
Foundations of Computer Science
Supervision 1 – Solutions

1. Introduction to programming
1.1. Conceptual questions

1. What is the main idea behind abstraction barriers? Why are they useful?

Writing complex programs would be humanly impossible if we had no way of structuring
the code and using abstractions. They let us focus on one particular piece or aspect of the
program, while ignoring the other components: for example, when writing a function, we
only need to worry about the inputs and the return value, not the other things happening in
the program. The abstraction barrier is then a “mental” separation between all the things
that the function has to care about, and everything that it can abstract over. Sometimes
abstraction barriers can be more concrete, such as the access modifiers in object-oriented
languages or module systems like the one found in OCaml.

2. Why is it silly to write an expression of the form if b then true else false? What about
expressions of the form if b then false else true? How about if b then 5 else 5?
(You’d be surprised how many times I have to refer back to this exercise!)

Any if-expression returning a Boolean value can be simplified to a logical expression. The
first case evaluates to true if b is true, and false if b is false – it behaves the same way
as b itself. In the second case, we can get the same behaviour by negating b. In general,
if b1 then true else b2 is the same as b1 || b2, and if b1 then b2 else false
is equivalent to b1 && b2.

In the third case the type of the clauses is an integer, but both clauses have the same value,
so conditional branching is unnecessary – the expression reduces to 5 in either case.

3. Briefly discuss the meaning of the the terms expression, value, command and e�ect using the
following examples:

• true
• 57 + 9
• print_string "Hello world!"
• print_float (8.32 *. 3.3)

Expressions and values are functional concepts; commands (statements) and e�ects are
characteristic of imperative code. Values are irreducible expressions such as numbers and
booleans: 5, true. Expressions are compound structures, usually consisting of subexpres-
sions combined with a top-level operator, like the + in 57 + 9. Statements are executable
instructions, which are usually used for their side e�ects that change the external world. For
example, printing commands print a string on the screen without returning a useful value.

F O U N D AT I O N S O F CO M P U T E R S C I E N C E S U P E R V I S I O N 1 – S O LU T I O N S

The fourth example shows that statements can also contain expressions (but usually not
vice-versa): the arithmetic expression is first evaluated to 27.456, which is then printed
as a string onto the screen by the print statement.

4. Which of these is a valid OCaml expression and why? Assume that you have a variable x declared,
e.g. with let x = 1.

• if x < 6 then x + 3 else x + 8

Valid; the two branches have the same return type, so this is a well-formed expression.

• if x < 6 then x + 3

Invalid: we are only given the then-clause, so the expression cannot reduce if the
Boolean condition is false. This would be allowed in an imperative language: if the
condition doesn’t hold, the statement in the then branch is not executed. Expression-
based languages have no way of “skipping” the evaluation of subexpressions, so both
cases must be handled. OCaml is special in that it does have imperative features and
a one-branch if-statement, so the above would be syntactically valid; however, it
would not type-check, since OCaml expects a statement in the then branch (which
have type unit), rather than an integer expression.

• if x < 6 then x + 3 else "A"

Invalid: the two clauses have a di�erent type. As every OCaml expression has to have
a well-defined type, the type of an if-expression cannot depend on the value of the
condition – whatever the condition is, we must be able to treat the expression in
the same way. Hence the only way to ensure well-typedness is to enforce that both
clauses must have the same type.

• x + (if x < 6 then 3 else 8)

Valid: as if-expressions are just expressions, they can appear anywhere we need an
expression, as long as types match up. As the return type of the inner if-expression
is an integer, the whole thing can be treated as an integer – for example, it can be
added to another integer.

1.2. Exercises
5. One solution to the year 2000 bug mentioned in Lecture 1 involves storing years as two digits,

but interpreting them such that 50 means 1950, 0 means 2000 and 49 means 2049.

a) Comment on the merits and drawbacks of this approach.

Merits: We can retain the same crude, 2-digit representation, and the dates will take
up the same space as before.

Drawbacks: can be ambiguous, di�cult to infer the format, and only defers the
problem by 50 years.

https://www.cl.cam.ac.uk/teaching/2324/FoundsCS/focs-202324-v1.5.pdf#page=6

F O U N D AT I O N S O F CO M P U T E R S C I E N C E S U P E R V I S I O N 1 – S O LU T I O N S

b) Using this date representation, code an OCaml function to compare two years (just like
the <= operator compares integers).

c) Using this date representation, code an OCaml function to add/subtract some given
number of years from another year.

There are two options we can take: either convert to a four-digit year representation,
compare/modify the dates, then convert back, or do the arithmetic on the two-digit
representation directly.

The conversion to and from four-digit years can be done with the following functions:

let two_to_four d =
if 0 <= d && d <= 49 then 2000 + d

else if 50 <= d && d <= 99 then 1900 + d
else -1

let four_to_two d =
if 1950 <= d && d <= 2049 then d mod 100 else -1

Instead of returning -1 in case of an error, it may be preferable to use exceptions or
options. Comparing the two dates amounts to comparing their four-digit representa-
tions:

let leq_dates1 d1 d2 = two_to_four d1 <= two_to_four d2

Modifying dates “temporarily” converts to the four-digit representation.

We can define a general function that adds a positive or negative number to a date,
the specialise it to an add_to_date1 and subtract_from_date1 function. With
our current implementation, any erroneous input will produce the -1 error code, but
we need to check and test this in general.

let modify_date1 d n = four_to_two (two_to_four d + n)
let add_to_date1 d n = modify_date1 d n
let subtract_from_date1 d n = modify_date1 d (-n)

To directly compare and modify two-digit dates, we use the built-in mod function:

let leq_dates2 d1 d2 = (d1 + 50) mod 100 <= (d2 + 50) mod 100
let modify_date2 d n = let d2 = (d + 50) mod 100 + n

in if 0 <= d2 && d2 <= 99
then (d2 + 50) mod 100
else -1

F O U N D AT I O N S O F CO M P U T E R S C I E N C E S U P E R V I S I O N 1 – S O LU T I O N S

let add_to_date2 d n = modify_date2 d n
let subtract_from_date2 d n = modify_date2 d (-n)

As both versions perform simple arithmetic operations, there is not a huge di�erence
between their e�ciency. The first approach might be more readable, but requires
defining two auxiliary functions (which may nevertheless be useful in the rest of the
program).

1.3. Optional questions
6. Because computer arithmetic is based on binary numbers, simple decimals such as 0.1 often

cannot be represented exactly. Write a function that performs the computation

x + x + · · ·+ x
︸ ︷︷ ︸

n

where x has type float. (It is essential to use repeated addition rather than multiplication!)
See what happens when you call the function with n= 1000000 and x = 0.1.

The function below performs the multiplication by repeated addition. Evaluating
mult_by_add (1000000, 0.1, 0.0) gives 100000.000001332883 (on my system).

let rec mult_by_add n x acc = match n with
| 0 -> acc
| n -> mult_by_add (n - 1) x (acc +. x)

7. Another example of the inaccuracy of floating-point arithmetic takes the golden ratio ϕ =
1.618 . . . as its starting point:

γ0 =
1+
p

5
2

and γn+1 =
1

γn − 1

In theory, it is easy to prove that γn = · · · = γ1 = γ0 for all n > 0. Code this computation in
OCaml and report the value of γ50. Hint: in OCaml,

p
5 is expressed as sqrt 5.0.

The code below defines phi and the iterated function. The computed value starts diverging
significantly around γ35, but eventually converges to about -0.6181 around γ48.

let phi = (1.0 +. sqrt 5.0) /. 2.0

let rec iterg n x = match n with
| 0 -> x
| n -> iterg (n-1) (1.0 /. (x -. 1.0))

let gamma n = iterg n phi

F O U N D AT I O N S O F CO M P U T E R S C I E N C E S U P E R V I S I O N 1 – S O LU T I O N S

2. Recursion and e�ciency
2.1. Conceptual questions

1. Use a recurrence relation to find an upper bound for the recurrence given by T(1) = 1 and
T (n) = 2T (n/2) + 1. Prove that your solution is an upper bound for all n using mathematical
induction.

Given a recursive algorithm, we estimate its runtime (or space complexity) with recurrence
relations: an abstract function T (n) for the amount of “time” needed to process an input
of size n. As the algorithm is recursive, the time it takes to process an input is usually
dependent on the time it takes to process a smaller input – therefore the function T will
be recursive itself.

In this case, we are given the recurrences

T (1) = 1 and T (n) = 2T (n/2) + 1.

To determine the asymptotic time complexity of the algorithm, we need a closed-form,
non-recursive expression for its runtime – this is what solving the recurrence relation
will give us. One method for doing this is via substitution: looking at the recursive case
for the definition of T , and repeatedly substituting the definition itself for the recursive
subexpression until we notice some pattern.

T (n) = 2T (n/2) + 1

= 2(2T (n/4) + 1) + 1 = 22T (n/4) + 21 + 1

= 22(2T (n/23) + 1) + 21 + 20 = 23T (n/23) + 22 + 21 + 20

Now we can conjecture a general formula after k expansions:

T (n) = 2kT (n/2k) +
k−1
∑

i=0

2i = 2kT (n/2k) + (2k − 1)

where we used the standard identity for the sum of the geometric series. Now, to achieve
a closed-form expression, we need to find a k which makes T(n/2k) a constant value:
looking back to our definition of T , we can get a constant value T (n/2k) = 1 if n/2k = 1.
This holds for k = log2 n, which we can substitute into our formula above to get

T (n) = 2log2 nT (n/2log2 n) + (2log2 n − 1) = nT (1) + (n− 1) = 2n− 1

That is, the closed-form solution to our recurrence relation is T(n) = 2n − 1, i.e. the
algorithm has linear time complexity O(n).

To prove that our conjecture above was correct, we use proof by mathematical induction.
The base case is easy: T(1) = 2× 1− 1 = 1. The inductive case assumes the induction
hypothesis T(n) = 2n− 1 and requires us to prove the case for T(2n) = 2T(n) + 1 (we

F O U N D AT I O N S O F CO M P U T E R S C I E N C E S U P E R V I S I O N 1 – S O LU T I O N S

can assume that the argument is a multiple of two without a loss of generality):

T (2n) = 2× 2n− 1= 2× (2n− 1) + 1= 2T (n) + 1

That is, our closed-form expression satisfies the recurrence relation. �

2.2. Exercises
2. Code an iterative version of the e�cient power function from Section 1.6.

We initialise an accumulator argument to 1.0, and return it when the exponent is 0 (which
we determine by pattern-matching). Otherwise we check if the exponent is even: if it is,
we halve the exponent and square the base; if it is odd, we do the same thing, but also
multiply the accumulator by the base. As usual, the tail-recursive version of a function
is very similar in structure to the recursive one, except we manipulate the accumulator
instead of the result value of the recursive call.

let rec power_aux x n acc = match n with
| 0 -> acc
| n -> if n mod 2 = 0

then power_aux (x *. x) (n / 2) acc
else power_aux (x *. x) (n / 2) (acc *. x)

let power x n = power_aux x n 1.0

2.3. Optional questions
3. Let g1, . . . , gk be functions such that gi(n)≥ 0 for i = 1, . . . , k and all su�ciently large n. Show

that if f (n) = O(a1 g1(n) + · · ·+ ak gk(n)) then f (n) = O(g1(n) + · · ·+ gk(n)).

One way to show this is to notice that a1 g1(n) + · · ·+ ak gk(n) is bounded by ag1(n) +
· · ·+ agk(n) where a =max{a1, . . . , ak}. As O-notation gives upper bounds, we have that
f (n) = O(ag1(n) + · · ·+ agk(n)) = O(a(g1(n) + · · ·+ gk(n))), but as a is just a constant
factor, it can be ignored, giving us f (n) = O(g1(n) + · · ·+ gk(n)).

3. Lists
3.1. Conceptual questions

1. I often see some recurring stylistic/syntactic mistakes and “code smells” in students’ work.
Learn to avoid them by pointing out what is incorrect, redundant, or suspicious in the following
fragments. (Note: you can assume that x : int and xs : int list and the relevant List
functions are in scope.)

• 1 :: [2, 3, 4]

The list element separator in OCaml is the semicolon ; rather than the comma.
Somewhat annoyingly, the above expression would be a type error, rather than a

https://www.cl.cam.ac.uk/teaching/2324/FoundsCS/focs-202324-v1.5.pdf#page=10

F O U N D AT I O N S O F CO M P U T E R S C I E N C E S U P E R V I S I O N 1 – S O LU T I O N S

syntax error (i.e. it’s valid OCaml code, but the types don’t match up): OCaml interprets
[2, 3, 4] as a singleton list containing the tuple 2, 3, 4 (omitting the parentheses
is sometimes allowed), and fails because we are trying to cons an int to a (int
* int * int) list. Consequently, doing something like [1, 2] @ [3, 4] does

typecheck, but gives a list [(1,2), (3,4)] : int * int list – probably not what
was intended.

• "hello " @ "world"

While strings can be thought of as lists of characters, they are not implemented as
such in OCaml, so standard list operations cannot be used to manipulate strings.
Concatenation of strings is done via the s1 ^ s2 operator, for example. Other string
operations are found in the String module of the OCaml standard library.

• xs @ [x]

This expression typechecks and does what we intended: add an element to the end
of a list. However, the append operator @ is linear in its first argument, so xs @ [x]
has to process most of the list only to add a single element. As a one-o� occurrence
this might be okay (indeed, it’s impossible to add an element to the end of a list
without traversing the whole list) – the problem occurs when this is repeated multiple
times, such as in a recursive function nrev in Section 3.6. If this linear operation is
repeated a number of times proportional to the length of the list, we end up with
quadratic cost list operation. Instead, we can often refactor the function in a way that
avoids accessing the end of the list, and keep the costs linear (for example, with tail
recursion optimisation).

• [x] @ xs

Appending a singleton list to a list is the same as consing: [x] @ xs = x :: xs. This
is more of a stylistic issue, though there is a tiny amount of overhead in calling the
append function (which completes after two iterations) rather than directly using the
data constructor.

• let rec f xs = if len xs = 0 then 0 else hd xs + f (tl xs)

The operations hd : 'a list -> 'a and tl : 'a list -> 'a list are so-called
partial functions, because they don’t handle all possible values of their input type
'a list. OCaml gives a warning about non-exhaustive pattern-matching when these
functions are defined, since neither of them has a pattern handling the [] case. It’s
impossible to write a non-partial (total) function of the type 'a list -> 'a – if hd
is given the empty list, it has no way of producing a polymorphic value of type 'a. In
contrast, we could define tl [] to be [], since this typechecks and makes tl total;
however, it’s not obvious if that definition makes logical sense, since it doesn’t match
the “list without its first element” intuition of tail. Therefore tl [] is usually also left
undefined, leading to the same issues as hd.

https://caml.inria.fr/pub/docs/manual-ocaml/libref/String.html
https://www.cl.cam.ac.uk/teaching/2324/FoundsCS/focs-202324-v1.5.pdf#page=27

F O U N D AT I O N S O F CO M P U T E R S C I E N C E S U P E R V I S I O N 1 – S O LU T I O N S

The recommended way of accessing the head and tail of a list in a function is by
pattern-matching, making sure to handle both the empty and the cons cases. This way
our function becomes “obviously” total, and this can be confirmed by the compiler
(as opposed to, for example, checking if a list is empty with an if-expression and using
hd and tl in the else-branch – we will never encounter an error at runtime, but this
may not be obvious to the compiler and it may complain).

2. We’ve seen how tail-recursion can make some list-processing operations more e�cient. Does
that mean that we should write all functions on lists in tail-recursive style?

As the notes put it, “Never add an accumulator merely out of habit”. It would be an instance
of premature optimisation (the “root of all evil” according to Donald Knuth), where we
are trying to make code more e�cient at the expense of simplicity, maintainability and
sometimes even correctness, without even considering if the optimisation is necessary
or the code is “good enough” as it is. Tail-recursion as an optimisation procedure is fairly
simple, but it already has a noticeable overhead in terms of code simplicity: we need to
define an auxiliary function with an extra accumulator argument, turn the intuitive recursive
implementation “inside out”, and make a wrapper function to initialise the accumulator. In
some cases this indeed leads to constant space complexity by reusing the call stack (at
least in languages where this optimisation is available and enabled), but even that is not
guaranteed: append would benefit nothing from a tail-recursive implementation. You may
also have noticed the awkward tendency of list accumulators to end up reversed (unless
the accumulator is extended with acc @ [x], which is of course a big no-no), requiring an
extra linear processing step at the end – or not, if we happen to be defining list reverse!

It’s also worth considering if an optimisation will lead to a noticeable improvement in
practical use – and the best way to gauge this is to write the most straightforward imple-
mentation first, and see if that becomes the bottleneck in standard use. Computers tend to
have quite a lot of memory these days (certainly many orders of magnitude more than at
the time when this course was written), so we can often get away with a space-ine�cient al-
gorithm if it will not run for problematically large inputs. Consider, for example, the factorial
function (Tick 1): it can certainly be made more “space-e�cient” with tail-recursion, but we
won’t really notice problems due to call stack size unless the number of recursive calls is in
the thousands – and when was the last time you wanted to calculate the factorial of 1000?

A third point to mention is that a tail-recursive function is not always the result of a
dedicated optimisation step – sometimes the natural implementation of an operation is
already tail-recursive. An example is the last function below (and in Tick 2), which drops
the head of the list until the last element is reached. Since we don’t do anything to the head
of x::xs, the recursive call is simply last xs, which is automatically a tail call (top-level
recursive call).

F O U N D AT I O N S O F CO M P U T E R S C I E N C E S U P E R V I S I O N 1 – S O LU T I O N S

3.2. Exercises
3. Code a recursive and an iterative function to compute the sum of a list’s elements. Compare

their relative e�ciency.

let rec rsum = function
| [] -> 0
| x::xs -> x + rsum xs

let rec isum_aux xs acc = match xs with
| [] -> acc
| x::xs -> isum_aux xs (acc + x)

let isum xs = isum_aux xs 0

Both functions have linear time complexity (in the length of the list), as we need to traverse
the whole list. However, the recursive version also uses linear space, while the tail-recursive
one keeps the space usage constant.

4. Code a function to return the last element of a non-empty list. How e�ciently can this be done?
See if you can come up with two di�erent solutions.

There are two sensible approaches: either by a recursive function (dropping the head
element of a list until only one element is left), or by taking the head of the reversed list.
Both are linear in the length of the list (we cannot do better), but the first version is lighter
on memory use, as the second one reverses the whole list, even though we only care about
a single element. In both cases the function is undefined if the list is empty – we can make
this an obvious error by defining a custom exception.

let rec last1 = function
| [x] -> x
| (_::xs) -> last1 xs

let last2 xs = List.hd (List.rev xs)

5. Code a function to return the list consisting of the even-numbered elements of the list given as
its argument. For example, given [a,b,c,d] it should return [b,d]. Hint: pattern-matching is
a very flexible concept.

While there are multiple ways of accomplishing this, the most concise and elegant way is
to use nested pattern-matching: in the pattern x::xs, we can further pattern-match on
the list xs to access the head element of the tail.

let rec evens = function
| [] -> []

F O U N D AT I O N S O F CO M P U T E R S C I E N C E S U P E R V I S I O N 1 – S O LU T I O N S

| [x] -> []
| x::y::ys -> y :: evens ys

While it is conventional to have patterns of increasing generality, in this case we can make
the function even more concise by treating the [] and [x] cases in one pattern placed
after the x::y::ys one. Since the patterns are checked one-by-one from top to bottom,
this wildcard will only be reached when the list argument has fewer than two arguments –
the result is [] in both the [] and the [x] cases.

let rec evens = function
| x::y::ys -> y :: evens ys
| _ -> []

6. Code a function tails to return the list of the tails of its argument. For example, given the
input list [1, 2, 3] it should return [[1, 2, 3], [2, 3], [3], []].

A simple recursive solution works well here. Tail-recursion would require us to reverse the
resulting list (which is often a drawback of writing tail-recursive functions on lists).

let rec tails = function
| [] -> [[]]
| (x::xs) -> (x::xs) :: tails xs

3.3. Optional questions
7. Consider the polymorphic types in these two function declarations:

let id x = x
val id : 'a -> 'a = <fun>
let rec loop x = loop x
val loop : 'a -> 'b = <fun>

Explain why these types make logical sense, preventing runtime type errors, even for expressions
like id [id [id 0]] or loop true / loop 3.

The type of the id function is the polymorphic function 'a -> 'a: it can be instantiated
with any type. In id [id [id 0]], all occurrences of id have di�erent types: the innermost
one is int -> int, the one outside it is int list -> int list, the outermost one is
int list list -> int list list. allows the same polymorphic function to be used
at di�erent types in the same expression, as the constraint condition of polymorphism
significantly restricts the ways a function can be implemented. In fact, the only function
that can have the type 'a -> 'a is id, as any manipulation of the input would require
knowing something about its type.

F O U N D AT I O N S O F CO M P U T E R S C I E N C E S U P E R V I S I O N 1 – S O LU T I O N S

The loop function is a bit stranger: its type says that it can take any input and its return
value can have any type. It seems to act like a very general conversion function, but looking
at the implementation we can see that this is not the case: the reason why the return
value can have any type is that loop never returns. The function continuously loops and
therefore will never return anything – so its return type “might as well” be anything we
want. This means that we can arbitrarily produce an expression of a type we require, but it
will actually be unusable: any program containing a call to loop will loop forever.

8. Looking at the tail-recursive functions you’ve seen or written so far, think about why they are
called tail-recursive: what is the common feature of their evaluation that would explain this
terminology? If you have previous understanding of how functions are evaluated in a computer
(stack frames), can you explain why tail-recursive functions are often more space-e�cient than
recursive ones?

The “tail” part of tail-recursion refers to tail calls: the last function called before a function
returns. In imperative languages this would usually be the last statement in the definition;
in functional languages it is the outermost function call. The reason it is important is that
the return value of the tail call will be the return value of the whole function, so instead of
using a new stack frame (the local region of memory which is used by a function and then
freed up (popped) once the function returns), we can just reuse the current one.

This is particularly useful in recursion, as deeply recursive functions may build up a lot of
stack frames and potentially cause overflow. This is because the result of the recursive call
is often modified (e.g. incremented), but that computation has to be suspended until the
recursive call returns. If we use tail-recursion, the recursive call will also be the tail call, so
we can reuse the existing stack frame without any suspended computation. This results in
constant memory usage, which is sometimes (but not always!) desirable.

	Introduction to programming
	Conceptual questions
	Exercises
	Optional questions

	Recursion and efficiency
	Conceptual questions
	Exercises
	Optional questions

	Lists
	Conceptual questions
	Exercises
	Optional questions

