

else select min ys (y::rest)
in select x xs []

6. Datatypes and trees
6.1. Conceptual questions

1. Examine the following function declaration. What does ftree (1,n) accomplish?

let rec ftree k = function
| 0 -> Lf
| n -> Br(k, ftree (2*k) (n-1), ftree (2*k+1) (n-1))
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The function builds a full binary tree of depth n, i.e. a binary tree that has the maximum
number of elements for a given depth (the equal case for the inequality above arises
for full binary trees). The labels are calculated from some initial root label – when it is
initialised to 1, we get a full binary tree labelled with integers from 1 to 2n − 1.

6.2. Exercises
2. Write an function taking a binary tree labelled with integers and returning their sum.

A simple recursive solution works well here.

let rec sum = function
| Lf -> 0
| Br (x, lt, rt) -> x + sum lt + sum rt

3. Give the declaration of an OCaml datatype for arithmetic expressions that have the following
possible shapes: floats, variables (represented by strings), or expressions of the form

−E or E + E or E × E

Hint: recall how expressions di�er from statements, and how their characteristic structure could
be captured as a data type. It’s a lot simpler than it may seem!

As we saw before, datatypes consist of a list of constructors with arguments. The di�erent
constructors are various alternatives for the shape of the datatype: a list is either empty
or a cons cell, a tree is either a leaf or a branch, a vehicle is either a lorry or a car or a
motorbike, etc. Each alternative can be associated with one or more types given as the
constructor arguments. Hence you can think of every constructor as representing a product
of types (which, in OCaml, is the product type 'a * 'b itself), and a datatype is a disjoint
union/sum of these products as constructors. This is why OCaml-style datatypes are called
algebraic datatypes: they are simply sums of products of types. The type

type ty = A of int * bool | B of string | C

can be thought of as the algebraic type

ty = (int × bool) + string + unit

where OCaml’s | is interpreted as the type-theoretic sum +, the product * is the type-
theoretic product ×, and the nullary constructor simply represents the unit type. Unlike in
OCaml, the constructors do not have explicit names – all we care about is a very simplified
representation of the type. If you are familiar with set theory, you can think of a type as a
set, and the operators + and × as the disjoint union and Cartesian product of sets.

But this notation is a bit confusing in this case. The sum and product mentioned in the
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question are di�erent from the type-theoretic sum and product: the operations in the
question refer to the syntax of the expression language. Where the algebraic view of
datatypes comes in helpful is decoding the “specification” of the type. The question lists
the alternatives for what shape a value of our expr type might take: it should be either a
float, or a variable, or a negation of an expression, or sum of two expressions, or product
of two expressions. From this we know that we will need five alternatives, i.e. five data
constructors. Now to deduce the number and type of arguments to the constructors, we
consider what we need to construct an appropriate value. To get a real expression (in our
syntax), we need an argument of the type real. Similarly, to get a variable expression,
we need a string (as per the question). To get a negated expression, we need an inner
subexpression – as expected, expr is a recursive type. Similarly, to create the sum and
product of two expressions, we need the two subexpressions. Putting everything together,
we have the algebraic type

expr = float + string + expr + (expr × expr) + (expr × expr)

where each term of the sum corresponds to the constructor, and the terms themselves
are the arguments to the individual constructors. In OCaml syntax we can also give the
constructors arbitrary names, so the datatype would look like:

type expr = Float of float
| Var of string
| Neg of expr
| Plus of expr * expr
| Times of expr * expr

4. Continuing the previous exercise, write a function eval : expr -> float that evaluates an
expression. If the expression contains any variables, your function should raise an exception
indicating the variable name.

In the previous question we defined the syntax of our expression language: the formal
grammar that describes the structure of the expressions that we write. However, a value of
type expr is nothing more than a nested hierarchy of the constructors which – on their
own – don’t “do” or mean anything. For example, we know that the term

let e = Plus (Neg (Times (Float 2.0, Float 3.0)), Float 8.0);

represents the mathematical expression −(2× 3) + 8, but e is not equal to the expression
Float 2.0. In fact, if we didn’t have descriptive names for the constructors (which we
can choose arbitrarily), we might not even know what an expression represents. What
we want is to give a meaning to our expression language, which in computer science is
usually called the semantics for a particular grammar or syntax. There are multiple ways
to give a semantics to some syntax (all of which will be covered in the Computer Science
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course), but in our case we want an evaluation function, which reduces the expression to
an irreducible value (this is related to the approach of denotational semantics). Writing
evaluation functions for recursive expression languages is really simple and elegant, as
the implementation closely follows the inductive definition of the expr type.

We begin with declaring an exception for expressions with free variables (so-called open
terms): this is supposed to return the name of the variable, so the exception will have a string
argument. Then, we define the eval : expr -> float function by pattern-matching on
the expression, and essentially translate the constructors to their corresponding mathem-
atical operation – the Neg constructor becomes negation, the Plus becomes the operator
+., etc. These operators work on float values, so we need to convert the subexpressions
of type expr into float – but this is exactly what our eval function does, so we just call
it recursively on the subexpressions. In the end, we get a function which, given any expr
value, converts it into an OCaml arithmetic expression, which then gets evaluated to the
corresponding floating-point number.

exception Variable of string

let rec eval = function
| (Float f) -> f
| (Var v) -> raise (Variable v)
| (Neg e) -> -. (eval e)
| (Plus (e1, e2)) -> eval e1 +. eval e2
| (Times (e1, e2)) -> eval e1 *. eval e2;

Calling eval on the expression e above now correctly evaluates to the float 2.0.

As simple as this looks, it has very deep implications and the technique is used all over
computer science – in fact, OCaml itself can be defined by giving a datatype specifying its
syntax, and an evaluation function which determines the semantics.

6.3. Optional questions
5. Prove the inequality involving the depth and size of a binary tree t from Page 53.

∀ trees t. count(t)≤ 2depth(t) − 1

Hint: One way to do this is with a generalisation of mathematical induction called structural
induction, where you analyse the shape (top-level constructor) of the tree t, and prove the
property for the base case (leaf) and recursive case (branch). You can also try standard math-
ematical induction on some numerical property of the tree, but be careful with that you are
assuming and what you are proving!

The proof is doable via mathematical induction on the height of the tree, but to make it
fully rigorous, you need to be careful with your proof goals and assumptions. The tree may
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not be balanced so in the inductive case (depth(t) = k+ 1) you will only be able to apply
the hypothesis to one of the subtrees (of depth k), but not the other. You can overcome
this by doing strong induction (see the Discrete Maths course), or by proving a stronger
theorem for perfectly balanced binary trees and deriving the above theorem as a corollary.

Instead, we will try a more general proof technique that can be applied to any inductively
defined datatype (in fact, mathematical induction is just structural induction on the type
type nat = zero | succ of nat). To use structural induction to prove a predicate about
every value of some type, we prove it for the base cases of the type, then prove it for the
general cases, assuming that the predicate holds for the data arguments. In this case, the
base case of the tree t is that it is a Lf. Then,

count(Lf) = 0≤ 2depth(Lf) − 1= 20 − 1= 0

For the inductive case, assume that t = Br (v, lt, rt) and the predicate holds for
the two subtrees, i.e.

count(lt)≤ 2depth(lt) − 1 and count(rt)≤ 2depth(rt) − 1

Then, we have

count(Br (v, lt, rt)) = 1+ count(lt) + count(rt)
≤ 1+ (2depth(lt) − 1) + (2depth(rt) − 1)

= 2depth(lt) + 2depth(rt) − 1

where we used the two induction hypotheses to replace the count of the subtrees with the
exponential of their depth. Now, assuming that the left subtree is deeper (without loss of
generality), we have that

2depth(Br (v, lt, rt)) = 21+depth(lt) = 2× 2depth(lt)

Going back to our previous inequality, we have that 2depth(rt) ≤ 2depth(lt), so

2depth(lt) + 2depth(rt) − 1≤ 2× 2depth(lt) − 1< 2× 2depth(lt)

which establishes the required inequality

count(Br (v, lt, rt)≤ 2depth(Br (v, lt, rt)).

6. Give a declaration of the data type day for the days of the week. Comment on the practicality
of such a datatype in a calendar application.

The day datatype is a good example of an enumeration type: we simply give all possible
values of the type, without any constructor arguments. As we have seven days in the week,
we will have seven constructors.

type day = Monday | Tuesday | Wednesday | Thursday
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| Friday | Saturday | Sunday

The benefits of this representation is that it is clear and unambiguous: a function taking a
day needs to handle these seven possibilities and only them. If we represented days with
normal integers, we would need to worry about out-of-bounds numbers, representation
conventions (e.g. is Monday 0 or 1, etc.) and the function types would be less descriptive
(e.g. the function dayFromDate in the next exercise would just have the type int ->
int -> int -> int). However, integers admit arithmetic operations, such as adding or
subtracting days (though we need to check bounds), which would need to be explicitly
defined for our day datatype.

7. Write a function dayFromDate : int -> int -> int -> day which calculates the day of the
week of a date given as integers. For example, dayFromDate 2020 10 13 would evaluate to
Tuesday (or whatever encoding you used in your definition of day above). Hint: Using Zeller’s
Rule might be the easiest approach.

Zeller’s Rule gives a simple arithmetic method of computing the day of the week for a given
date. It converts the day, month, century and year to number, then computes the number
of the day in the week that those numbers correspond to. Using our algebraic datatype
representation, we need to convert this number into a value of type day – this can be done
by pattern-matching or other ways (e.g. indexing into a list of those days).

The algorithm first converts the dates into numbers, following specific rules that make the
arithmetic simpler (e.g. months are shifted, numbering March as 1 and February as 12 – this
way, the leap day is always at the end of the “year”). Finally, these numbers are plugged
into the appropriate expression to get the number of the weekday, which is then converted
to a day. We use the OCaml’s integer division operator to implicitly take the integer part of
the quotients, as described in the algorithm.

let numToDate = function
| 0 -> Sunday | 1 -> Monday
| 2 -> Tuesday | 3 -> Wednesday
| 4 -> Thursday | 5 -> Friday
| 6 -> Saturday

let dayFromDate yr mnth dy =
let c = yr / 100
and d = yr mod 100 - (if mnth < 3 then 1 else 0)
and m = (mnth - 3) mod 12 + 1
and k = dy
in numToDate ((k + ((13 * m - 1) / 5) + d

+ (d / 4) + (c / 4) - 2*c) mod 7)

http://mathforum.org/dr.math/faq/faq.calendar.html

	More on lists
	Conceptual questions
	Exercises
	Optional questions

	Sorting
	Conceptual questions
	Exercises
	Optional questions

	Datatypes and trees
	Conceptual questions
	Exercises
	Optional questions


