
Discrete Mathematics
Solutions with Commentary

Marcelo Fiore
Ohad Kammar
Dima Szamozvancev

2022

Contents

1. On proofs . 1
1.1. Basic exercises . 1
1.2. Core exercises . 4
1.3. Optional exercises . 12

2. On numbers . 15
2.1. Basic exercises . 15
2.2. Core exercises . 20
2.3. Optional exercises . 25

3. More on numbers . 28
3.1. Basic exercises . 28
3.2. Core exercises . 29
3.3. Optional exercises . 40

4. On induction . 42
4.1. Basic exercises . 42
4.2. Core exercises . 45
4.3. Optional exercises . 57

5. On sets . 64
5.1. Basic exercises . 64
5.2. Core exercises . 69
5.3. Optional advanced exercises . 76

6. On relations . 78
6.1. Basic exercises . 78
6.2. Core exercises . 80

7. On partial functions . 85
7.1. Basic exercises . 85
7.2. Core exercises . 87

8. On functions . 88
8.1. Basic exercises . 88
8.2. Core exercises . 89
8.3. Optional advanced exercise . 90

9. On bijections . 91
9.1. Basic exercises . 91
9.2. Core exercises . 92

10. On equivalence relations . 95
10.1. Basic exercises . 95
10.2. Core exercises . 97

11. On surjections and injections . 99
11.1. Basic exercises . 99

D I S C R E T E M AT H E M AT I C S S O LU T I O N S W I T H CO M M E N TA RY

11.2. Core exercises . 99
12. On images . 101

12.1. Basic exercises . 101
12.2. Core exercises . 103

13. On countability . 105
13.1. Basic exercises . 105
13.2. Core exercises . 106
13.3. Optional advanced exercise . 109

14. On inductive definitions . 109
15. On regular expressions . 113
16. On finite automata . 114
17. On regular languages . 116
18. On the Pumping Lemma . 119

1. On proofs
1.1. Basic exercises
The main aim is to practice the analysis and understanding of mathematical statements (e.g. by isolating the
di�erent components of composite statements), and exercise the art of presenting a logical argument in the

form of a clear proof (e.g. by following proof strategies and patterns).

The solutions will consist of the proper formal proof, showing the required level of detail and
precision – you should try to present your answers in a similar form. Of course, a formal written
proof is just a polished facade of the (usually more di�cult) process of finding the correct
sequence of reasoning steps and proof techniques, which often constitutes the “scratchwork”.
Therefore, most of the formal proofs will be accompanied with notes (marked �) on how the
problem was approached, what guided the reasoning process and what mistakes should be
avoided. Mastering the art of formal proof may take some practice, but it is a very important skill
to acquire both for this course and your whole scientific education.

Prove or disprove the following statements.

Some fairly simple statements, but they showcase a wide range of proposition types and proof
techniques. Accordingly, the proof notes can apply to most of the statements you will encounter,
no matter how complicated.

1. Suppose n is a natural number larger than 2, and n is not a prime number. Then 2 · n+ 13 is
not a prime number.

The statement is false. Choose n = 9. Then n = 3 · 3 isn’t prime, yet 2 · n+ 13 = 31 is
prime, and we disproved the statement by a counterexample.

� “Prove or disprove” questions should usually start with a sanity check: try a few numbers,
and if things seem to work, try a formal proof. Unfortunately, this is not a sure-fire technique,
as you may need to backtrack after realising that the statement is false after all. If you
realise this in the middle of writing the formal proof (rather than just the scratchwork),
you need to cross everything out and start again: there is no space for “plot twists” in a
proof attempt, and you should state if the statement is true or false right away.

� To disprove a statement, all we need to present is a counterexample which falsifies it.
There is no need to explain the general situation where the statement doesn’t work, or
try to prove the negation of the statement. The counterexample doesn’t have to be very
elaborate, often edge cases like 0 or the empty set do the job perfectly. However, we have
to make sure that our counterexample falls under the consideration of the statement: 0
will not falsify a proposition that starts with “for every positive integer”.

2. If x2 + y = 13 and y 6= 4 then x 6= 3.

We equivalently prove that if x2 + y = 13 then y 6= 4 implies x 6= 3. Assume that
x2 + y = 13. We establish the contrapositive of the goal, i.e. if x = 3 then y = 4. Indeed,

D I S C R E T E M AT H E M AT I C S S O LU T I O N S W I T H CO M M E N TA RY

assume x = 3. Then, y = 13− x2 = 13− 9= 4, as required.

� The statement is of the form (P ∧ Q)⇒ R, so our proof algorithm dictates that we
should start by assuming P and Q, and prove R. However, in this case, Q and R are negative
assertions: knowing that y could be anything other than 4 is less useful than knowing that
it is equal to something. Since the consequent R is also negated, we may instead consider
proving a contrapositive. However, the contrapositive of (P ∧ Q)⇒ R is ¬R⇒¬(P ∧ Q),
which will turn our useful assumption P into a negated goal. Instead, we perform a partial
assumption: we assume P only, and prove Q⇒ R; this can now be done easily, since the
contrapositive will give us the additional assumption x = 3 and the goal will be y = 4.
Logically, this technique follows from the equivalence (P ∧ Q)⇒ R' P ⇒ (Q⇒ R), which
can be seen as “currying” the proposition Q.

3. For an integer n, n2 is even if and only if n is even.

(⇒)We prove the following more general result: The product of an even integer with any
integer is an even integer. The required proposition follows as a corollary.

Consider any two integers m, n and assume that m is even. By definition of even integers,
m = 2k for some integer k. Therefore, m · n = 2k · n = 2(k · n) and thus, by definition,
m · n is an even integer.

(⇐)We prove the contrapositive; i.e., n odd implies n2 odd. Assume n is odd, then by
Proposition 8 (product of odd numbers is odd) of the notes, n · n= n2 is odd.

� As soon as we see the phrase “if and only if”, we need to remember not to move on to
the next question halfway through the proof. Most of the time such proofs will consist of
two parts, so stating which direction is being proved is helpful for the reader (and a good
reminder to you to complete both directions).

� Both directions follow as corollaries (logical consequences which are important in their
own right) of more general statements about multiplying two di�erent even/odd numbers.
The advantage of making theorem statements as general as possible is that they can be
applied in many contexts and give rise to useful corollaries; we could have proved that the
square of an odd number is odd directly, but the underlying proof approach would have
been exactly the same as Proposition 8 so we might as well use it!

4. For all real numbers x and y there is a real number z such that x + z = y − z.

Consider arbitrary real numbers x , y , and choose z = y−x
2 . Then, z is a real number

satisfying x + z = x + y−x
2 =

y+x
2 = y + y−x

2 = y − z. Therefore, there exists a real number
z satisfying x + z = y − z.

� This is an example of an existence proof, which tend to look a bit backwards when
written formally: rather than deriving the witness as part of the proof, we “give away” the
answer right away, then show that it satisfies the required property. Of course, we don’t just
pluck the witness out of thin air, or resort to a lucky guess. We find what it should be from

https://www.cl.cam.ac.uk/teaching/2122/DiscMath/DiscMathProofsNumbersSetsNotes.pdf#page=46

D I S C R E T E M AT H E M AT I C S S O LU T I O N S W I T H CO M M E N TA RY

the required properties via some sort of calculation, and once we found an answer, we
present it as a witness at the very beginning of the formal proof. Showing that it satisfies
the properties is of course straightforward (but can’t be omitted), since that’s how we
found the witness in the first place. In this specific example, the answer z = y−x

2 can be
found by simple rearrangement of the condition x + z = y − z, but, to present this as a
formal existence proof, we need to state the witness and rigorously demonstrate that it
satisfies the requirement.

5. For all integers x and y there is an integer z such that x + z = y − z.

The statement is false. Indeed, for the integers x = 0 and y = 1 we will prove that there
does not exist an integer z satisfying x + z = y − z; i.e., equivalently, such that z = 1− z.
Assume to the contrary that such an integer, say z0, existed. Then, we would have 2 · z0 = 1
and hence z0 =

1
2 ; which is absurd as 1

2 is not an integer. Therefore, there are integers x
and y for which there is no integer z such that x + z = y − z.

� This proof may seem more verbose than it needs to be: surely we can just say “let x = 0
and y = 1, then z = y−x

2 =
1
2 which is not an integer”. The problem with this reasoning is

that it is not a nonexistence proof: we showed that the specific z that can be computed
with the method above is not an integer, but that doesn’t mean there cannot be any other
z that works. To be completely rigorous, we need to show that the existence of any z that
satisfies the property is a logical absurdity – from this follows the lengthy but airtight proof
of the answer.

� Note how in two lines we got to a statement that is obviously false: that there exists an
integer z such that z = 1− z. We need to resist the temptation to take logical shortcuts
and appeal to the intuition of the reader to fill in the holes of our argument: anyone with
familiarity of basic arithmetic will recognise this as false (just rearrange the equation to get
z = 1

2 , which is is not an integer), but this will not convince someone who reasons purely
by logic (and, unfortunately, supervisors and examiners are such people). As explained in
the previous point, the easiest logically rigorous way to show that such an integer z does
not exist is by contradiction.

6. The addition of two rational numbers is a rational number.

Consider any two rational numbers r, s. By definition, there exist some integers a, c and
some nonzero integers b, d such that r = a

b and s = c
d . Then, r + s = a·d+b·c

b·d is a quotient of
an integer (namely a · d + b · c) by a nonzero integer (namely b · d), and hence a rational
number.

� A large part of writing formal proofs is just expanding definitions: rather than trying to
reason about rational numbers, we use their formal definition to transition into a proof
about integers. The more abstract the statement (quite common in set theory), the more
layers of definitions we may need to unwrap. However, this can allow us to prove some
rather di�cult-looking propositions with a very simple, low-level reasoning step.

D I S C R E T E M AT H E M AT I C S S O LU T I O N S W I T H CO M M E N TA RY

7. For every real number x , if x 6= 2 then there is a unique real number y such that 2· y/(y+1) = x .

We need to show that for every real number x , if x 6= 2 then there exists a real number y
satisfying: 1© 2y

y+1 = x and 2© for all real numbers z, if 2z
z+1 = x then y = z.

Consider an arbitrary real number x , and assume x 6= 2. Then, y = x
2−x is a real number

satisfying 1©, and if z is any real number satisfying 2z
z+1 = x then 2 · z = z · x + x . Hence,

(2− x) · z = x . As x 6= 2, z = x
2−x = y .

� This is a unique existence proof, so requires two separate arguments: existence and
uniqueness. The standard way of proving uniqueness is to assume another value with the
same property, and show that it must be equal to the existing witness. Uniqueness may
seem like a relatively unimportant result, but in fact, it forms the basis of powerful proof
techniques which we’ll see later on.

8. For all integers m and n, if m · n is even, then either m is even or n is even.

One may prove the contrapositive of the statement; i.e. that if m and n are odd then m · n
is odd. But this is nothing but Proposition 8 of the notes.

� Negation-based proof techniques (contradiction or contraposition) are often used to
avoid awkward proof patterns, usually involving existence or disjunction. Rather than have
a disjunctive goal (which requires some sort of case-splitting), we negate it to turn (via the
de Morgan laws) into a conjunctive assumption.

1.2. Core exercises
Having practised how to analyse and understand basic mathematical statements and

clearly present their proofs, the aim is to get familiar with the basics of divisibility.

1. Characterise those integers d and n such that:

a) 0 | n

We prove that an integer n satisfies 0 | n i� n= 0.

(⇒) Assume 0 | n. By definition, for some integer l , n= l · 0= 0.

(⇐) Assume n= 0. Then, n= 0 · 0 and, by definition, 0 | n.

� A good example of the need to be precise when applying definitions. We may
intuitively interpret d | n (“d divides n”) as “ n

d is an integer”, and conclude that
0 | n is impossible because n

0 is undefined. However, the formal definition of d | n
makes no mention of the division operator: it is an algebraically more fundamental
concept which only requires multiplication to express. Strictly speaking, we haven’t
yet formally defined division in the course – sure, you know what division is from
school, but giving a precise and rigorous definition is more di�cult than it may seem! If
we use the proper definition of divisibility for this exercise, we do find an appropriate
value for n, namely 0: zero divides zero because there exists an integer l (any integer

https://www.cl.cam.ac.uk/teaching/2122/DiscMath/DiscMathProofsNumbersSetsNotes.pdf#page=46

D I S C R E T E M AT H E M AT I C S S O LU T I O N S W I T H CO M M E N TA RY

will work) such that 0= l · 0.

b) d | 0

We prove that d | 0 for all integers d . Indeed, let d be an arbitrary integer. Then,
0= 0 · d and hence d | 0.

2. Let k, m, n be integers with k positive. Show that:

(k ·m) | (k · n) ⇐⇒ m | n

Consider any positive integer k and any two integers m, n.

(⇒) Assume (k ·m) | (k · n). Then, k · n = l · (k ·m). As k > 0, we can cancel k and deduce
n= l ·m. Hence, m | n.

(⇐) Assume m | n. Then, n = a · m for some integer a; and multiplying by k, we have
k · n= a · (k ·m). Hence, (k ·m) | (k · n).

� “Cancelling things” on both sides of an equation is a very standard process in elementary
(“high-school”) algebra. While in many cases it is still allowed in this course, you should
pay extra attention to any side-conditions required for the cancellation, or if cancellation
is even possible for the algebraic structure you’re working with! It does hold for addition
and multiplication (with a side-condition), but, for example, an equation between function
composites f ◦ g = f ◦ e cannot be simplified to g = e in general (only if f is an injection
– see later). Cancellability may be a property of the structure, or particular elements in a
structure, rather than something you can just do arbitrarily.

� The (⇒) direction of this proof relied on the fact that k is positive, and in particular,
nonzero – otherwise we wouldn’t be able to cancel the ks (and the property wouldn’t
actually hold). We did not require any assumptions on k in the (⇐) direction, so we could
extract a weaker form of the theorem, stating that for every integer k, m and n,

m | n=⇒ (k ·m) | (k · n)

In some cases you may not have the assumption that k is positive but may still be able to
apply this weaker form to make progress. However, this is technically not a corollary of the
stronger statement, because that requires an unneeded assumption on k.

3. Prove or disprove that: For all natural numbers n, 2 | 2n.

This is false, as 2 - 20.

� This is just a gentle reminder that 0 is a natural number!

4. Show that for all integers l , m, n,

l | m ∧ m | n=⇒ l | n

D I S C R E T E M AT H E M AT I C S S O LU T I O N S W I T H CO M M E N TA RY

Consider any integers l, m, n, and assume l | m ∧ m | k. As l | m, m = a · l for some integer
a. As m | n, n= b ·m for some integer b. But then: n= b ·m= b · (a · l) = (b · a) · l and,
as b · a is an integer, we have l | n.

� An example of a proof which is not particularly di�cult or illuminating, but it’s still
presented in a clear, structured, formal manner. It should take about a line of scratchwork
to convince yourself that the statement is true, but that is only the first step: next, you
need to convince the reader of the proof, who may not find your sketch clear or rigorous
enough. Learning how to present even the simplest arguments in a formal, systematic
manner will massively aid you in tackling more di�cult propositions which may seem
very daunting at first, but are actually much easier to digest connective-by-connective,
definition-by-definition.

5. Find a counterexample to the statement: For all positive integers k, m, n,

(m | k ∧ n | k) =⇒ (m · n) | k

Choose k = m= n= 2. Then, k, m, n are positive integers. As 2 | 2, we have m | k ∧ n | k
yet (2 · 2) - 2.

� While questions like this don’t explicitly ask for it, you need to find a counterexample
and also show that it is a counterexample, i.e. that it contradicts the statement. Only writing
k = m= n= 2 is not enough; you need to justify your answer.

6. Prove that for all integers d , k, l , m, n,

a) d | m ∧ d | n=⇒ d | (m+ n)

Assume d | m ∧ d | n. As d | m, m = a · d for some integer a. As d | n, n = b · d for
some integer b. Therefore, m+ n= a · d + b · d = (a+ b) · d . As a+ b is an integer,
we have d | (m+ n) as required.

b) d | m=⇒ d | k ·m

Assume d | m; i.e. m= a · d for some integer a. Then, k ·m= k · (a · d) = (k · a) · d .
As k · a is an integer, d | (k ·m).

c) d | m ∧ d | n=⇒ d | (k ·m+ l · n)

Assume d | m ∧ d | n. As d | m, by 6(b) above, d | (k ·m). Analogously, from d | n
we have d | (l · n). Thus, d | (k ·m) ∧ d | (l · n) so that applying 6(a) we conclude
d | (k ·m+ l · n) as required.

� Science is about building on the shoulders of giants – even if that giant is us, ten
minutes ago. After proving two useful properties of divisibility in parts 6(a) and 6(b),
they are now part of our “knowledge base” and we can refer back to them freely,
without having to reprove them again.

D I S C R E T E M AT H E M AT I C S S O LU T I O N S W I T H CO M M E N TA RY

Mathematics and computer science are all about decomposition and composition
(also known as divide-and-conquer). Faced with a complicated proposition/problem,
we break it up into smaller components which are much easier to reason about. Then,
we find ways to solve the subproblems: prove lemmas and sub-theorems or write
functions, classes and methods to perform well-defined tasks. Finally, we combine the
sub-solutions and reap the rewards. In practice, however, the challenge is not always
in solving the subproblems from scratch, but figuring out which existing elements of
the knowledge base/programming library can be glued together to give the desired
results: after all, if we or someone else has solved some di�cult problem already, we
shouldn’t need to do it again! There may be a striking one-liner proof/program that
does the job, but finding it may take significantly more e�ort than just solving the
problem manually. But, seeing how programmers can spend hours finding the shortest,
simplest, fastest, most space-e�cient algorithms, there is a lot of enjoyment to be
had in crafting concise and elegant proofs that combine clever reasoning techniques
with existing propositions in satisfying ways. We will hopefully see examples of this
in the course so you can appreciate proof-writing not as a chore, but something
intellectually stimulating and often quite addictive!

7. Prove that for all integers n,

30 | n ⇐⇒ (2 | n ∧ 3 | n ∧ 5 | n)

(⇒) Assume 30 | n. Then, n= 30 · a for some integer a. Thus, n= 2 · (15 · a) and so 2 | n.
Similarly, n= 3 · (10 · a) and therefore 3 | n. And, as n= 5 · (6 · a), we also deduce 5 | n.
Therefore 2 | n ∧ 3 | n ∧ 5 | n.

(⇐) Assume 2 | n ∧ 3 | n ∧ 5 | n. As 2 | n and 3 | n and 5 | n, we have n = 2 ·a and n = 3 · b
and n= 5 · c for some integers a, b, c. Moreover, we have:

30 · (−a+ b+ c) = (−15) · 2 · a+ 10 · 3 · b+ 6 · 5 · c = (−15) · n+ 10 · n+ 6 · n= n

Thus, n= 30 · k for the integer k = −a+ b+ c, as required.

� The (⇐) direction of this proof is more subtle than it may look – we can’t just multiply
2, 3 and 5 together (see §1.2.5 above). Instead, we know that 30 | 30a, so 30 | 15n; similarly,
30 | 10n and 30 | 6n. We need to put these together to get 30 | n, for which we make use
of §1.2.6(a) above to find a linear combination of 15n, 10n and 6n that adds up to n. After
some thinking, we find that (−1)× 15+ 10+ 6 works, giving us the desired coe�cients of
a, b and c.

8. Show that for all integers m and n,

(m | n ∧ n | m) =⇒ (m= n ∨ m= −n)

D I S C R E T E M AT H E M AT I C S S O LU T I O N S W I T H CO M M E N TA RY

Consider any pair of integers m, n, and assume that m | n and that n | m. If m = 0 then, by
§1.2.1(a) above, n= 0 and we have m= n.

Consider henceforth the case m 6= 0. As m | n and n | m, there are integers a, b such that
n = a ·m and m = b · n. Thus, m = b · a ·m and, as m 6= 0, we have b · a = 1. Then, since a
and b are integers, either a = b = 1 or a = b = −1 (otherwise, one would have a · b ≥ 2
or a · b ≤ −2). Finally, if a = b = 1 then m = n, and if a = b = −1 then m = −n. Either
way, m= n or m= −n as required.

� You may have started the proof from the second paragraph, without assuming that
m 6= 0. Then, at the step m = b · a ·m, you would be stuck (if you’re being careful): you
can’t divide by m because it may be 0. In such cases a common solution is to handle the
problematic case (m = 0) separately, then have the desired extra assumption m 6= 0 in the
main proof and continue from there.

9. Prove or disprove that: For all positive integers k, m, n,

k | (m · n) =⇒ k | m ∨ k | n

We disprove it by means of a counterexample. Choose m = n = 2 and k = 4. Then k | m · n,
yet neither k | m nor k | n.

� It may sometimes be easier to disprove the contrapositive statement, since an implica-
tion holds if and only if its contrapositive holds.

10. Let P(m) be a statement for m ranging over the natural numbers, and consider the following
derived statement (with n also ranging over the natural numbers):

P#(n)¬ ∀k ∈ N. 0≤ k ≤ n=⇒ P(k)

a) Show that, for all natural numbers `, P#(`) =⇒ P(`).

Let ` be a natural number, and assume that

P#(`) =
�

∀ natural number k. 0≤ k ≤ `=⇒ P(k)
�

holds.

Since ` is a natural number, it follows by instantiation that

0≤ `≤ `=⇒ P(`)

and, since 0≤ `≤ ` is true by reflexivity of ≤, it follows by Modus Ponens that P(`)
holds as required.

� This last exercise starts to trip some students up, understandably: so far we’ve
been proving properties about numbers and divisibility, while now we’re proving
things about seemingly nothing in particular. Such abstract proofs are very common

D I S C R E T E M AT H E M AT I C S S O LU T I O N S W I T H CO M M E N TA RY

in mathematics, for the very simple reason that they can be applied in a huge number
of ways – in this case, P(m) can be any logical statement about natural numbers, and
the propositions will hold no matter how simple or complicated the definition of P
is! You may think of this as a “polymorphic” theorem, since we are proving something
about an arbitrary predicate P (any first-class function nat -> bool, if you will), but
as a consequence, we cannot assume anything about how it’s defined.

Thinking abstractly takes some getting used to, as you may feel like there isn’t any-
thing to go on or any familiar notion to grasp in order to build intuition. However,
abstractness has the major benefit of avoiding any distracting details and low-level
“flu�” that could lead the proof attempt astray. If the above proposition was special-
ised to P(m) meaning “m is even”, you might start by unwrapping the definition of
evenness and incorporate it into the proof somehow, despite the property holding
no matter what P(m) actually is. Abstract proofs like this often involve purely logical
reasoning, without invoking any number theory or algebra – and logical reasoning is
often easier, since we essentially have an algorithm for proving logical statements.
Thus, when you are faced with an incomprehensible jumble of logical symbols, the
task may well be easier than proving a simple statement about natural numbers!

b) Exhibit a concrete statement P(m) and a specific natural number n for which the following
statement does not hold:

P(n) =⇒ P#(n)

Let P(m) ¬ (m = 1) and n = 1. Then P(1) is the true proposition (1 = 1), but
P#(1) ⇐⇒ P(0) ∧ P(1) is equivalent to (0= 1) ∧ (1= 1) which is false.

� Here we actually needed to “decode” the definition of P# in order to find a way to
falsify the above statement. Fortunately this is not too di�cult in this case: P#(n)
holds if P(k) holds for all naturals less than or equal to n, essentially turning a
predicate P about naturals into a predicate P# about a finite collection of naturals
(similarly to how map turns a function on values into a function on lists of values).
Then, we need to find a predicate P and n ∈ N that does not satisfy P(n)⇒ P#(n).
This is trickier than just finding a number, since there are lots of ways we could define
P . But, once again, we try something very simple (P(m) holds for m = 1 only) and
find that it can easily be turned into a counterexample. There are lots of other options
for P of course, but there’s no need to try something convoluted or interesting to
get a contradiction (and equally, there’s no need to spend time finding the simplest
counterexample if you’ve already found a more complicated one).

c) Prove the following:

• P#(0) ⇐⇒ P(0)

D I S C R E T E M AT H E M AT I C S S O LU T I O N S W I T H CO M M E N TA RY

(⇒) Assume P#(0); that is, for all 0 ≤ k ≤ 0, P(k). As 0 ≤ 0 ≤ 0, P(0) holds.
(⇐) Assume P(0). Consider any k, and assume 0≤ k ≤ 0. Then, k = 0 and P(k)
holds by assumption.

• ∀n ∈ N.
�

P#(n) =⇒ P#(n+ 1)
�

⇐⇒
�

P#(n) =⇒ P(n+ 1)
�

(⇒) Assume that
�

P#(n) =⇒ P#(n+ 1)
�

, and further assume that P#(n) holds.
Then, it follows that also P#(n+ 1) holds; i.e. that

∀ natural number k. 0≤ k ≤ n+ 1=⇒ P(k).

In particular, by instantiation, we have that

0≤ n+ 1≤ n+ 1=⇒ P(n+ 1)

and since the antecedent of this implication is true, we deduce that P(n+ 1)
holds, as required.

(⇐) Assume that 1©
�

P#(n) =⇒ P(n+ 1)
�

, and further assume that 2© P#(n)
holds. We need show that P#(n+ 1) also holds; i.e. that

∀ natural number k. 0≤ k ≤ n+ 1=⇒ P(k).

or, equivalently, that
P#(n) ∧ P(n+ 1)

hold, which is indeed the case because P#(n) holds by assumption 2© and
P(n+ 1) follows by Modus Ponens from assumptions 1© and 2©.

� This is the most complicated statement in this exercise sheet, so do not
worry if had di�culties with it. We have universal quantification, bi-implication,
nested implication, and unwrapping the definition of P# gives another layer of
quantification and implication. You may take a minute to get a feel for what the
statement is saying, but the nice thing about purely logical proofs is that you
can often dive in head-first without really thinking about what you’re proving!

Look at the top-level construct (universal quantification, bi-implication, etc.),
apply the proof pattern for that construct (often giving you some assumptions),
and continue until your goal becomes some atomic statement like P(n + 1)
(which you can’t unwrap further, since you don’t know what P is). After “digesting”
the proof goal, you should have a bunch of assumptions that you can work with:
unwrapping some definitions, instantiating universals, applying Modus Ponens.
Eventually you should end up with an assumption that matches the atomic proof
goal, and that’s enough to conclude the proof.

At first, doing the “assume | prove”-style scratchwork is very helpful for practicing
proof patterns and keeping track of goals and assumptions. It should mostly

D I S C R E T E M AT H E M AT I C S S O LU T I O N S W I T H CO M M E N TA RY

feel like an algorithmic process: with a few rule applications you can turn a very
scary-looking formula into a primitive goal and a lot of assumptions to work with,
and the task usually boils down to finding a way of combining assumptions on
the LHS to get something that matches the RHS. Occasionally there is a small bit
of actual “thinking” required to make progress, such as finding an appropriate
value to instantiate a ∀ with, or transforming an assumption in some useful way:
in the (⇐) direction above, really the only clever bit was figuring out that

∀ natural number k. 0≤ k ≤ n+ 1=⇒ P(k).

is equivalent to
P#(n) ∧ P(n+ 1)

but even this step was not made in a vacuum, since we already had the assump-
tions P#(n) and P(n+ 1). With some practice these methodical proofs should
become second nature, and you will be able to keep track of things in your head,
directly writing down the formal proof without any prior scratchwork.

•
�

∀m ∈ N. P#(m)
�

⇐⇒ (∀m ∈ N. P(m))

(⇒) Assume that ∀ natural number m. P#(m), and let n be an arbitrary natural
number. Then, by assumption, P#(n) holds; that is

∀ natural number k. 0≤ k ≤ n=⇒ P(k)

and, by instantiation, 0 ≤ n ≤ n =⇒ P(n) so that P(n) holds. Thus, we have
shown

∀ natural number m. P(m)

(⇐) Assume that 1©∀ natural number m. P(m). We need show that for all natural
numbers m and k,

0≤ k ≤ m=⇒ P(k)

To this end, let m and k be arbitrary natural numbers, and assume 0 ≤ k ≤ m.
Since k is a natural number, we may instantiate assumption 1© with it yielding
P(k) as required.

� This theorem may seem both surprising and unsurprising. Even though P#(m)
is definitely more general than P(m) (since P#(m) implies P(m) but not vice
versa), in the “limit” of quantifying over all natural numbers, they become equi-
valent. Then again, if P(m) holds for all natural numbers m, of course it would
hold for all natural numbers smaller than any n! This theorem (and the properties
proved as part of this exercise) form the basis of an important proof technique
which will be discussed later in the course.

D I S C R E T E M AT H E M AT I C S S O LU T I O N S W I T H CO M M E N TA RY

1.3. Optional exercises
1. A series of questions about the properties and relationship of triangular and square numbers

(adapted from David Burton).

a) A natural number is said to be triangular if it is of the form
∑k

i=0 i = 0+ 1+ · · ·+ k, for
some natural k. For example, the first three triangular numbers are t0 = 0, t1 = 1 and
t2 = 3.

Find the next tree triangular numbers t3, t4 and t5.

t3 = 6, t4 = 10, t5 = 15.

b) Find a formula for the kth triangular number tk.

Geometric approach.

2 · tk =

◦
◦ ◦
...

...
◦ · · · ◦

+

• · · · •
... ...
• •
•

=

◦ • • · · · •
◦ ◦ • · · · •
...

... ...
◦ · · · ◦ • •
◦ · · · ◦ ◦ •

= k · (k+ 1)

Algebraic approach.

Note that, on the one hand,
∑k

i=0(i + 1)2 −
∑k

i=0 i2 = (k+ 1)2 +
� ∑k−1

i=0 (i + 1)2
�

−
� ∑k

i=1 i2
�

− 02

= (k+ 1)2

and that, on the other,
∑k

i=0(i + 1)2 −
∑k

i=0 i2 =
∑k

i=0

�

(i + 1)2 − i2
�

=
∑k

i=0(2 · i + 1)

=
�

2 ·
∑k

i=0 i
�

+
∑k

i=0 1

= 2 · tk + k+ 1

so that tk =
k2+k

2 .

c) A natural number is said to be square if it is of the form k2 for some natural number k.

Show that n is triangular i� 8 · n+ 1 is a square. (Plutarch, circ. 100BC)

(⇒) Assume n is triangular; i.e. n= tk for some natural number k. By the previous
item, n= k·(k+1)

2 and one has that 8 · n+ 1= (2 · k+ 1)2 is a square number.

(⇐) Assume that 8·n+1 is a square number; i.e. 8·n+1 = a2 for some natural number
a. Then a2 is odd and, by Proposition 12 of the notes, thus so is a. Therefore, a = 2·k+1
for some natural number k. Finally, since 8 ·n+1 = a2 = (2 ·k+1)2 = 4 ·k2+4 ·k+1

https://www.cl.cam.ac.uk/teaching/2122/DiscMath/DiscMathProofsNumbersSetsNotes.pdf#page=61

D I S C R E T E M AT H E M AT I C S S O LU T I O N S W I T H CO M M E N TA RY

one has n= k2+k
2 = tk as required.

d) Show that the sum of every two consecutive triangular numbers is square. (Nicomachus,
circ. 100BC)

Consider any two consecutive triangular numbers tk and tk+1. Then, a simple calcula-
tion shows that the sum tk + tk+1 equals (k+ 1)2 and hence is square:

k2 + k
2
+
(k+ 1)2 + k+ 1

2
=

2k2 + 4k+ 2
2

= k2 + 2k+ 1= (k+ 1)2

e) Show that, for all natural numbers n, if n is triangular, then so are 9 · n+ 1, 25 · n+ 3,
49 · n+ 6 and 81 · n+ 10. (Euler, 1775)

Consider any natural number n, and assume that n is triangular; i.e. n = k·(k+1)
2 for

some natural number k. Then, calculate that 9 · n+ 1= t3k+1:

9
k2 + k

2
+1=

9k2 + 9k+ 2
2

=
9k2 + 6k+ 1+ 3k+ 1

2
=
(3k+ 1)2 + 3k+ 1

2
= t3k+1

Similarly, by completing the square, we can show that 25 · n+ 3 = t5k+2, 49 · n+ 6 =
t7k+3, and 81n+ 10= t9k+4.

f) Prove the generalisation: For all n and k natural numbers, there exists a natural number q
such that (2n+ 1)2 · tk + tn = tq. (Jordan, 1991, attributed to Euler)

Here’s a proof by a 2014/15 student (who wished to remain anonymous). Let n and k
be arbitrary natural numbers. We know that:

tk =
k(k+ 1)

2
and tn =

n(n+ 1)
2

Choose q = 2nk+ n+ k, and calculate:

tq =
q(q+ 1)

2
=
(2nk+ n+ k) · (2nk+ n+ k+ 1)

2

=
4n2k2 + 4n2k+ 4nk2 + 4nk+ k2 + k+ n2 + n

2

=
(4n2 + 4n+ 1)(k2 + k) + n2 + n

2

= (2n+ 1)2 ·
k(k+ 1)

2
+

n(n+ 1)
2

= (2n+ 1)2 tk + tn

Therefore we are done.

2. Let P(x) be a predicate on a variable x and let Q be a statement not mentioning x . Show that
the following equivalence holds:

�

�

∃x . P(x)
�

=⇒Q
�

⇐⇒
�

∀x .
�

P(x) =⇒Q
�

�

D I S C R E T E M AT H E M AT I C S S O LU T I O N S W I T H CO M M E N TA RY

(⇒) Assume
�

∃x . P(x)
�

=⇒Q. We need show∀x .
�

P(x) =⇒Q
�

. We do this by considering
an arbitrary a and showing that P(a) =⇒Q, for which in turn we further assume P(a) and
finally show Q.

To recap, then, we are in the following situation:

Assumptions Goal
�

∃x . P(x)
�

=⇒Q Q
for arbitrary a

P(a)

Then, by the last assumption, ∃x . P(x) and from this and the first assumption, by Modus
Ponens, we deduce Q as required.

(⇐) Assume ∀x .
�

P(x) =⇒ Q
�

. We need show
�

∃x . P(x)
�

=⇒ Q. For which we further
assume ∃x . P(x) and show Q

To recap, then, we are in the following situation:

Assumptions Goal

∀x .
�

P(x) =⇒Q
�

Q
∃x . P(x)

From the second assumption, there is an a for which 1© P(a) holds and, by instantiation
from the first assumption, 2© P(a) =⇒Q. By Modus Ponens from 2© and 1©, Q follows as
required.

� This is a very important duality that crops up in many di�erent forms in mathematics
and computer science (and you will certainly encounter variants of it in future courses).
Despite this, it may seem quite unintuitive: it almost seems to say that we can convert
existential quantification into universal! Of course, we can’t ignore the shifting of the
parentheses: it’s certainly not the case that

�

∃x . P(x) =⇒Q
�

⇐⇒
�

∀x . P(x) =⇒Q
�

A good way to get an intuition for this property is as a generalisation of case analysis. If a
property Q depends on the existence of a witness x satisfying P(x), but not x itself, we
need to prove Q no matter what x is. That is, our proof must hold for any actual value of
the witness, so we can instead look at what possible values can x take, and show Q by
assuming P(x) for all values x . We are case analysing the potential values of the witness,
and proving Q no matter what it is.

Alternatively, we can look at the contrapositives of both sides:
�

¬Q =⇒¬
�

∃x . P(x)
�

�

⇐⇒
�

∀x .
�

¬Q =⇒¬P(x)
�

�

The LHS becomes ¬Q =⇒
�

∀x . ¬P(x)
�

using the de Morgan rule for quantifiers; but now

D I S C R E T E M AT H E M AT I C S S O LU T I O N S W I T H CO M M E N TA RY

the universal can be extended over the whole implication, since assuming ¬Q first and
then taking an arbitrary x is the same as taking an arbitrary x and then assuming ¬Q
(which doesn’t say anything about x).

2. On numbers
2.1. Basic exercises

1. Let i, j be integers and let m, n be positive integers. Show that:

a) i ≡ i (mod m)

By §1.2.1(b), every number divides i − i = 0, so m | i − i.

b) i ≡ j (mod m) =⇒ j ≡ i (mod m)

Assume i ≡ j (mod m). Then m | i − j; i.e. i − j = k ·m for some integer k. Thus,
j − i = (−k) ·m, and as −k is an integer m | j − i; i.e. j ≡ i (mod m).

c) i ≡ j (mod m) ∧ j ≡ k (mod m) =⇒ i ≡ k (mod m)

Assume i ≡ j (mod m) ∧ j ≡ k (mod m). Then, m | i − j and m | j − k. Hence, by
§1.2.6(a), m | (i − j) + j − k = i − k and thus i ≡ k (mod m).

� When working with congruence, we have three layers of definitions: i ≡ j (mod m),
defined as m | i− j, defined as ∃k ∈ Z. i− j = k ·m. To prove fundamental properties
about congruence (symmetry or transitivity), we usually need to go “down a level”
and reason about divisibility. At this level, we may be able to use known properties
of divisibility, such as in part (c); other times it may be easier to go further down, and
talk about the primitive definition of divisibility, such as in part (b). In the second
case we are essentially proving a lemma about divisibility “inline”: that d | m implies
d | −m. Alternatively, we may notice that this property follows as a direct corollary of
§1.2.6(b), with the multiplicative constant k = −1. The statement we prove is valid
either way, but in some cases writing a quick inline proof may be easier or harder
than finding if it is an instance of some existing property.

2. Prove that for all integers i, j, k, l , m, n with m positive and n nonnegative,

a) i ≡ j (mod m) ∧ k ≡ l (mod m) =⇒ i + k ≡ j + l (mod m)

Assume i ≡ j (mod m) ∧ k ≡ l (mod m). Then, m | i − j and m | k − l . Hence, by
§1.2.6(a), m | (i − j) + (k− l) = (i + k)− (j + l) and i + k ≡ j + l (mod m).

b) i ≡ j (mod m) ∧ k ≡ l (mod m) =⇒ i · k ≡ j · l (mod m)

Assume i ≡ j (mod m) ∧ k ≡ l (mod m). Then, m | (i− j) and m | (k− l). By §1.2.6(b),
m | i · (k− l) and m | l · (i− j); and, by §1.2.6(a), m | i · (k− l)+ l · (i− j) = i · k− j · l .
Hence, i · k ≡ j · l (mod m).

c) i ≡ j (mod m) =⇒ in ≡ jn (mod m)

D I S C R E T E M AT H E M AT I C S S O LU T I O N S W I T H CO M M E N TA RY

For n = 0, in ≡ jn (mod m) always. Assume now 1© i ≡ j (mod m). Then, for n = 1, we
are done by assumption. For n = 2, by the previous item, we have 2© i2 ≡ j2 (mod m).
From 1© and 2©, again by the previous item, we have i3 ≡ j3 (mod m). Iterating this
process we get in ≡ jn (mod m) for every value of n.

� If you’re familiar with it, you may be screaming “induction!” – indeed, a formal
proof requires the mathematical Principle of Induction, which will be studied later in
the course.

� These properties of congruence are fairly simple to state and prove, but combined
with the previous exercise they form the basis of equational proofs about congruence.
They allow us to extend a congruence between two integers into a congruence between
two algebraic (polynomial) expressions of arbitrary nesting which di�er in those two
integers. For example, if we know that i ≡ j (mod m), we also know (3i2 + 5i − 7)4 ≡
(3 j2 + 5 j − 7)4 (mod m) by repeatedly applying the properties proved in this exercise:
i ≡ j (mod m) implies i2 ≡ j2 (mod m) implies 3i2 ≡ 3 j2 (mod m) and so on. This
is really helpful in equational proofs in modular arithmetic, because we can rewrite
parts of an expression not only if they are equal, but also when they are merely
congruent. We will see examples of this shortly.

3. Prove that for all natural numbers k, l and positive integers m,

a) rem(k ·m+ l, m) = rem(l, m)

By the Division Theorem,

l = quo(l, m) ·m+ rem(l, m)

and hence
k ·m+ l =

�

k+ quo(l, m)
�

·m+ rem(l, m)

from which it follows by the Division Theorem that

quo(k ·m+ l, m) = k+ quo(l, m) and rem(k ·m+ l, m) = rem(l, m) .

� The Division Theorem may seem like a dramatic name for a fairly obvious and
unremarkable statement: that numbers can be divided with a remainder. But, in fact,
the theorem is quite powerful and allows one to prove properties surprisingly easily.
Let’s remind ourselves of the full statement:

For every natural number m and positive natural number n, there exists a unique
pair of integers q and r such that 0≤ q, 0≤ r < n, and m= q · n+ r .

This is a unique existence statement, a form very common in mathematics. The
associated proof technique relies both on the existence and uniqueness components.
To highlight the former, consider the following alternative statement of the Division

https://www.cl.cam.ac.uk/teaching/2122/DiscMath/DiscMathProofsNumbersSetsNotes.pdf#page=156

D I S C R E T E M AT H E M AT I C S S O LU T I O N S W I T H CO M M E N TA RY

Theorem:

Given any natural number m and for any choice of positive integer n, we can write m
as m= q · n+ r where q and r are unique integers satisfying 0≤ q and 0≤ r < n.

This form emphasises the fact that if we have a natural number m, we can choose
any natural number n, and the theorem guarantees that it’s possible to write m in
terms of n in the specific form m= q · n+ r for two unique naturals satisfying 0≤ q
and 0 ≤ r < n. In essence, we get immediate “access” to two naturals q and r and
two new assumptions about these naturals, as well as their uniqueness proofs.

Since q and r are uniquely determined by m and n, we can write them as quo(m, n)
and rem(m, n) as if quo and rem were functions. In reality, they are just shorthands
for “the natural q (resp. r) determined from m and n by the Division Theorem”. With
these, you can succinctly state the Division Theorem as

Any natural number m can be expressed as m= quo(m, n) · n+ rem(m, n) for any
choice of positive integer n, with quo(m, n), rem(m, n) ∈ N and rem(m, n)< n.

You may well ask “why go through all this when we have the integer division and
remainder operators”? Well, we haven’t formally defined them yet (and one way to
define them formally is precisely via quo and rem!), but even ignoring that, proofs
using uniqueness wouldn’t really work if we just treated rem and quo as operators.
To see how this works, let’s expand the solution to the question above.

We are required to show that for all natural numbers k, l and positive integers m,
rem(k ·m+ l, m) = rem(l, m) – any multiple of m can be cancelled out in a remainder
by m. If we think of rem as the remainder operator (e.g. % in Java), this seems obvious –
but other than spelling out the details of division as repeated subtraction (the Division
Algorithm), it’s quite tricky to prove! Instead, as we said above, rem(l, m) should be
treated as “the unique r determined by l and m by the Division Theorem”. This is where
uniqueness comes in: we know that for any other expansion l = quo(l, m) ·m+ r ′ with
r ′ < m, r ′ must be equal to rem(l, m). Thus, equality of remainders can be derived
from showing that they satisfy the same property: that they can appear in the same
expansion of l (via m) and are both strictly less than m.

The question is exactly a proof of equality of two remainders: rem(k ·m+ l, m) and
rem(l, m). If we show that they appear in two “di�erent” expansions of the same
natural number, they must be equal. What expansion would rem(l, m) appear in?
Easy: the Division Theorem tells us that l can always be rewritten in terms of m as

l = quo(l, m) ·m+ rem(l, m)

Similarly, rem(k ·m+ l, m) appears in the expansion

k ·m+ l = quo(k ·m+ l, m) ·m+ rem(k ·m+ l, m)

D I S C R E T E M AT H E M AT I C S S O LU T I O N S W I T H CO M M E N TA RY

All we did is apply the streamlined form of the Division Theorem, expanding both l
and k ·m+ l in terms of m. They can’t directly be compared yet, because they are
expansions of di�erent naturals. To resolve that, we just add k ·m to the first equation
and factorise to get:

k ·m+ l =
�

k+ quo(l, m)
�

·m+ rem(l, m)

And with that, we are done! How? Well, we have two di�erent expansions of the
number k ·m+ l : it’s equal both to

quo(k ·m+ l, m) ·m+ rem(k ·m+ l, m) and
�

k+ quo(l, m)
�

·m+ rem(l, m)

where both rem(k ·m+ l, m) and rem(l, m) are less than m. But the Division Theorem
tells us that there is exactly one such expansion of k ·m+ l possible, so these two
remainders cannot be di�erent! That is to say,

rem(k ·m+ l, m) = rem(l, m)

which was precisely our proof goal.

Such surprising and abrupt conclusions are very much characteristic of proofs by
universal properties: rather than proving equality directly, we show that both remain-
ders satisfy the universal property (specified by the Division Theorem) of the same
number k ·m+ l and therefore must be equal. We will see a lot of examples of this in
the course and the exercises: while many statements can be proved by alternative
means, proofs by universal properties are often remarkably compact and elegant,
achieving the same goal with only a few clever reasoning steps.

b) rem(k+ l, m) = rem(rem(k, m) + l, m)

Because

rem(k+ l, m) = rem
�

quo(k, m) ·m+ rem(k, m) + l, m
�

(by DT on k with m)
= rem

�

rem(k, m) + l, m
�

(by §2.1.3(a))

Note that, as a corollary, rem(k+ l, m) = rem
�

rem(k, m) + rem(l, m), m
�

.

� The previous property of remainders is quite useful, especially in combination
with the Division Theorem: since we have a choice of expanding k in terms of any
positive integer, we can choose m to then ensure that the term quo(k, m) ·m – being
a multiple of m – can be cancelled out.

c) rem(k · l, m) = rem(k · rem(l, m), m)

Because

rem(k · l, m) = rem
�

k · quo(l, m) ·m+ k · rem(l, m), m
�

(by DT on l with m)
= rem

�

k · rem(l, m), m
�

(by §2.1.3(a))

D I S C R E T E M AT H E M AT I C S S O LU T I O N S W I T H CO M M E N TA RY

Note that, as a corollary, rem(k · l, m) = rem
�

rem(k, m) · rem(l, m), m
�

.

� Once again, we start by expanding a natural in terms of m, then use part §2.1.3(a)
to cancel the whole term. In this case, we choose l : this was guided by the need to
end up with a rem(l, m), which we wouldn’t get by expanding k.

4. Let m be a positive integer.

a) Prove the associativity of the addition and multiplication operations in Zm; that is:

∀i, j, k ∈ Zm. (i +m j) +m k = i +m (j +m k) and (i ·m j) ·m k = i ·m (j ·m k)

Consider arbitrary i, j, k in Zm, and calculate as follows:

(i +m j) +m k =
�

[i + j]m + k
�

m
(by definition of +m)

= rem
�

rem(i + j, m) + k, m
�

(by definition of [·]m)
= rem

�

(i + j) + k, m
�

(by §2.1.3(b))
= rem

�

i + (j + k), m
�

(by associativity of addition)
= rem

�

i + rem(j + k, m), m
�

(by §2.1.3(b))
=
�

i + [j + k]m
�

m
(by definition of [·]m)

= i +m (j +m k) (by definition of +m)

Similarly, consider arbitrary i, j, k in Zm, and calculate as follows:

(i ·m j) ·m k =
�

[i · j]m · k
�

m
(by definition of ·m)

= rem
�

rem(i · j, m) · k, m
�

(by definition of [·]m)
= rem

�

(i · j) · k, m
�

(by §2.1.3(c))
= rem

�

i · (j · k), m
�

(by associativity of multiplication)
= rem

�

i · rem(j · k, m), m
�

(by §2.1.3(c))
=
�

i · [j · k]m
�

m
(by definition of [·]m)

= i ·m (j ·m k) (by definition of ·m)

� When defining something in terms of an existing construction, its properties will
often directly follow from the known properties of the underlying definition. In this
case, associativity of +m relies on the associativity of + in terms of which +m is
defined. However, we needed a lemma about addition and remainders to simplify the
expressions until we can directly appeal to the associativity of +.

� These are examples of equational proofs, a very common and useful technique for
mathematical reasoning, generalising the algebraic calculations you are familiar with
from school. Whenever we need to prove equality or equivalence of two mathematical
objects (numbers, sets, functions, etc.), we can build it up as a chain of equalities,
each rewriting some part of the expression via some known property, definition, or

D I S C R E T E M AT H E M AT I C S S O LU T I O N S W I T H CO M M E N TA RY

lemma. There’s often a symmetry in the proofs, nicely showcased in this exercise: the
first half unwraps several layers of definitions and simplifies the resulting expressions;
the second half does the same in reverse. Indeed, it’s often helpful to write equational
proofs starting from both ends, until they meet in the middle.

b) Prove that the additive inverse of k in Zm is [−k]m.

We need show that k+m [−k]m ≡ 0 (mod m); and indeed, since

l ≡ [l]m (mod m) for all l ∈ Z

one has that

k+m [−k]m =
�

k+ [−k]m
�

m
≡ k+ [−k]m ≡ k+ (−k) = 0 (mod m)

� This is an example of a congruence proof : a weaker form of an equational proof
where some of the steps are not strict equalities, but congruences modulo m ∈ Z+.
Since congruence is a so-called equivalence relation (it’s reflexive, symmetric, and
transitive, all proved in §2.1.1), a chain of congruences establishes a congruence
between the endpoints. Reflexivity allows us to strengthen some of the congruences
into equalities: in the example above, k+m [−k]m =

�

k+[−k]m
�

m
is a strict equality,

since it is the definition of +m. Importantly, all congruences must be modulo the
same m ∈ Z+, which is denoted at the end of the proof, ranging over the entire chain
of congruences.

2.2. Core exercises
1. Find an integer i, natural numbers k, l and a positive integer m for which k ≡ l (mod m) holds

while ik ≡ i l (mod m) does not.

Take i = 2, k = 0, l = 3, and m = 3. Then, k = 0 ≡ 3= l (mod 3), yet 20 = 1 6≡
8= 23 (mod 3).

2. Formalise and prove the following statement: A natural number is a multiple of 3 i� so is the
number obtained by summing its digits. Do the same for the analogous criterion for multiples
of 9 and a similar condition for multiples of 11.

For all natural numbers n and digits a0, . . . , an,

•
� ∑n

i=0 ai · 10i
�

≡ 0 (mod 3) ⇐⇒
� ∑n

i=0 ai

�

≡ 0 (mod 3)

•
� ∑n

i=0 ai · 10i
�

≡ 0 (mod 9) ⇐⇒
� ∑n

i=0 ai

�

≡ 0 (mod 9)

•
� ∑n

i=0 ai · 10i
�

≡ 0 (mod 11) ⇐⇒
� ∑n

i=0(−1)i · ai

�

≡ 0 (mod 11)

The above follow from the following stronger statements

•
� ∑n

i=0 ai · 10i
�

≡
� ∑n

i=0 ai

�

(mod 3)

•
� ∑n

i=0 ai · 10i
�

≡
� ∑n

i=0 ai

�

(mod 9)

D I S C R E T E M AT H E M AT I C S S O LU T I O N S W I T H CO M M E N TA RY

•
� ∑n

i=0 ai · 10i
�

≡
� ∑n

i=0(−1)i · ai

�

(mod 11)

The rule for 3 uses the fact that 10≡ 1 (mod 3), which, by the exponentiation property
shown in §2.1.2(c), implies 10l ≡ 1 (mod 3) for all l ∈ Z+. This can be applied in every term
of the sum (since congruences can be applied within sums and products as shown in §2.1.2,
reducing the 10l coe�cients to 1. The technique works the same for divisibility by 9, since
10≡ 1 (mod 9); for 11, we notice that 102n ≡ 1 (mod 11), but 102n+1 ≡ 10≡ −1 (mod 11)
for all n ∈ N.

There are also other proofs. Below is one based on the Binomial Theorem, rather than on
the theory of divisibility and/or congruences for the case of divisibility by 11. Please study
it and re-adapt it to the cases of divisibility by 3 and by 9.

First we calculate that
n
∑

i=0

ai · 10i =
n
∑

i=0

ai · (11− 1)i

=
n
∑

i=0

ai ·
i
∑

j=0

�

i
j

�

· 11 j · (−1)i− j

=
n
∑

i=0

ai ·
�

(−1)i + 11 ·
i
∑

j=1

�

i
j

�

· 11 j−1 · (−1)i− j
�

=
�

n
∑

i=0

(−1)i · ai

�

+ 11 ·
�

n
∑

i=1

ai ·
i
∑

j=1

�

i
j

�

· 11 j−1 · (−1)i− j
�

and then argue as follows:

(⇒) Assume 11 |
� ∑n

i=0 ai · 10i
�

; so that
∑n

i=0 ai · 10i = 11 · k for some integer k. Then,
∑n

i=0 (−1)i · ai = 11 ·
�

k−
� ∑n

i=1 ai ·
∑i

j=1

�i
j

�

· 11 j−1 · (−1)i− j
�

�

showing that 11 |
� ∑n

i=0(−1)i · ai

�

.

(⇐) Assume 11 |
� ∑n

i=0(−1)i · ai

�

; so that
∑n

i=0(−1)i · ai = 11 · l for some integer l . Then,
∑n

i=0 ai · 10i = 11 ·
�

l +
� ∑n

i=1 ai ·
∑i

j=1

�i
j

�

· 11 j−1 · (−1)i− j
�

�

showing that 11 |
∑n

i=0 ai · 10i .

3. Show that for every integer n, the remainder when n2 is divided by 4 is either 0 or 1.

This is Lemma 26 of the notes.

� The question here refers to the “intuitive” notions of division and remainder, but by
recognising their connection to congruence we can refer to the known number-theoretic
properties of modular arithmetic.

4. What are rem(552, 79), rem(232, 79), rem(23 · 55, 79) and rem(5578, 79)?

https://www.cl.cam.ac.uk/teaching/2122/DiscMath/DiscMathProofsNumbersSetsNotes.pdf#page=104

D I S C R E T E M AT H E M AT I C S S O LU T I O N S W I T H CO M M E N TA RY

rem(552, 79) = 23, rem(232, 79) = 55, rem(23 · 55,79) = 1, and

rem
�

(552)39, 79
�

= rem
�

23 · (232)19, 79
�

= rem
�

23 · 55 · (552)9, 79
�

= rem
�

23 · (232)4, 79
�

= rem
�

23 · (552)2, 79
�

= rem
�

23 · 232, 79
�

= rem(23 · 55, 79)

= 1

Of course, since we know the last one from Fermat’s Little Theorem, there was really no
need to calculate it!

5. Calculate that 2153 ≡ 53 (mod 153). At first sight this seems to contradict Fermat’s Little The-
orem, why isn’t this the case though? Hint: Simplify the problem by applying known congruences
to subexpressions using the properties in §2.1.2.

One possible sequence of steps, using the fact that 153= 27 + 25:

2153 = 26 ·
�

27
�21
= 26 · 27 ·

�

27
�20

≡ 26 · (−25) · (−25)20 = 26 · (−25) ·
�

252
�10
= 26 · (−25) · 62510

≡ 26 · (−25) · (132)5 = 26 · (−25) · 1695

≡ (−25) · 26 · 165 = (−25) · 26 ·
�

24
�5
= (−25) · 25 · (27)3

≡ (−25) · 25 · (−25) · 252 = 25 · (252)2

≡ 25 · 132 ≡ 25 · 16= 22 · 27 ≡ 4 · (−25)

≡ 53 (mod 153)

This doesn’t contradict Fermat’s Little Theorem, since 153= 32 · 17 is composite.

� This may seem like a daunting exercise, but we actually didn’t need to do anything
more complicated than squaring and addition. The key is being able to make impactful
simplifications using congruence: as soon as we have a number greater than 153, we can
replace it with the remainder after dividing by 153.

6. Calculate the addition and multiplication tables, and the additive and multiplicative inverses
tables for Z3, Z6 and Z7.

• Z3

+ 0 1 2

0 0 1 2
1 1 2 0
2 2 0 1

· 0 1 2

0 0 0 0
1 0 1 2
2 0 2 1

−(·)
0 0
1 2
2 1

(·)−1

0
1 1
2 2

https://www.cl.cam.ac.uk/teaching/2122/DiscMath/DiscMathProofsNumbersSetsNotes.pdf#page=122

D I S C R E T E M AT H E M AT I C S S O LU T I O N S W I T H CO M M E N TA RY

• Z6

+ 0 1 2 3 4 5

0 0 1 2 3 4 5
1 1 2 3 4 5 0
2 2 3 4 5 0 1
3 3 4 5 0 1 2
4 4 5 0 1 2 3
5 5 0 1 2 3 4

· 0 1 2 3 4 5

0 0 0 0 0 0 0
1 0 1 2 3 4 5
2 0 2 4 0 2 4
3 0 3 0 3 0 3
4 0 4 2 0 4 2
5 0 5 4 3 2 1

−(·)
0 0
1 5
2 4
3 3
4 2
5 1

(·)−1

0
1 1
2
3
4
5 5

• Z7

+ 0 1 2 3 4 5 6

0 0 1 2 3 4 5 6
1 1 2 3 4 5 6 0
2 2 3 4 5 6 0 1
3 3 4 5 6 0 1 2
4 4 5 6 0 1 2 3
5 5 6 0 1 2 3 4
6 6 0 1 2 3 4 5

· 0 1 2 3 4 5 6

0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6
2 0 2 4 6 1 3 5
3 0 3 6 2 5 1 4
4 0 4 1 5 2 6 3
5 0 5 3 1 6 4 2
6 0 6 5 4 3 2 1

−(·)
0 0
1 6
2 5
3 4
4 3
5 2
6 1

(·)−1

0
1 1
2 4
3 5
4 2
5 3
6 6

� Great demonstration of the property that every element of Zp has a multiplicative
inverse if p is a prime. Algebraically, this makesZp a field: a place where you can do division.

7. Let i and n be positive integers and let p be a prime. Show that if n ≡ 1 (mod p− 1) then
in ≡ i (mod p) for all i not multiple of p.

Assume that i and n are positive integers and that p is a prime. Assume further that
n≡ 1 (mod p− 1); so that n− 1 = k · (p− 1) for some natural number k. Then, for i not a
multiple of p, we have that

in = i · (ip−1)k

≡ i · 1k (mod p) (by Fermat’s Little Theorem)
= i

� When the question involves prime numbers, you should expect to require properties
and theorems specific to primes. In this course – which is only an introduction to number
theory – this will quite often be Fermat’s Little Theorem.

8. Prove that n3 ≡ n (mod 6) for all integers n.

We can proceed by case analysis: since either n ≡ 0 (mod 6), or n ≡ 1 (mod 6), or
n ≡ 2 (mod 6), or n ≡ 3 (mod 6), or n ≡ 4 (mod 6), or n ≡ 5 (mod 6), we check that
n3 ≡ n (mod 6) in each case.

D I S C R E T E M AT H E M AT I C S S O LU T I O N S W I T H CO M M E N TA RY

• Case n≡ 0 (mod 6): n3 ≡ 03 = 0≡ n (mod 6).

• Case n≡ 1 (mod 6): n3 ≡ 13 = 1≡ n (mod 6).

• Case n≡ 2 (mod 6): n3 ≡ 23 = 8≡ 2≡ n (mod 6).

• Case n≡ 3 (mod 6): n3 ≡ 33 = 27≡ 3≡ n (mod 6).

• Case n≡ 4 (mod 5): n3 ≡ 43 = 64≡ 4≡ n (mod 6).

• Case n≡ 5 (mod 6): n3 ≡ 53 = 125≡ 5≡ n (mod 6).

Of course, this wouldn’t really work for larger moduli – see next question. A more elegant
solution is proving 6 | n3 − n, which, by the well-known divisibility rule for 6, follows from
showing 3 | n3 − n and 2 | n3 − n. Now,

n3 − n= n · (n2 − 1) = (n− 1) · n · (n+ 1);

but this is a product of three consecutive integers, so at least one of them must be even
and one must be divisible by 3. That is, n3−n = 2 ·3 · k for some k ∈ Z, so n3 ≡ n (mod 6).

Yet another approach is formally establishing the lemma (which can be seen as the gener-
alisation of the divisibility rule of 6):

�

a ≡ b (mod 2) ∧ a ≡ b (mod 3)
�

⇐⇒ a ≡ b (mod 6)

In one direction, we have that a = 2k+ b = 3l + b, so 2k = 3l for integers k and l ; since
3l must be even and 3 is odd, l must itself be even: l = 2m for some m ∈ Z. Substituting
back, we have a = 3 ·2m+ b, so a− b = 6m. In the opposite direction, a− b = 6k = 2 ·3 ·k,
which immediately implies 2 | a− b and 3 | a− b.

Now, it is su�cient to prove that n3 ≡ n (mod 2) and n3 ≡ n (mod 3). The latter is a direct
instance of Fermat’s Little Theorem for the prime 3; the former holds by the congruence
chain n3 ≡ n2 ≡ n (mod 2), with both steps using Fermat’s Little Theorem n2 ≡ n (mod 2),
multiplied by n in the first step using the product property of §2.1.2.

� There are usually many ways of approaching a proof, ranging from “brute force” methods
to elegant and concise number-theoretic arguments. It doesn’t technically matter what
you do as long as the proof is correct – but just like how “working” code doesn’t always
mean “neat and readable” code, you should strive to make your proofs as streamlined as
possible. It’s also very useful to practice recognising patterns and realising where some
known lemma or property can be applied, since they often end up doing the bulk of the
work: you shouldn’t need to reprove a specific case of a known, more general statement.

9. Prove that n7 ≡ n (mod 42) for all integers n.

An exhaustive case analysis would be impractical in this case. Instead, we adapt our more
conceptual solutions above.

D I S C R E T E M AT H E M AT I C S S O LU T I O N S W I T H CO M M E N TA RY

First, we use a very similar proof as above for the lemma
�

a ≡ b (mod 6) ∧ a ≡ b (mod 7)
�

⇐⇒ a ≡ b (mod 42)

(notice how the crucial step is 6k = 7l implying that 6 | l , because 6 - 7 – the lemma
wouldn’t hold for non-coprime numbers (see §1.2.5). Another trick in this case is recognising
that a − b = 7(a − b)− 6(a − b), and, since by assumption a − b = 6k = 7l , we have
a− b = 7 · 6k− 6 · 7l = 42 · (k− l).

Now, n7 ≡ n (mod 7) holds by Fermat’s Little Theorem. To show n7 ≡ n (mod 6), we
can equivalently show n7 ≡ n (mod 2) and n7 ≡ n (mod 3); both follow by repeated
applications of Fermat’s Little Theorem.

2.3. Optional exercises
1. Prove that for all integers n, there exist natural numbers i and j such that n= i2 − j2 i� either

n≡ 0 (mod 4) or n≡ 1 (mod 4) or n≡ 3 (mod 4).

Consider an arbitrary integer n.

(⇒) Assume there exist natural numbers i and j such that n = i2− j2. By Proposition 25 of
the notes, we have that

either i2 ≡ 0 (mod 4) or i2 ≡ 1 (mod 4)

and

either j2 ≡ 0 (mod 4) or j2 ≡ 1 (mod 4)

We therefore have four cases:

• i2 ≡ 0 (mod 4) and j2 ≡ 0 (mod 4), in which case n≡ 0 (mod 4);
• i2 ≡ 0 (mod 4) and j2 ≡ 1 (mod 4), in which case n≡ −1≡ 3 (mod 4);
• i2 ≡ 1 (mod 4) and j2 ≡ 0 (mod 4), in which case n≡ 1 (mod 4);
• i2 ≡ 1 (mod 4) and j2 ≡ 1 (mod 4), in which case n≡ 0 (mod 4);

Hence, either n≡ 0 (mod 4), or n≡ 1 (mod 4), or n≡ 3 (mod 4) as required.

(⇐) Assume that either n≡ 0 (mod 4), or n≡ 1 (mod 4), or n≡ 3 (mod 4). We need to
find natural numbers i and j such that n= i2 − j2.

Graphically, we want to show that one can distribute any number
of balls (as long as it’s congruent to 0, 1 or 3 modulo 4) in a
square grid leaving an empty square sub-grid, for instance as
follows (for i = 7, j = 3, and n= 40):

• • • • • • •
• • • • • • •
• • • • • • •
• • • •
• • • •
• • • •
• • • • • • •

We split our analysis in three cases.

• Case n is zero.

There are natural numbers i = j = 0 such that n= i2 − j2, and we are done.

https://www.cl.cam.ac.uk/teaching/2122/DiscMath/DiscMathProofsNumbersSetsNotes.pdf#page=101

D I S C R E T E M AT H E M AT I C S S O LU T I O N S W I T H CO M M E N TA RY

• Case n is a non-zero even integer.

As rem(n, 4) = n− quo(n, 4) · 4 (by the Division Theorem), it follows that rem(n, 4) is
even and since hence it is necessarily 0. Thus, n is in fact a non-zero multiple of 4; say
of the form 4 · k for some non-zero integer k. Then,

n = (k+ 1)2 − (k− 1)2 = (−k− 1)2 − (1− k)2

and since either

k+ 1 and k− 1 are natural numbers

or

−k− 1 and 1− k are natural numbers

there are natural numbers i, j such that n= i2 − j2. (Note that this argument slightly
generalises that of Proposition 22 of the notes.)

Graphically, we are in the following kind of situation:

•2 •2 •2 •2 •2 •2 •2 •3

•1 •3

•1 •3

•1 •3

•1 •3

•1 •3

•1 •3

•1 •4 •4 •4 •4 •4 •4 •4

• Case n is odd.

Then n= 2 · k+ 1 for some integer k, and

n = (k+ 1)2 − k2 = (−k− 1)2 − (−k)2 .

Since either

k+ 1 and k are natural numbers

or

−k− 1 and −k are natural numbers

there are natural numbers i, j such that n= i2 − j2.

D I S C R E T E M AT H E M AT I C S S O LU T I O N S W I T H CO M M E N TA RY

Graphically, we are in the following kind of situation:

• •2 •2 •2 •2 •2 •2

•1

•1

•1

•1

•1

•1

� Graphical proofs are great for intuition: so called “proofs without words” are often as
illuminating as they are beautiful. However, they are not (usually) a substitute for a formal
proof by logical reasoning, especially if the proposition to be shown is more general than
what could be encoded graphically. In this case, the statement is about all integers n, while
the graphical proof can only work for a natural number n.

2. A decimal (respectively binary) repunit is a natural number whose decimal (respectively binary)
representation consists solely of 1’s.

a) What are the first three decimal repunits? And the first three binary ones?

The first three decimal repunits are 1, 11, and 111; while the first three binary repunits
are 1, 3, and 7.

b) Show that no decimal repunit strictly greater than 1 is a square, and that the same holds
for binary repunits. Is this the case for every base? Hint: Use Lemma 26 of the notes.

Let n be a decimal repunit greater than 1; that is, n=
∑l

i=0 10i for some l ≥ 1. Then,

n≡
l
∑

i=0

2i ≡ 1+ 2= 3 (mod 4)

and, by Proposition 25 of the notes, we deduce that n is not square.

Incidentally, the calculation above already contains the proof of the property for
binary repunits, since they are of the form n=

∑l
i=0 2i

The statement:

For every base r , there are no r-ary repunits greater than 1 that are square.

is false. As a counterexample, take the base r = 3 and the 3-ary repunit 4 consisting
of two 1’s.

https://www.cl.cam.ac.uk/teaching/2122/DiscMath/DiscMathProofsNumbersSetsNotes.pdf#page=104
https://www.cl.cam.ac.uk/teaching/2122/DiscMath/DiscMathProofsNumbersSetsNotes.pdf#page=101

D I S C R E T E M AT H E M AT I C S S O LU T I O N S W I T H CO M M E N TA RY

3. More on numbers
3.1. Basic exercises

1. Calculate the set CD(666,330) of common divisors of 666 and 330.

We have that 666 = 2·32 ·37 and 330 = 2·3·5·11. Hence, CD(666, 330) = {1, 2, 3, 2·3 } =
{1,2, 3,6 }.

� You may be familiar with this method of computing the common divisors of two numbers
using their prime factorisation – this of course relies on the Fundamental Theorem of
Arithmetic, introduced later in the course.

2. Find the gcd of 21212121 and 12121212.

We run Euclid’s Algorithm:

gcd(21212121,12121212) = gcd(12121212,9090909)

= gcd(9090909,3030303)

= 3030303

3. Prove that for all positive integers m and n, and integers k and l ,

gcd(m, n) | (k ·m+ l · n)

Let m, n be positive integers and k, l be integers. As gcd(m, n) | m and gcd(m, n) | n it
follows from §1.2.6(a) that gcd(m, n) | k · m and gcd(m, n) | l · n; from which it further
follows by §1.2.6(b) that gcd(m, n) | (k ·m+ l · n).

� Like rem, we can treat gcd(m, n) as a function of two positive integers m and n, or as a
symbol for the greatest common divisor of m and n defined using the universal property
of gcds. For example, we make use of the fact that gcd(m, n) is a common divisor of m and
n, so we “automatically” get gcd(m, n) | m and gcd(m, n) | n. We will see more examples
of this in the upcoming exercises.

4. Find integers x and y such that x · 30+ y · 22 = gcd(30, 22). Now find integers x ′ and y ′ with
0≤ y ′ < 30 such that x ′ · 30+ y ′ · 22= gcd(30,22).

Run the Extended Euclid’s Algorithm to find that gcd(30,22) = 2 and x · 30+ y · 22= 2
for x = 3 and y = −4. To get a y ′ between the range 0≤ y ′ < 30, we notice that

(x + 11 · l) · 30+ (y − 15 · l) · 22= 2

for all integers l (Slide 219), and find a value l0 such that 0 ≤ y − 15 · l0 < 30 setting
x ′ = x +11 · l0 and y ′ = y −15 · l0. The two options are l0 = −1 for (−8) ·30+11 ·22 = 2,
and l0 = −2 for (−19) · x + 26 · 22= 2.

5. Prove that for all positive integers m and n, there exists integers k and l such that k ·m+ l ·n = 1
i� gcd(m, n) = 1.

https://www.cl.cam.ac.uk/teaching/2122/DiscMath/DiscMathProofsNumbersSetsNotes.pdf#page=188
https://www.cl.cam.ac.uk/teaching/2122/DiscMath/DiscMathProofsNumbersSetsNotes.pdf#page=217
https://www.cl.cam.ac.uk/teaching/2122/DiscMath/DiscMathProofsNumbersSetsNotes.pdf#page=220

D I S C R E T E M AT H E M AT I C S S O LU T I O N S W I T H CO M M E N TA RY

(⇒) By Corollary 62 of the notes: if 1 can be expressed as a linear combination of m and n,
and gcd(m, n)must divide any linear combination of m and n, we must have gcd(m, n) = 1.

(⇐) By Theorem 70 of the notes: gcd(m, n) is a linear combination of m and n.

6. Prove that for all integers n and primes p, if n2 ≡ 1 (mod p) then either n ≡ 1 (mod p) or
n≡ −1 (mod p).

Assume n2 ≡ 1 (mod p). Then p divides n2 − 1 = (n− 1) · (n+ 1). By Euclid’s Theorem,
p | (n− 1) or p | (n+ 1); that is, either n≡ 1 (mod p) or n≡ −1 (mod p).

3.2. Core exercises
1. Prove that for all positive integers m and n, gcd(m, n) = m i� m | n.

Let m and n be arbitrary positive integers.

(⇒) Assume that gcd(m, n) = m. Then m is the greatest common divisor of both m and n,
and in particular a divisor of n.

(⇐) Assume m | n.

Here are two arguments.

a) We have that n= k ·m for some positive integer k, and hence that

gcd(m, n) = gcd(m, k ·m) = m · gcd(1, k) = m

where the second equality is a consequence of the linearity property (Lemma 63(3) of
the notes) of gcd.

b) By Theorem 61 of the notes, it su�ces to prove that

• m | m and m | n, and
• for all positive integers d such that d | m and d | n it necessarily follows that

d | m;

all of which hold trivially.

� It’s worth analysing the second approach, as it’s quite characteristic of proofs by
universal properties: the proof just “pops out” without us having to do a whole lot of work,
similar to our use of the Division Theorem in §2.1.3(a).

As mentioned in §3.1.3, there are several equivalent ways of thinking about gcds. One is
as a function of two positive integers m and n, computed via Euclid’s Algorithm; another
is as a label for a unique number characterised by the universal property of being the
greatest common divisor of m and n. The di�erence may seem insignificant, but that
is precisely because of Theorem 61, which states that the value computed by Euclid’s
Algorithm coincides with the greatest common divisor. The universal property of gcds
(which we’ll get to shortly) is the specification of what it is to be a greatest common divisor;

https://www.cl.cam.ac.uk/teaching/2122/DiscMath/DiscMathProofsNumbersSetsNotes.pdf#page=201
https://www.cl.cam.ac.uk/teaching/2122/DiscMath/DiscMathProofsNumbersSetsNotes.pdf#page=221
https://www.cl.cam.ac.uk/teaching/2122/DiscMath/DiscMathProofsNumbersSetsNotes.pdf#page=212
https://www.cl.cam.ac.uk/teaching/2122/DiscMath/DiscMathProofsNumbersSetsNotes.pdf#page=203
https://www.cl.cam.ac.uk/teaching/2122/DiscMath/DiscMathProofsNumbersSetsNotes.pdf#page=192
https://www.cl.cam.ac.uk/teaching/2122/DiscMath/DiscMathProofsNumbersSetsNotes.pdf#page=188
https://www.cl.cam.ac.uk/teaching/2122/DiscMath/DiscMathProofsNumbersSetsNotes.pdf#page=192

D I S C R E T E M AT H E M AT I C S S O LU T I O N S W I T H CO M M E N TA RY

Theorem 61 states that Euclid’s Algorithm satisfies the specification. We don’t define the
greatest common divisor of m and n as “the number returned by Euclid’s Algorithm”; just
as how we don’t define a sorted list as “the list returned by the quicksort algorithm” or
a lasagna as “the dish you get by following this specific recipe in this specific cookbook”.
We already know what a gcd/sorted list/lasagna is supposed to be, and we can then ask
whether some algorithm computes the gcd or some recipe makes a lasagna, or it doesn’t.
Of course, what makes a lasagna and what is the best lasagna is entirely subjective, while
mathematical concepts can be unambiguously characterised using universal properties.

Universal properties have two parts: the property and the universality. The former charac-
terises the set of candidates for the concept we are considering; the latter selects a specific
candidate which is “better” than all the other ones. In the case of the greatest common
divisor of m and n, the property is that of being a common divisor of m and n: the set of
candidates that satisfy this property is CD(m, n). The “best” such candidate that we are
looking for is the one which is greater than all the other ones, and since CD(m, n) is a finite
non-empty set of natural numbers, it must have a unique greatest element max(CD(m, n)).
We can denote this element (which depends entirely on m and n) as gcd(m, n) and call it
the greatest common divisor of m and n.

From this description (or, really, definition) of gcd(m, n) as the greatest element of the set of
common divisors, we can directly extract two “axioms”: gcd(m, n) ∈ CD(m, n) (since it is a
common divisor), and for all d ∈ CD(m, n), d ≤ gcd(m, n) (since it is the greatest common
divisor). In fact, we can state something stronger: not only are all other common divisors
numerically smaller than gcd(m, n), they also all divide it: ∀d ∈ CD(m, n). d | gcd(m, n).
Expanding these, we universally characterise gcd(m, n) as the unique natural number g
satisfying the properties of being a common divisor and a multiple of all common divisors:

1© g | m ∧ g | n 2© ∀d ∈ Z+. (d | m ∧ d | n) =⇒ d | g

Using the transitivity of divisibility (§1.2.4), we can combine these into the concise specific-
ation of the universal property of greatest common divisors:

3© ∀d ∈ Z+. (d | m ∧ d | n) ⇐⇒ d | gcd(m, n)

It’s easy to show that gcds are unique: if we had two gcds, both would have to satisfy 2©
and, in particular, they must divide each other; but divisibility (on positive integers) is
antisymmetric (§1.2.8), so the two gcds must be equal. Uniqueness in turn gives rise to the
following important proof principle:

To prove that a number g ∈ Z+ is equal to gcd(m, n),
it is su�cient to show that g satisfies 1© and 2©.

This is similar to the approach we used with the Division Theorem: to prove that a number
r is equal to rem(m, n), it was su�cient to show that it is less than n and it can appear in
an expansion m= q · k+ r with q ∈ N. Adapting this technique to the combined form 3©,

D I S C R E T E M AT H E M AT I C S S O LU T I O N S W I T H CO M M E N TA RY

we get a useful and particularly simple variation:

To prove that a number d divides gcd(m, n), it’s su�cient to show that d | m and d | n.

This, combined with the antisymmetry of divisibility (on positive integers), allows us to
prove equality of gcds, as shown in the example proofs of Lemma 63 in the notes. In
essence, the first step in proving something about gcd(m, n) or rem(n, m) is “forgetting”
about the gcd or rem and approach the proof via the universal property; it may seem like
a very roundabout technique (as opposed to, for example, a direct chain of equalities
ending in gcd(m, n)), but it often leads to short and straightforward proofs. However, it’s
definitely not the case that all proofs about gcds have to be done this way, and we’ll see
more examples later!

To conclude the discussion, let us expand on proof (b) of this exercise, which uses the UP
of gcds. To recap, in the (⇐) direction we need to show:

∀m, n ∈ Z+. m | n=⇒ gcd(m, n) = m

As always, assume m, n ∈ Z+ and m | n. The proof goal gcd(m, n) = m asks us to show
that m is equal to gcd(m, n); but, by the proof principle above, it is su�cient to show that
m satisfies 1© and 2©. That is,

1© m | m ∧ m | n 2© ∀d ∈ Z+. (d | m ∧ d | n) =⇒ d | m

1© holds by reflexivity of | and our assumption m | n; 2© is a direct implication. And that’s
it! The proof (a) wasn’t exactly complicated either, but (b) was rightly labelled as “trivial”.

The beautiful thing about this characterisation of gcds is that it is an instance of a much
more general mathematical notion called a greatest lower bound (with the dual least upper
bound being the least common multiple). These concepts appear all over mathematics and
computer science, and you will encounter many examples in this course as well; accordingly,
the proof technique described above can be (and will be, and has already been!) applied in
several seemingly di�erent contexts. As a teaser, see if you can spot the similarity between
statement 3© above, and the pattern for proving a conjunction of two statements P and Q
given any set A of assumptions:

∀A. (A⇒ P) ∧ (A⇒Q) ⇐⇒ A⇒ (P ∧ Q)

2. Let m and n be positive integers with gcd(m, n) = 1. Prove that for every natural number k,

m | k ∧ n | k ⇐⇒ m · n | k

Let m and n be arbitrary positive integers, and assume that 1© gcd(m, n) = 1. Further, let
k be a natural number.

(⇒) Assume that 2© m | k and 3© n | k.

https://www.cl.cam.ac.uk/teaching/2122/DiscMath/DiscMathProofsNumbersSetsNotes.pdf#page=203

D I S C R E T E M AT H E M AT I C S S O LU T I O N S W I T H CO M M E N TA RY

It follows from 1© that
m · i + n · j = 1 4©

for some integers i, j; and it follows from 2© and 3© that

k = a ·m= b · n 5©

for some natural numbers a, b.

Multiplying 4© by k on both sides and using 5©, we therefore have

k = b · n ·m · i + a ·m · n · j = (b · i + a · j) · (m · n)

showing that (m · n) | k.

(⇐) Assume that (m · n) | k. Then, since both m | (m · n) and n | (m · n), by the transitivity
of divisibility, we are done.

� The (⇒) direction of this proof used another characterisation of gcd(m, n) as the
least positive linear combination of m and n. (NB: “Least” here means “lowest”, not the
superlative of “less positive”.) Now that we are more familiar with universal properties, we
can decode this description as 1© gcd(m, n) is a linear combination of m and n, and 2©
gcd(m, n) divides all linear combinations of m and n:

1© ∃k0, l0 ∈ Z. k0 ·m+ l0 · n= gcd(m, n) 2© ∀k, l ∈ Z. gcd(m, n) | k ·m+ l · n

This characterisation is especially useful if we are able to express 1 as a linear combination
of m and n, since 2© means they must be coprime, i.e. gcd(m, n) = 1. Another common
use of an assumption of coprimality gcd(m, n) = 1 is that multiplication by gcd(m, n) is a
no-op, so we can freely introduce gcd(m, n) or k0 ·m+ l0 · n for some k0, l0 ∈ Z into any
expression. This is what we make use of in the question when multiplying 4© and 5©.

3. Prove that for all positive integers a, b, c, if gcd(a, c) = 1 then gcd(a · b, c) = gcd(b, c).

Below are three di�erent proofs of the property.

Proof by equational reasoning

For a, b, c positive integers such that gcd(a, c) = 1, we have

gcd(b, c) = gcd(gcd(a, c) · b, c) (since gcd(a, c) = 1)
= gcd(gcd(a · b, c · b), c) (by linearity)
= gcd(a · b, gcd(c · b, c)) (by associativity)
= gcd(a · b, c) (by §3.2.1)

Proof by universality

Let a, b, c positive integers such that gcd(a, c) = 1. We need to prove that gcd(a · b, c) =
gcd(b, c), or equivalently, that gcd(a · b, c) | gcd(b, c) and gcd(b, c) | gcd(a · b, c). By the

D I S C R E T E M AT H E M AT I C S S O LU T I O N S W I T H CO M M E N TA RY

universal property of gcds, it is su�cient to show the following two properties:

• gcd(a · b, c) | b and gcd(a · b, c) | c. The latter holds since gcd(a · b, c) is a divisor of c.
To establish the former, we note that b = gcd(a, c) · b (since a and c are coprime), and
by distributivity, gcd(a · b, c · b). Thus, we can show that gcd(a · b, c) | gcd(a · b, c · b),
or equivalently, gcd(a · b, c) | a · b and gcd(a · b, c) | c · b, both of which follow from
gcd(a · b, c) being a common divisor of a · b and c.

• gcd(b, c) | a · b and gcd(b, c) | c. Both follow from gcd(b, c) being a divisor of b and c.

Proof using the Fundamental Theorem of Arithmetic

The Fundamental Theorem of Arithmetic states that every positive integer is expressible
as the product of a unique finite sequence of ordered primes. If two integers are coprime,
their unique prime factorisations must be disjoint: that is, there is no prime p that appears
in the factorisation of both a and c. For any b ∈ Z+, the prime factorisation of a · b will
be the product of those of a and b. Therefore the common prime factors of a · b and c
must be the common factors of b and c, since there are no common factors of a and c
by assumption. Since the greatest common divisor is the product of the common prime
factors, we must have gcd(a · b, c) = gcd(b, c).

� These are three fairly di�erent proofs of the same (relatively simple) theorem: one uses
equational reasoning and some properties of gcds, the second makes use of universality,
while the third relies on a powerful and general theorem rather than gcd properties. The
first is probably the most concise form, but of course it relies on us having established all
the required properties of gcds already.

4. Prove that for all positive integers m and n, and integers i and j:

n · i ≡ n · j (mod m) ⇐⇒ i ≡ j
�

mod
m

gcd(m, n)

�

We have:

n · i ≡ n · j (mod m) ⇐⇒ k ·m= n(i − j)

⇐⇒ k ·
m

gcd(m, n)
=

n
gcd(m, n)

· (i − j)

⇐⇒
m

gcd(m, n)

�

�

�

�

n
gcd(m, n)

· (i − j)

Now we show that

m
gcd(m, n)

�

�

�

�

n
gcd(m, n)

· (i − j) ⇐⇒ i ≡ j
�

mod
m

gcd(m, n)

�

(⇐)We have m
gcd(m,n)

�

� i − j by assumption, and from the multiplication property of divisib-
ility (§1.2.6(b)), we have m

gcd(m,n)

�

�

n
gcd(m,n) · (i − j).

https://www.cl.cam.ac.uk/teaching/2122/DiscMath/DiscMathProofsNumbersSetsNotes.pdf#page=261

D I S C R E T E M AT H E M AT I C S S O LU T I O N S W I T H CO M M E N TA RY

(⇒)We first establish that m
gcd(m,n) and n

gcd(m,n) are coprime using linearity:

gcd(m, n) = gcd
�

m · gcd(m, n)
gcd(m, n)

,
n · gcd(m, n)

gcd(m, n)

�

= gcd(m, n)·gcd
�

m
gcd(m, n)

,
n

gcd(m, n)

�

Since gcd(m, n) is a positive integer, this equality can only hold if gcd
�

m
gcd(m,n) ,

n
gcd(m,n)

�

= 1.

This assumption of coprimality can then be used in Euclid’s Theorem to conclude

m
gcd(m, n)

�

�

�

�

n
gcd(m, n)

· (i − j) =⇒
m

gcd(m, n)

�

�

�

�

(i − j)

as required.

� The inspiration for the first “creative” step (dividing both sides by gcd(m, n)) comes
from seeing the term m

gcd(m,n) in the proof goal.

� A very useful corollary of this theorem is that we can always divide both sides of a
congruence by a positive integer that is coprime with the modulus. Similarly, we can divide
both sides of the congruence and the modulus with any positive integer that divides all
three. The general theorem handles the case “in between”, when a positive integer divides
both sides of the congruence, but not the modulus.

5. Prove that for all positive integers m, n, p, q such that gcd(m, n) = gcd(p, q) = 1, if q ·m = p ·n
then m= p and n= q.

Let m, n, p, q be positive integers. Assume that gcd(m, n) = gcd(p, q) = 1 and further that
1© q ·m= p · n.

Multiplying both sides of the identity 1= gcd(m, n) by p and using the linearity property
of gcd we have that

p = p · gcd(m, n) = gcd(p ·m, p · n) 2©

Now, from 1© and the linearity property of gcd, we also have that

gcd(p ·m, p · n) = gcd(p ·m, q ·m) = gcd(p, q) ·m 3©

Finally, since gcd(p, q) = 1, one has p = m from 2© and 3©.

We can show with an analogous argument that n= q as well.

6. Prove that for all positive integers a and b, gcd(13 · a+ 8 · b, 5 · a+ 3 · b) = gcd(a, b).

Calculational proof

For all positive integers a and b, one has

gcd
�

13 · a+ 8 · b, 5 · a+ 3 · b
�

= gcd
�

(13 · a+ 8 · b)− (5 · a+ 3 · b), 5 · a+ 3 · b
�

= gcd
�

8 · a+ 5 · b, 5 · a+ 3 · b
�

= gcd
�

(8 · a+ 5 · b)− (5 · a+ 3 · b), 5 · a+ 3 · b
�

https://www.cl.cam.ac.uk/teaching/2122/DiscMath/DiscMathProofsNumbersSetsNotes.pdf#page=212

D I S C R E T E M AT H E M AT I C S S O LU T I O N S W I T H CO M M E N TA RY

= gcd
�

3 · a+ 2 · b, 5 · a+ 3 · b
�

= gcd
�

3 · a+ 2 · b, (5 · a+ 3 · b)− (3 · a+ 2 · b)
�

= gcd
�

3 · a+ 2 · b, 2 · a+ b
�

= gcd
�

(3 · a+ 2 · b)− (2 · a+ b), 2 · a+ b
�

= gcd
�

a+ b, 2 · a+ b
�

= gcd
�

a+ b, (2 · a+ b)− (a+ b)
�

= gcd
�

a+ b, a
�

= gcd
�

(a+ b)− a, a
�

= gcd(b, a)

= gcd(a, b)

Conceptual proof (advanced)

We prove following general statement (see 2018/P8/Q9 exam question):

∀n ∈ N. gcd(a · Fn+3 + b · Fn+ 2, a · Fn+1 + b · Fn) = gcd(a, b)

where Fn is the nth Fibonacci number, defined recursively as

F0 = 0 F1 = 1 Fn+2 = Fn+1 + Fn

For n ∈ N, we prove the following two properties, which, by the universal property of gcds,
will imply the required equality.

• Both gcd(a, b) | (aFn+3 + bFn+2) and gcd(a, b) | (aFn+1 + bFn).

gcd(a, b) divides both a and b, so it divides every integer linear combination of them
(§1.2.6(c)).

• For all positive integers d ,

if d | (aFn+3 + bFn+2) and d | (aFn+1 + bFn) then d | gcd(a, b).

Let d be a positive integer such that d | (aFn+3+ bFn+2) and d | (aFn+1+ bFn); so that
di = aFn+3 + bFn+2 and d j = aFn+1 + bFn for (positive) integers i and j.

It follows that

d · (iFn − jFn+2) = (Fn · Fn+3 − Fn+2 · Fn+1) · a

= (Fn · Fn+2 + Fn · Fn+1 − Fn · Fn+1 − Fn+1 · Fn+1) · a

=
�

Fn · Fn+2 − F2
n+1

�

· a

= (−1)n+1a (Cassini’s Identity)

https://www.cl.cam.ac.uk/teaching/exams/solutions/2018/2018-p02-q09-solutions.pdf

D I S C R E T E M AT H E M AT I C S S O LU T I O N S W I T H CO M M E N TA RY

so that d | a; and, analogously,

d · (iFn+1 − jFn+3) = (Fn+1 · Fn+2 − Fn+3 · Fn) · a

= (Fn+1 · Fn+1 + Fn · Fn+1 − Fn · Fn+1 − Fn · Fn+2) · b

=
�

F2
n+1 − Fn · Fn+2

�

· b

= (−1)n b (Cassini’s Identity)

so that d | b. Thus, d | gcd(a, b) as required.

� You will learn more about Fibonacci numbers in the next set of exercises.

7. Let n be an integer.

a) Prove that if n is not divisible by 3, then n2 ≡ 1 (mod 3).

This is an instance of Fermat’s Little Theorem.

b) Show that if n is odd, then n2 ≡ 1 (mod 8).

Let n be an odd integer, and thereby let k be an integer such that n= 2 · k+ 1.

We consider two cases.

• Case k is even.

Then, k = 2 · l for some integer l , and n2 = 8 · l · (2 · l + 1)≡ 1 (mod 8).

• Case k is odd.

Then, k = 2· l+1 for some integer l , and n2 = 8·(2· l+1)·(l+2)+1≡ 1 (mod 8).

Either way n2 ≡ 1 (mod 8), as required.

c) Conclude that if p is a prime number greater than 3, then p2 − 1 is divisible by 24.

Let p be a prime greater than 3. Then, p is an odd integer not divisible by 3 and it
follows from part (a) that: 1© 3 | (p2 − 1). Moreover, as p is odd, we have from part
(b) that: 2© 8 | (p2 − 1).

Finally, since gcd(3,8) = 1, by §3.2.2 one has that 1© and 2© imply 24 | (p2 − 1) as
required.

8. Prove that n13 ≡ n (mod 10) for all integers n.

To show n13 ≡ n (mod 10), by the direct corollary of §3.2.2 it is su�cient to show n13 ≡
n (mod 2) and n13 ≡ n (mod 5). Both hold by successive applications of Fermat’s Little
Theorem, repeatedly reducing n2 or n5 to n until we reach n. For example:

n13 = n5 · n5 · n3 ≡ n · n · n3 = n5 ≡ n (mod 5)

9. Prove that for all positive integers l , m and n, if gcd(l, m · n) = 1 then gcd(l, m) = 1 and
gcd(l, n) = 1.

https://www.cl.cam.ac.uk/teaching/2122/DiscMath/DiscMathProofsNumbersSetsNotes.pdf#page=122

D I S C R E T E M AT H E M AT I C S S O LU T I O N S W I T H CO M M E N TA RY

Let l , m, and n be arbitrary positive integers, and assume that gcd(l, m · n) = 1.

By §3.1.5(⇐) , there exist integers i and j such that i · l + j ·m · n= 1. Thus, we have that

there exist integers i and a such that i · l + a ·m= 1

and

there exist integers i and b such that i · l + b · n= 1.

Therefore, by §3.1.5(⇒) one has that gcd(l, m) = 1 and gcd(l, n) = 1.

10. Solve the following congruences:

a) 77 · x ≡ 11 (mod 40)

By §3.2.4, a solution will satisfy the congruence i� it satisfies †© 7 · x ≡ 1 (mod 40)
(gcd(40, 11) = 1 so the modulus does not change). As 7 and 40 are coprime, this
amounts to finding the multiplicative inverse of 7 in Z40 (Corollary 75), which is the
second coe�cient in the expression of 1 as a linear combination of 40 and 7. We run
the Extended Euclid’s Algorithm to find that 40 · 3+ 7 · (−17) = 1. Thus, x0 = −17 is
a solution to †©, and therefore to 77 · x0 ≡ 11 (mod 40). To find the general form of
solutions, we note that the linear combination of 40 and 7 is not unique (Slide 219),
so x can have the general form x = −17+ 40n≡ 23+ 40n for any integer n.

b) 12 · y ≡ 30 (mod 54)

By §3.2.4, a solution will satisfy the congruence i� it satisfies †© 2 · y ≡ 5 (mod 9),
that is, 2 · y+9 ·k = 5 for some k ∈ Z. Now, since 2 and 9 are coprime, we can express
1 as their linear combination, computing the coe�cients using the Extended Euclid’s
Algorithm: 2 · (−4)+9 ·1 = 1. Multiplying both sides by 5 gives us 2 · (−20)+9 ·5 = 5,
which is a solution to †© with y0 = −20. To generate all the solutions, we note that †©
is satisfied by y0+9n for any n, so y can have the general form y = −20+9n≡ 7+9n
for any integer n.

c)

(

13≡ z (mod 21)

3 · z ≡ 2 (mod 17)

To solve a system of congruences, we find the general form of solutions for the
congruences individually, then find the ones that satisfy both.

All solutions to the first congruence are of the form z1 = 13+ 21k for k ∈ Z.

Solutions of the congruence 3·z ≡ 2 (mod 17) satisfy †© 3·z+17·n = 2. Since 3 and 17
are coprime, we can express 1 as their linear combination using EEA: 3·6+17·(−1) = 1.
Multiplying by 2 on both sides gives a solution to †©, and from there, we get the
general form of solutions as z2 = 12+ 17l for l ∈ Z.

The solutions for the congruence system will be those which are both of the form z1

https://www.cl.cam.ac.uk/teaching/2122/DiscMath/DiscMathProofsNumbersSetsNotes.pdf#page=229
https://www.cl.cam.ac.uk/teaching/2122/DiscMath/DiscMathProofsNumbersSetsNotes.pdf#page=217
https://www.cl.cam.ac.uk/teaching/2122/DiscMath/DiscMathProofsNumbersSetsNotes.pdf#page=220

D I S C R E T E M AT H E M AT I C S S O LU T I O N S W I T H CO M M E N TA RY

and z2 simultaneously:
13+ 21 · k = 12+ 17 · l

Albeit this looks like one equation with two unknowns, we can rearrange it to the
form

21 · (−k) + 17 · l = 1 ‡©

which we can solve using EEA, since 21 and 17 are coprime:

21 · (−4) + 17 · 5= 1

Thus, ‡© has general solutions k = 4+ 17i and l = 5+ 21 j for i, j ∈ Z; at these
specific values of k, the general solution z1 = 13+21 · k for the first congruence also
satisfies the second congruence (and similarly for z2). Substituting k into z1 or l into
z2 gives

z = 97+ 357i ∀i ∈ Z.

which is the general form of solutions that satisfy the system of congruences.

� This question shows the usefulness of the characterisation of gcds via linear combin-
ations: it allows us to solve one equation with two unknowns, as long as the RHS is a
multiple of the gcd of the coe�cients (so if the coe�cients are coprime, the RHS can be
any positive integer). Solving a congruence ax ≡ b (mod m) amounts to characterising the
integer solutions of the equation ax −my = b (known as a linear Diophantine equation),
which exist only if gcd(a, m) | b.

If a congruence ax ≡ b (mod m) has one solution x0 (i.e. if gcd(a, m) | b), it has an infinite
number of solutions of the form x = x0+pk for k ∈ Z, all separated by a “period” p. In some
cases (such as part (a)), the period coincides with the modulus, so all possible solutions
can be derived from a single integer x0 ∈ Zm. In other cases (such as part (b)) the solutions
may be more “frequent” due to the period being a fraction of the modulus: m= dp. Then,
the solutions x0 + pk can be split into d classes, all with the period m, but di�erent initial
values x0, x1, . . . xd−1 ∈ Zm. One such class { . . . , x − 2m, x −m, x , x +m, x + 2m, . . . } is
often called the congruence class of x modulo m (denoted xm or sometimes [x]m, although
this course uses the latter notation to refer to the least positive element of xm in Zm), so
in essence, an infinite number of integer solutions to a congruence can be characterised
by a finite number of congruence classes. With this interpretation, part (a) had only one
solution 2340, while part (b) had six:

754 1654 2554 3454 4354 5254

By considering a solution to be a congruence class modulo m, we can show that a congru-
ence ax ≡ b (mod m) has exactly gcd(a, m) solutions if gcd(a, m) | b, and 0 otherwise.
Of course, the d = gcd(a, m) congruence classes modulo m can be combined into one
congruence class modulo m/d – the two representations are equivalent, but one may be

D I S C R E T E M AT H E M AT I C S S O LU T I O N S W I T H CO M M E N TA RY

more useful in some contexts than the other. As an example, compare the phrases “every 8
hours starting at 1am” and “every day at 1am, 9am, and 5pm”, and how we must use the
latter form to refer to events repeating regularly several times a week because 7 prime.

Since integer solutions of a congruence are not unique, we can ask which solutions of one
congruence also satisfy another – that is, solve a system of congruences. These are quite
di�erent from the systems of equations you are familiar with, which involve n unknowns
and n independent equations, and the solution is found by expressing one variable in
terms of the others and performing substitutions. Congruence systems involve only one
unknown, and the individual congruences are independent constraints on this one unknown.
Rather than trying to combine the congruences via substitution, we solve each of them
independently, getting sets of congruence classes for each individual congruence. Then, the
task is finding the common elements of the congruence classes (their intersection), which
therefore must satisfy the whole system of congruences simultaneously. If the individual
solutions have the form x + pk and y +ql , the congruence classes x p and y p will intersect
when x + pk = y + ql ; this now becomes another linear Diophantine equation of the form
pk− ql = y − x that can be solved if gcd(p, q) | y − x . The resulting integer values for k
and l tell us the number of periods one needs to o�set x and y by until they coincide, and
since all solutions are uniformly periodic, k and l will themselves be periodic congruence
classes. The general expressions can then be substituted back into either x + pk or y + ql
to find an initial value and a larger period for the solutions that satisfy both parts of the
congruence system.

As a simple example, consider the congruence classes 12, 23 and 24. The classes 12 and 23

will intersect whenever 1+ 2n = 2+ 3k, and the linear Diophantine equation 2n− 3k = 1
has solutions n = 3m+ 2 and k = 2m+ 1. What this means is that every 3rd starting
from the second one (using 0-indexed counting) will coincide with every 2nd � starting
from the first one, as can be seen below at step 5 (when m= 0) and 11 (when m= 1). To
figure out what “every 3rd starting from the second one” means on the resolution of the
integers, we substitute the solution for n back into 1+ 2n, which combines the periods of
“there is a solution at every 3rd circle” and “there is a circle every 2 steps” into “there is
a solution every 6 steps” and similarly for the o�set. Thus, the intersection of 12 and 23

will be 56. We can do a similar procedure to find the intersection of 23 and 24 to be 212.
However, 12 and 24 will never intersect, since the Diophantine equation 2n− 4l = 1 has
no solutions – gcd(2,4) = 2 - 1. Congruence systems often arise from the interaction of
periodic events: examples are scheduling, polyrhythms, predator-prey life cycles, etc.

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1+ 2n

2+ 3k � � � � �

2+ 4l Î Î Î Î

D I S C R E T E M AT H E M AT I C S S O LU T I O N S W I T H CO M M E N TA RY

11. What is the multiplicative inverse of: (a) 2 in Z7, (b) 7 in Z40, and (c) 13 in Z23?

We apply Corollary 75 of the notes, which states that if gcd(m, n) = 1, the multiplicative
inverse of [n]m is [lc2(m, n)]m, where lc2(m, n) is the second coe�cient of the expression
of 1 as a linear combination of m and n using EEC. With this, we get that:

a) 1 · 7+ (−3) · 2= 1, so 2−1 ≡ 4 (mod 7)
b) 3 · 40+ (−17) · 7= 1, so 7−1 ≡ 23 (mod 40)
c) 4 · 23+ (−7) · 13= 1, so 13−1 ≡ 16 (mod 23)

12. Prove that
�

2212001
�

175
has a multiplicative inverse in Z175.

We first establish the following lemma:

For every pair of positive integers m and n, we have that
[n]m has a multiplicative inverse in Zm i� gcd(m, n) = 1.

(⇒) Let m and n be arbitrary positive integers, and assume that [n]m has a multiplicative
inverse in Zm, say l . Then,

n · l ≡ [n · l]m = [n]m ·m l = 1 (mod m)

and thus there exists an integer k such that n · l + m · k = 1. Thus, from §3.1.5(⇒) ,
gcd(m, n) = 1.

(⇐) By Corollary 75(2) of the notes.

Now, gcd(2212001, 175) = gcd(212001 · 1112001, 52 · 7), and since the two numbers have no
prime factors in common, they must be coprime. By the above lemma, gcd(2212001, 175) = 1
implies that

�

2212001
�

175
has a multiplicative inverse, as required.

3.3. Optional exercises
1. Let a and b be natural numbers such that a2 | b · (b+ a). Prove that a | b.

Hint: For positive a and b, consider a0 =
a

gcd(a,b) and b0 =
b

gcd(a,b) so that gcd(a0, b0) = 1, and
show that a2 | b(b+ a) implies a0 = 1.

If either a or b are 0 the result is straightforward. Consider thus the case in which both a
and b are positive integers, and assume that a2 | b(b+ a).

Then, for a0 =
a

gcd(a,b) and b0 =
b

gcd(a,b) , we have that a0 | b0(b0+a0) and, since gcd(a0, b0) =
1, that a0 | (b0+a0) so that a0 | b0 and thus a0 = gcd(a0, b0) = 1. Therefore, gcd(a, b) = a
and we are done.

2. Prove the converse of §1.3.1(f): For all natural numbers n and s, if there exists a natural number
q such that (2n+ 1)2 · s+ tn = tq, then s is a triangular number. (49th Putnam, 1988)

Hint: Recall that if †© q = 2nk+ n+ k then (2n+ 1)2 tk + tn = tq. Solving for k in †©, we get
that k = q−n

2n+1 ; so it would be enough to show that the fraction q−n
2n+1 is a natural number.

https://www.cl.cam.ac.uk/teaching/2122/DiscMath/DiscMathProofsNumbersSetsNotes.pdf#page=229
https://www.cl.cam.ac.uk/teaching/2122/DiscMath/DiscMathProofsNumbersSetsNotes.pdf#page=229

D I S C R E T E M AT H E M AT I C S S O LU T I O N S W I T H CO M M E N TA RY

Suggested by a 2014/15 student (who wished to remain anonymous).

Assume (2n + 1)2s + tn = tq. Then, tn ≡ tq

�

mod (2n+ 1)2
�

; so that n(n + 1) ≡
q(q+ 1)

�

mod (2n+ 1)2
�

and hence (q− n)(q− n+ 2n+ 1)≡ 0
�

mod (2n+ 1)2
�

.

Therefore (2n+ 1)2 | (q− n)(q− n+ 2n+ 1), and it follows from the previous item that
(2n+ 1) | (q− n).

As tq ≥ tn, we have that q ≥ n, and therefore that k = q−n
2n+1 is a natural number. By

assumption and the solution to §1.3.1(f), we then have:

(2n+ 1)2 s+ tn = tq = (2n+ 1)2 tk + tn

and so that s = tk, as required.

3. Informally justify the correctness of the following alternative algorithm for computing the gcd
of two positive integers:

let rec gcd0(m, n) = if m = n then m
else let p = min m n

and q = max m n
in gcd0(p, q - p)

The partial correctness of the algorithm follows from Corollary 58(2) of the notes. To
establish the termination of gcd0 on a pair of positive integers (m, n) we consider and
analyse the computations arising from the call gcd0(m, n). We consider two cases:

• Case m= n.

The computation of gcd0(m, n) reduces in one step to m, and therefore terminates.

• Case m 6= n.

The computation of gcd0(m, n) reduces in one step to that of gcd0(p, q− p), where
p = min(m, n) and q = max(m, n). Thus, the passage of computing gcd0(m, n) by
means of computing gcd0(p, q− p) maintains the invariant of having both compon-
ents of the pair being positive integers; but, crucially, strictly decreases the sum of the
pairs in each recursive call (as m+ n>max(m, n) = p+ (q− p) because both m and
n are positive). As this process cannot go on forever (the sum is of two strictly positive
integers but decreases at every step, so the lowest it can go is 1+ 1 = 2, at which
point m= n), the recursive calls must eventually stop and the overall computation
terminate (in fact, in a number of steps necessarily less that or equal the sum of the
input pair).

� We can use induction to make this argument formal; see §4.3.1.

https://www.cl.cam.ac.uk/teaching/2122/DiscMath/DiscMathProofsNumbersSetsNotes.pdf#page=186

D I S C R E T E M AT H E M AT I C S S O LU T I O N S W I T H CO M M E N TA RY

4. On induction
4.1. Basic exercises

1. Prove that for all natural numbers n≥ 3, if n distinct points on a circle are joined in consecutive
order by straight lines, then the interior angles of the resulting polygon add up to 180 · (n− 2)
degrees.

We prove this property P(n) of all n≥ 3 by mathematical induction from basis 3.

Base case: n= 3. Three connected points on a circle must form a triangle: since they are
distinct, they cannot be collinear. The sum of internal angles of a triangle is 180°, which is
180 · (3− 2) degrees.

Inductive case: n = k + 1. Assume that IH© P(k) holds and take an arbitrary polygon
constructed from k+ 1 points A1, . . . , Ak+1 on a circle. The (k+ 1)-gon can be separated
into a k-gon and a triangle with a line segment connecting A1 and Ak. By the induction
hypothesis IH©, the interior angles of the k-gon add up to Sk = 180 · (k− 2) degrees. The
sum of angles of the whole polygon is Sk+1 = Sk +∠AkA1Ak+1 +∠A1Ak+1Ak +∠A1AkAk+1,
where the angle terms belong to the triangle4A1AkAk+1. Since its interior angles must
add up to 180°, we have the expression for the sum of internal angles of the (k+ 1)-gon:

Sk+1 = Sk + 180°= 180 · (k− 2) + 180°= 180 · ((k+ 1)− 2)

A1A2

A3

Ak−1
Ak

Ak+1

� While the formula holds for any polygon, working with points on a circle makes the
inductive proof easier, since we never need to worry about three points being on the same
line and only making up one side.

� It may be tempting to approach the inductive step by starting with a k-gon, then adding
a new point to turn it into a (k+ 1)-gon and increasing the sum of internal angles by 180°.
The problem with this is that we are given a (k+ 1)-gon to start with, and its vertices are
predetermined: we need to split it up into a triangle and a k-gon, no matter what the points
are. This distinction is fairly minor in this case and doesn’t cause any di�culties (any line
segment connecting two vertices one point apart will split do the job), but remembering
what parameters we have control over vs. what we are given (that is, what we need to
assume as being arbitrary) is very important in proofs, especially inductive ones. We will

D I S C R E T E M AT H E M AT I C S S O LU T I O N S W I T H CO M M E N TA RY

see examples of this throughout this sheet.

2. Prove that, for any positive integer n, a 2n × 2n square grid with any one square removed can
be tiled with L-shaped pieces consisting of 3 squares.

We prove the property P(n) of all n≥ 1 by mathematical induction from basis 1:

P(n) = ∀0≤ i, j ≤ n. a 2n × 2n grid A with square Ai, j missing can be tiled

Base case: n= 1. Take a 21 × 21 = 2× 2 grid and assume one of the squares is missing.
This must be one of the following four situations, depending on which one of the 4 squares
was removed:

All resulting shapes can be tiled with one L-shaped piece consisting of three squares.

Inductive step: n= k+ 1. Assume IH© P(k): a 2k × 2k grid with any square missing can be
tiled with L-shaped pieces. Take a 2k+1 × 2k+1 grid with any one square missing. The grid
can be split into four 2k × 2k quarters which we label by A, B, C and D; assume, without
loss of generality, that the missing square is in quarter A at position Ai, j . By the IH© applied
to i and j, the quarter A can be tiled with Ai, j missing. Next, we use the IH© applied to i = k
and j = 1 to tile quarter B with the bottom left square missing. Similarly, we tile C and D
with two applications of the induction hypothesis (IH©(1, k) and IH©(1, 1), respectively) with
the top right and left corners missing. The three missing corners form an L-shaped hole of
3 squares in the middle of the 2k+1 × 2k+1 grid, which can be filled in with one additional
tile. This leaves only one missing square Ai, j with the rest of the grid tiled with L-shaped
pieces, so we are done.

D

B

C

A

� This is an example of an inductive proof where the proposition P(n) is itself a universally
quantified statement: we state property for all grid size parameters n, and within a particular
grid of size 2n×2n, for all possible grid cells that could be missing. Thus, after case-splitting
on n, we still have a universally quantified proof obligation; however, in the inductive case,

D I S C R E T E M AT H E M AT I C S S O LU T I O N S W I T H CO M M E N TA RY

we also have a universally quantified inductive assumption.

While the general pattern for proofs like this is just an instance of the standard induction
principle, it is worth analysing nevertheless:

To prove a property of the form

∀n ∈ N. ∀x ∈ A. P(n, x)

it is su�cient to prove

∀x ∈ A. P(0, x) and ∀k ∈ N. (∀y ∈ A. P(k, y)) =⇒ (∀x ∈ A. P(k+ 1, x))

The base case – which is usually seen as the “trivial” step – is now itself a universally
quantified statement which may not necessarily be easy to establish. Indeed, if the inner
quantification is over natural numbers as well, we may end up having to do another
inductive proof of ∀m ∈ N. P(0, m) if a direct proof (“Let m be an arbitrary natural number
and prove P(0, m). . . ”) is not possible.

The inductive step highlights the interplay between the two quantifications. Unwrapping
the formula, we get three assumptions: an arbitrary natural number k, an arbitrary element
x ∈ A, and a proof that P(k, y) holds for any choice of y ∈ A. In the process of the
proof, this induction hypothesis can be applied to any element y ∈ A, be it x ∈ A, a
value computed from x , or any other value arbitrarily chosen by us. There is a significant
di�erence between the inductive step above, and a formula such as

∀k ∈ N. ∀x ∈ A. P(k, x) =⇒ P(k+ 1, x)

which leaves us no flexibility in “tailoring” the IH to our needs by choosing an appropriate
value for x .

The question above had an inner universal quantification over the position of the missing
cell, so the proof cannot depend on any particular choice of position in the 2k+1 × 2k+1

grid. However, we do have control over the position of the missing cell when applying the
induction hypothesis to the 2k × 2k quarter grids: we can essentially think of the IH© as a
“function” from coordinates (i, j) to the proof of “tileability”. To complete the inductive
step, we first apply the IH to the coordinates of the actual hole in the 2k+1 × 2k+1 within
the A quarter, then select the appropriate locations for the holes in the quarters B, C and
D to leave an L-shaped hole in the middle. We apply the IH© both to the unknown values
(i, j) given to us by the universal quantifier on the LHS of the implication, as well as values
that we select deliberately to create space for an extra L-shaped tile.

� The phrase “without loss of generality” is often used to reduce repetition or make sim-
plifying assumptions that do not change the strength of the result. It is usually understood
that if the assumption is violated, it can be altered in an obvious way to make the rest of
the proof go through. It is important to ensure that the assumption really doesn’t a�ect

D I S C R E T E M AT H E M AT I C S S O LU T I O N S W I T H CO M M E N TA RY

the generality of the statement: saying things like “w.l.o.g., assume n is even/nonzero/a
power of two” is sometimes tempting, but it’s rarely clear how the proof could be extended
to numbers which are odd/zero/not a power of two, and proving these cases may require
entirely di�erent approaches to the one considered. Above, we assumed w.l.o.g. that the
hole is in quarter A so we don’t need to repeat the proof for all four quarters. The proofs
would not be exactly the same (e.g. if the hole was in quarter B, the IH would need to be
applied to the (i − k, j) coordinates of the 2k × 2k grid), but it’s clear that the general idea
would work in each case.

� The proof above doesn’t just show that a tiling is possible, it gives a concrete algorithm
for constructing it. Proofs like this are – unsurprisingly – called constructive proofs (also
known as e�ective proofs to avoid confusion with constructive mathematics), as opposed to
nonconstructive or pure existence proofs which show that a mathematical object exists, but
doesn’t give a concrete example or way of computing one. Constructive proofs by induction
naturally give rise to recursive algorithms, where the application of the IH© corresponds to
a recursive call. Of course, when implementing the recursive algorithm, we don’t have the
luxury of saying that “without loss of generality, assume the user will never call the function
with the hole outside of quarter A” – we have to explicitly handle all four possibilities and
slightly di�erent recursive calls to cover any possible input.

4.2. Core exercises
1. Establish the following:

(a) For all positive integers m and n,

(2n − 1) ·
m−1
∑

i=0

2i·n = 2m·n − 1

The first thing to note is that an inductive proof is not really necessary. Indeed, for
arbitrary positive integers m and n, one can calculate that

(2n − 1) ·
m−1
∑

i=0

2i·n =
m−1
∑

i=0

2(i+1)·n −
m−1
∑

i=0

2i·n

=
m−1
∑

i=1

2i·n + 2((m−1)+1)·n − 20·n −
m−1
∑

i=1

2i·n

= 2m·n − 1

However, as it is very instructive, two inductive proofs follow. Note the di�erent,
though subtle, ways in which the inductive hypothesis is used in each proof.

For the first proof, we show
∀m ∈ Z+. P(m)

D I S C R E T E M AT H E M AT I C S S O LU T I O N S W I T H CO M M E N TA RY

for P(m) the statement

∀n ∈ Z+. (2n − 1) ·
m−1
∑

i=0

2i·n = 2m·n − 1

by the Principle of Induction.

Base case: m= 1. The statement P(1) amounts to

∀n ∈ Z+. (2n − 1) · 2i·n = 21·n − 1

which is vacuously true.

Inductive step: m = k+ 1. Let k be an arbitrary positive integer, and assume that the
Inductive Hypothesis P(k) holds for it; i.e. that

∀n ∈ Z+. (2n − 1) ·
k−1
∑

i=0

2i·n = 2k·n − 1 IH©1

We need show that P(k+ 1) follows; i.e. that

∀n ∈ Z+. (2n − 1) ·
(k+1)−1
∑

i=0

2i·n = 2(k+1)·n − 1

To this end, we let l be an arbitrary positive integer and proceed to show that

(2l − 1) ·
k
∑

i=0

2i·l = 2(k+1)·l − 1 1©

Indeed, instantiating the IH©1, we have that

(2l − 1) ·
k−1
∑

i=0

2i·l = 2k·l − 1 2©

and so that

(2l − 1) ·
k
∑

i=0

2i·l =

�

(2l − 1) ·
k−1
∑

i=0

2i·l

�

+ (2l − 1) · 2k·l

= 2k·l − 1+ (2l − 1) · 2k·l (by 2©)

= 2(k+1)·l − 1

establishing 1© as required.

For the second proof, to show

∀n ∈ Z+. ∀m ∈ Z+. (2n − 1) ·
m−1
∑

i=0

2i·n = 2m·n − 1

D I S C R E T E M AT H E M AT I C S S O LU T I O N S W I T H CO M M E N TA RY

we let l be an arbitrary positive integer and prove

∀m ∈ Z+. Q(l, m)

for Q(l, m) the statement

(2l − 1) ·
m−1
∑

i=0

2i·l = 2m·l − 1

by the Principle of Induction.

Base case: m= 1. The statement Q(l, 1) amounts to

(2l − 1) · 20·l = 21·l − 1

which is vacuously true.

Inductive step: m = k+ 1. Let k be an arbitrary positive integer, and assume that the
Inductive Hypothesis Q(l, k) holds for it; i.e. that

(2l − 1) ·
k−1
∑

i=0

2i·l = 2k·l − 1 IH©2

We need show that Q(l, k+ 1) follows; i.e. that

(2l − 1) ·
(k+1)−1
∑

i=0

2i·l = 2(k+1)·l − 1 1©

Indeed,

(2l − 1) ·
k
∑

i=0

2i·l =

�

(2l − 1) ·
k−1
∑

i=0

2i·l

�

+ (2l − 1) · 2k·l

= 2k·l − 1+ (2l − 1) · 2k·l (by IH©2)

= 2(k+1)·l − 1

establishing 1© as required.

� The core of the proof is the same in both cases; the di�erence is how they set
up the induction hypothesis. The first proof includes the quantification over n in the
IH©1 and applies it to the arbitrary l in the proof to get a specific instance 2©. The
second proof fixes this l right from the start, introducing it as a new arbitrary variable
in the standard manner of proving universal quantification. Then, the predicate to
be established by inductively is “parameterised” by this l , so the statement Q(l, m)
doesn’t actually need a nested quantification. Despite IH©2 not containing a universal
quantification, the proof only requires it at the specific l we already introduced. This
makes the second proof slightly simpler, but it would not work if we ever needed the
induction hypothesis at any other value of n.

D I S C R E T E M AT H E M AT I C S S O LU T I O N S W I T H CO M M E N TA RY

(b) Suppose k is a positive integer that is not prime. Then 2k − 1 is not prime.

Let k be an arbitrary positive integer. We consider two cases:

• k = 1. The statement holds because 21 − 1= 1 is not prime.

• k ≥ 2. Assume that k ≥ 2 is not prime. Hence, it is of the form m · n for natural
numbers m, n greater than or equal 2. It follows from the previous item that
2k − 1 = 2m·n − 1 = (2n − 1) ·

∑m−1
i=0 2i·n; and, since 2n − 1 ≥ 22 − 1 = 3 and

∑m−1
i=0 2i·n ≥ 1 + 4 = 5, we have that 2k − 1 has a non-trivial decomposition.

Hence it is not prime.

2. Prove that
∀n ∈ N. ∀x ∈ R. x ≥ −1 =⇒ (1+ x)n ≥ 1+ n · x

We prove ∀n ∈ N. P(n) for P(n) the statement

∀x ∈ R. x ≥ −1=⇒ (1+ x)n ≥ 1+ n · x

by the Principle of Induction.

Base case: n= 0. The statement P(0) reduces to

∀x ∈ R. x ≥ −1=⇒ 1≥ 1

and holds vacuously.

Inductive step: n = k+1. Let k be an arbitrary natural number, and assume P(k); i.e. assume
the Inductive Hypothesis

∀x ∈ R. x ≥ −1=⇒ (1+ x)k ≥ 1+ k · x IH©

We need show that P(k+ 1) also holds; i.e. that

∀x ∈ R. x ≥ −1=⇒ (1+ x)k+1 ≥ 1+ (k+ 1) · x

To this end, we let y be an arbitrary real number, assume further that

y ≥ −1 1©

and proceed to show that
(1+ y)k+1 ≥ 1+ (k+ 1) · y 2©

From IH©, by instantiation and Modus Ponens using 1©, one concludes that

(1+ y)k ≥ 1+ k · y

and from this, since by 1© we have 1+ y ≥ 0, it follows that

(1+ y)k+1 = (1+ y)k · (1+ y)≥ (1+ k · y) · (1+ y) = 1+ (k+ 1) · y + k · y2

D I S C R E T E M AT H E M AT I C S S O LU T I O N S W I T H CO M M E N TA RY

Thus, from the fact that k · y2 ≥ 0, 2© holds.

3. Recall that the Fibonacci numbers Fn for n ∈ N are defined recursively by F0 = 0, F1 = 1, and
Fn+2 = Fn + Fn+1 for n ∈ N.

a) Prove Cassini’s Identity: For all n ∈ N,

Fn · Fn+2 = Fn+1
2 + (−1)n+1

We prove
∀n ∈ N. Fn · Fn+2 = Fn+1

2 + (−1)n+1

by the Principle of Induction.

Base case: n= 0. We have that

F0 · F2 = F1
2 + (−1)1

because F0 = 0 and F1 = 1.

Inductive step: n = k+1. For any natural number k, assume the Induction Hypothesis

Fn · Fk+2 = Fk+1
2 + (−1)k+1

which can be rearranged to the following form by subtracting (−1)k+1:

Fk+1
2 = (−1)k + Fn · Fk+2 IH©

We need show that

Fk+1 · F(k+1)+2 = F(k+1)+1
2 + (−1)(k+1)+1

i.e. that
Fk+1 · Fk+3 = Fk+2

2 + (−1)k

for which one calculates as follows:

Fk+1 · Fk+3 = Fk+1
2 + Fk+1 · Fk+2 (Fk+3 = Fk+1 + Fk+2)

= (−1)k + Fn · Fk+2 + Fk+1 · Fk+2 (by IH©)
= (−1)k + Fk+2

2 (Fk+2 = Fk + Fk+1)

b) Prove that for all natural numbers k and n,

Fn+k+1 = Fn+1 · Fk+1 + Fn · Fk

A standard one-step induction proof is possible, but the task becomes quite a bit
simpler if we have two induction hypotheses.

One-step induction proof

D I S C R E T E M AT H E M AT I C S S O LU T I O N S W I T H CO M M E N TA RY

We prove that
∀k ∈ N. P(k)

for P(k) the statement

∀n ∈ N. Fn+k+1 = Fn+1 · Fk+1 + Fn · Fk

by the Principle of Induction.

Base case: We need show that

∀n ∈ N. Fn+1 = Fn+1 · F1 + Fn · F0

which holds because F1 = 1 and F0 = 0.

Inductive step: For an arbitrary natural number k, assume the Induction Hypothesis

∀n ∈ N. Fn+k+1 = Fn+1 · Fk+1 + Fn · Fk IH©

We need show that

∀n ∈ N. Fn+(k+1)+1 = Fn+1 · F(k+1)+1 + Fn · Fk+1

i.e. that
∀n ∈ N. Fn+k+2 = Fn+1 · Fk+2 + Fn · Fk+1 1©

To this end, we let m be an arbitrary natural number and proceed to show the
equivalent identity:

F(m+1)+k+1 = Fm+1 · Fk+2 + Fm · Fk+1 2©

Indeed, instantiating the universally-quantified Induction Hypothesis IH© for the nat-
ural number m+ 1, one has that

F(m+1)+k+1 = F(m+1)+1 · Fk+1 + Fm+1 · Fk

from which one further calculates as follows:

F(m+1)+1 · Fk+1 + Fm+1 · Fk

= Fm · Fk+1 + Fm+1 · Fk+1 + Fm+1 · Fk (F(m+1)+1 = Fm + Fm+1)
= Fm · Fk+1 + Fm+1 · Fk+2 (Fk+2 = Fk + Fk+1)

to conclude 2©.

� This is an example of a proposition that could also be established by nested
induction: rather than show 1© directly for an arbitrary n ∈ N, we could do another
base case for n= 0 and inductive case for n= m+ 1. It’s not always obvious when
this is required, but quite often results in a lengthier, but simpler proof.

Two-step induction proof

D I S C R E T E M AT H E M AT I C S S O LU T I O N S W I T H CO M M E N TA RY

We prove that
∀k ∈ N. P(k)

for P(k) the statement

∀n ∈ N. Fn+k+1 = Fn+1 · Fk+1 + Fn · Fk

by the Principle of Induction with two induction hypotheses.

Base case 1: k = 0. We need show that

∀n ∈ N. Fn+1 = Fn+1 · F1 + Fn · F0

which holds because F1 = 1 and F0 = 0.

Base case 2: k = 1. We need show that

∀n ∈ N. Fn+2 = Fn+1 · F2 + Fn · F1

which holds because F2 = 1, F1 = 1 and Fn+1 + Fn = Fn+2.

Inductive step: Assume the following two Induction Hypotheses:

Fn+k+1 = Fn+1 · Fk+1 + Fn · Fk IH©1

Fn+k+2 = Fn+1 · Fk+2 + Fn · Fk+1 IH©2

We need to prove that

Fn+(k+2)+1 = Fn+1 · Fk+3 + Fn · Fk+2

One calculates as follows:

Fn+k+3

= Fn+k+1 + Fn+k+2

= (Fn+1 · Fk+1 + Fn · Fk) + (Fn+1 · Fk+2 + Fn · Fk+1) (IH©1 and IH©2)
= Fn+1 · (Fk+1 + Fk+2) + Fn · (Fk + Fk+1)

= Fn+1 · Fk+3 + Fn · Fk+2 (Fk+3 = Fk+1 + Fk+2 and Fk+2 = Fk + Fk+1)

� Recognising the value of two induction hypotheses leads to a significantly simpler
and more elegant proof. It is important to remember that if we go back k induction
steps, we also need to prove the first k base cases.

� If either of k or n is positive, this identity gives a way of expanding Fn+k as a sum
of products of Fibonacci numbers – a useful property whenever the index is a sum.

c) Deduce that Fn | Fl·n for all natural numbers n and l .

We prove that
∀l ∈ N. P(l)

D I S C R E T E M AT H E M AT I C S S O LU T I O N S W I T H CO M M E N TA RY

for P(l) the statement
∀n ∈ N. Fn | Fl·n

by the Principle of Induction.

Base case: We need to show that

∀n ∈ N. Fn | F0·n

i.e. that
∀n ∈ N. Fn | 0

which holds because we know that every integer divides 0 from §1.2.1(b).

Inductive step: For an arbitrary natural number l , assume the Induction Hypothesis

∀n ∈ N. Fn | Fl·n IH©

We need to show that
∀n ∈ N. Fn | F(l+1)·n

i.e. that
∀n ∈ N. Fn | Fl·n+n

To this end, let n ∈ N be an arbitrary natural number. We first consider the case when
n = 0: we have F0 | Fl·0+0 from the fact that 0 | 0 (see §1.2.1(a)). Otherwise, we can
express Fl·n+n as Fl·n+(n−1)+1 and expand using §4.2.3(b) as follows:

Fl·n+(n−1)+1

= Fl·n+1 · F(n−1)+1 + Fl·n · Fn−1 (by §4.2.3(b))
= Fl·n+1 · Fn + k · Fn · Fn−1 (by IH©, ∃k ∈ Z. Fl·n = k · Fn)
= Fn · (Fl·n+1 + k · Fn−1)

Thus, F(l+1)·n = k′ · Fn for k′ = Fl·n+1 + k · Fn−1, showing that Fn | F(l+1)·n, as required.

� Words like “deduce” and “conclude” are a dead giveaway that you should be using
properties you showed in a previous part of the question, so you should always try
to transform the proposition or play around with your assumptions until a previous
lemma could be applied – this step often takes care of the “hard part” of the proof.
In this exercise the inductive step gave us Fl·n+n; since the index is a sum of two
natural numbers with n positive, we notice that the previous identity can be applied
to expand the term into two more “manageable” subterms.

d) Prove that gcd(Fn+2, Fn+1) terminates with output 1 in n steps for all positive integers n.

We prove that

∀n ∈ N. gcd(Fn+2, Fn+1) terminates with output 1 in n steps

D I S C R E T E M AT H E M AT I C S S O LU T I O N S W I T H CO M M E N TA RY

by the Principle of Induction.

Base case: We need to show that

gcd(F3, F2) terminates with output 1 in 1 step

Since F3 = 2 and F2 = 1 and 1 | 2, the algorithm terminates with the base case of
F2 = 1 after one step.

Inductive step: For an arbitrary natural number k, assume the Induction Hypothesis

gcd(Fk+2, Fk+1) terminates with output 1 in k steps IH©

We need to prove that

gcd(Fk+3, Fk+2) terminates with output 1 in k+ 1 steps

By the definition of Fibonacci numbers, Fk+3 = Fk+2+ Fk+1. Since Fk+2 ≥ Fk+1, this is a
valid quotient-remainder decomposition of Fk+3 so by the Division Theorem we have
that quo(Fk+3, Fk+2) = 1 and rem(Fk+3, Fk+2) = Fk+1. As Fk+1 is positive, Fk+2 - Fk+3

and gcd(Fk+3, Fk+2) steps to gcd(Fk+2, rem(Fk+3, Fk+2)) = gcd(Fk+2, Fk+1). By the IH©,
this terminates with output 1 in k steps; thus, starting with the additional computation
step, gcd(Fk+3, Fk+2) terminates with output 1 in k+ 1 steps.

e) Deduce also that:

(i) for all positive integers n< m, gcd(Fm, Fn) = gcd(Fm−n, Fn),

and hence that:

(ii) for all positive integers m and n, gcd(Fm, Fn) = Fgcd(m,n).

Firstly, we prove the following statement equivalent to (i):

For all positive integers n and natural numbers k,

gcd(Fn+k+1, Fn) = gcd(Fk+1, Fn)

We make use of the following corollary/restatement of Theorem 61, which allows us
to use properties of Euclid’s Algorithm in reasoning about gcds:

For all positive integers m and n, gcd(m, n) = gcd(m, n).

In particular, we can adapt the recursive case of the definition of gcd into:

∀m, n ∈ Z+. gcd(m, n) = gcd(rem(m, n), n) 1©

and the previous part §4.2.3(d) (shifted to positive integers) into:

∀m ∈ Z+. gcd(Fm+1, Fm) = 1 2©

https://www.cl.cam.ac.uk/teaching/2122/DiscMath/DiscMathProofsNumbersSetsNotes.pdf#page=192

D I S C R E T E M AT H E M AT I C S S O LU T I O N S W I T H CO M M E N TA RY

Now, let n be a positive integer and k a natural number. Then,

gcd(Fn+k+1, Fn) = gcd(Fn+1 · Fk+1 + Fn · Fk, Fn) (by §4.2.3(b))
= gcd(rem(Fn+1 · Fk+1 + Fn · Fk, Fn), Fn) (by 1©)
= gcd(Fn+1 · Fk+1, Fn) (by §2.1.3(a))
= gcd(Fk+1, Fn) (by §3.2.3 and 2©)

Secondly, we prove the following statement from which (ii) follows:

for all positive integers l , P(l)

where P(l) is the statement:

for all positive integers m, n,
if gcd0(n, m) terminates in l steps then gcd(Fm, Fn) = Fgcd(m,n)

for gcd0 the function from §3.3.3. The proof is by the Principle of Induction.

Base case: Let m, n be arbitrary positive integers. Assume that gcd0(m, n) terminates
in 1 step. Then m= n and gcd(Fm, Fn) = Fm = Fgcd(m,n).

Inductive step: Let l be an arbitrary positive integer, and assume the Induction
Hypothesis P(l). Further, let m, n be arbitrary positive integers, and assume that
gcd0(m, n) terminates in l + 1 steps Then, for p = min(m, n) and q = max(m, n),
gcd0(m, n) = gcd0(p, q− p) and gcd0(p, q− p) terminates in l steps. Thus, by the
Induction Hypothesis, we have that gcd(Fq−p, Fp) = Fgcd(q−p,p). Finally, since by the
previous item, gcd(Fm, Fn) = gcd(Fq, Fp) = gcd(Fq−p, Fp) and Fgcd(q−p,p) = Fgcd(q,p) =
Fgcd(m,n) we are done.

� One can intuitively deduce that property (ii) holds because we are performing the
simplified Euclid’s Algorithm (with repeated subtraction rather than remainder) on
the indices of the Fibonacci number via a repeated application of property (i). This is
indeed the case, but formulating this into a proof is far from obvious. Given that this
is an exercise sheet on inductive proofs, we could try doing induction on m or n, only
to notice that we can’t make use of the inductive hypothesis in any meaningful way.
Indeed, the “repetition” that we’re trying to capture has nothing to with the numerical
value of m or n directly, but rather the number of times we have to apply property (i)
to compute their gcd. Given m, n ∈ Z+, we either cannot apply (i) because m and n
are equal, or we can apply it once to get gcd(Fm−n, Fn), recursively apply it l more
times to get Fgcd(m−n,n), and then “unapply” one step of gcd0 to get Fgcd(m,n).

Extracting a strong enough induction hypothesis from this intuition is still nontrivial
and requires us to explicitly refer to the termination of gcd0. Moreover, m and n
are universally quantified in the induction statement and the required property
gcd(Fm, Fn) = Fgcd(m,n) is made dependent on a termination hypothesis that refers to
the induction variable l , rather than relating the two with a conjunction. This means

D I S C R E T E M AT H E M AT I C S S O LU T I O N S W I T H CO M M E N TA RY

that when proving the inductive case, we can assume that gcd0(n, m) terminates
in more than one step, and execute one step of the algorithm manually by applying
property (i). It may take several attempts to construct su�ciently strong induction
hypotheses, and as this exercise shows, they are not always as direct as case-analysing
on a positive/nonnegative integer that is quantified over in the proposition.

f) Show that for all positive integers m and n, (Fm · Fn) | Fm·n if gcd(m, n) = 1.

Since m and n are coprime, §4.2.3(e) gives:

gcd(Fm, Fn) = Fgcd(m,n) = F1 = 1

implying that Fm and Fn are themselves coprime. From §4.2.3(c) we know that Fm | Fm·n

and Fn | Fm·n. This, together with coprimality of Fm and Fn and §3.2.2 implies that
Fm · Fn | Fm·n, as required.

g) Conjecture and prove theorems concerning the following sums for any natural number n:

(i)
∑n

i=0 F2·i

After some test cases we conjecture the following identity:
n
∑

i=0

F2·i = F2n+1 − 1

and prove it by the Principle of Induction.

Base case: n= 0. The sum consists of a single term F2·0 = F0 = 0, which equals
F2·0+1 − 1= F1 − 1= 0.

Inductive step: n= k+ 1. We assume the Induction Hypothesis
k
∑

i=0

F2·i = F2k+1 − 1 IH©

and prove that
k+1
∑

i=0

F2·i = F2(k+1)+1 − 1

We can calculate as follows:
k+1
∑

i=0

F2·i = F2·(k+1) +
k
∑

i=0

F2·i

= F2k+2 + F2k+1 − 1 (by IH©)
= F2k+3 − 1= F2(k+1)+1 − 1

(ii)
∑n

i=0 F2·i+1

D I S C R E T E M AT H E M AT I C S S O LU T I O N S W I T H CO M M E N TA RY

We conjecture the following identity:
n
∑

i=0

F2·i+1 = F2n+2

and prove it by the Principle of Induction.

Base case: n = 0. The sum consists of a single term F2·0+1 = F1 = 1, which equals
F2·0+2 = F2 = 1.

Inductive step: n= k+ 1. We assume the Induction Hypothesis
k
∑

i=0

F2·i+1 = F2k+2 IH©

and prove that
k+1
∑

i=0

F2·i+1 = F2(k+1)+2

We can calculate as follows:
k+1
∑

i=0

F2·i+1 = F2·(k+1)+1 +
k
∑

i=0

F2·i+1

= F2k+3 + F2k+2 (by IH©)
= F2k+4 = F2(k+1)+2

(iii)
∑n

i=0 Fi

We conjecture the following identity:
n
∑

i=0

Fi = Fn+2 − 1

We can prove this by induction as before. Instead, we derive it from the previous
two results by case-analysis on n:

Case n = 2k. If k is 0, the sum is 0 = F0+2 − 1. Otherwise, the sum consists of
the first k even Fibonacci numbers plus the first (k− 1) odd Fibonacci numbers:

2k
∑

i=0

Fi =

�

k
∑

i=0

F2·i

�

+

�

k−1
∑

i=0

F2·i+1

�

= F2k+1 + F2k − 1= F2k+2 − 1

Case n = 2k + 1. The sum consists of the sum of the first k even Fibonacci
numbers plus the first k odd Fibonacci numbers:

2k
∑

i=0

Fi =

�

k
∑

i=0

F2·i

�

+

�

k
∑

i=0

F2·i+1

�

= F2k+1 − 1+ F2k+2 = F(2k+1)+2 − 1

D I S C R E T E M AT H E M AT I C S S O LU T I O N S W I T H CO M M E N TA RY

4.3. Optional exercises
1. Recall the gcd0 function from §3.3.3. Use the Principle of Mathematical Induction from basis 2

to formally establish the following correctness property of the algorithm:

For all natural numbers l ≥ 2, we have that for all positive
integers m, n, if m+ n≤ l then gcd0(m, n) terminates.

As suggested, we proceed by Mathematical Induction from basis 2.

Base case: We need show that for all positive integers m, n, if m+ n≤ 2 then gcd0(m, n)
terminates. To this end, we let m and n be arbitrary positive integers, and assume that
m+ n≤ 2. Then, m= n= 1 and gcd0(m, n) terminates.

Inductive step: Let l be an arbitrary natural number greater than or equal 2, and assume
the Induction Hypothesis

For all positive integers m, n, if m+ n≤ l then gcd0(m, n) terminates. IH©

We need show that for all positive integers m, n, if m+n≤ l+1 then gcd0(m, n) terminates.
To this end, we let a, b be arbitrary positive integers, assume that a+ b ≤ l + 1, and
proceed to prove that gcd0(a, b) terminates.

We consider three cases.

• If a = b, then gcd0(a, b) terminates.

• If a < b, then gcd0(a, b) = gcd0(a, b− a). Moreover, by the Inductive Hypothesis IH©,
we have that

if a+ (b− a)≤ l then gcd0(a, b− a) terminates,

and since
a+ (b− a) = b ≤ l + 1− a ≤ l

it follows that gcd0(a, b− a) terminates and therefore that so does gcd0(a, b).

• If b < a, then gcd0(a, b) = gcd0(a, a− b). Moreover, by the Inductive Hypothesis IH©,
we have that

if b+ (a− b)≤ l then gcd0(a, a− b) terminates,

and since
b+ (a− b) = a ≤ l + 1− b ≤ l

it follows that gcd0(a, a− b) terminates and therefore that so does gcd0(a, b).

2. The set of univariate polynomials (over the rationals) on a variable x is defined as that of
arithmetic expressions equal to those of the form

∑n
i=0 ai · x i , for some n ∈ N and some

coe�cients a0, a1, . . . , an ∈Q.

(a) Show that if p(x) and q(x) are polynomials then so are p(x) + q(x) and p(x) · q(x).

D I S C R E T E M AT H E M AT I C S S O LU T I O N S W I T H CO M M E N TA RY

Let p(x) =
∑m

i=0 ai · x i and q(x) =
∑n

j=0 b j · x j be polynomials, and assume without
loss of generality that m> n. For simplicity, we extend the coe�cients ai and b j to all
natural indices, with ai = 0 for m< i and b j = 0 for n< j. Then, the sum p(x)+q(x)
is a polynomial (of degree m) because it is of the form:

p(x) + q(x) =
m
∑

i=0

(ai + bi) · x i

where the coe�cients ai + bi are rational numbers since Q is closed under addition.

For the product p(x) ·q(x), we calculate using the distributivity of multiplication over
addition:

p(x) · q(x) =

�

m
∑

i=0

ai · x i

�

·

�

n
∑

j=0

b j · x j

�

=
m
∑

i=0

�

ai · x i ·
n
∑

j=0

b j · x j

�

=
m
∑

i=0

n
∑

j=0

ai · x i · b j · x j

=
m
∑

i=0

n
∑

j=0

ai · b j · x i+ j

The number of terms in the sum of a fixed degree d will be equal to the number of
ways one can construct d as a sum of an i ≤ m and a j ≤ n; for example there will
be at most one term of degree 0 or m+ n, two terms of degree 1 = 1+ 0 = 0+ 1
and m+ n− 1 = m+ (n− 1) = (m− 1) + n, three of degree 2 and m+ n− 2 and
so on. Terms of the same degree can be combined, with their coe�cients getting
added together. Using our extended coe�cient indexing, the coe�cient of the term
of degree k can be concisely expressed as:

ck =
k
∑

j=0

a j · bk− j

As expected, c0 = a0 · b0 (the constant terms), cm+n = a0 · b+m+ n+ · · ·+ am · bn +
· · ·+ am+n b0 = 0+ · · ·+ am · bn + · · ·+ 0 (most of the coe�cients are “out of range”
and are 0) and cn = a0 · bn + a1 · bn−1 + · · ·+ an · b0 (n nonzero coe�cients). Since
these are all rational numbers, the product of two polynomials is indeed a polynomial
(of degree m+ n) because it is of the form:

p(x) · q(x) =
m+n
∑

k=0

ck · x k

(b) Deduce as a corollary that, for all a, b ∈Q, the linear combination a · p(x) + b · q(x) of
two polynomials p(x) and q(x) is a polynomial.

D I S C R E T E M AT H E M AT I C S S O LU T I O N S W I T H CO M M E N TA RY

Every rational number a can be seen as a polynomial of degree 0, with its only
coe�cient being a. Thus, a·p(x) is a product of polynomials and hence is a polynomial.
The sum of two such expressions is still a polynomial, so we can conclude that the
linear combination a · p(x)+ b ·q(x) of two polynomials for a, b ∈Q is a polynomial.

(c) Show that there exists a polynomial p2(x) such that p2(n) =
∑n

i=0 i2 = 02 + 12 + · · ·+ n2

for every n ∈ N.1

Hint: Note that for every n ∈ N,

(n+ 1)3 =
n
∑

i=0

(i + 1)3 −
n
∑

i=0

i3

The required polynomial is

p2(n) =
1
3

n3 +
1
2

n2 +
1
6

n

We show that this is a sum of squares for any n ∈ N by induction.

Base case: n = 0. The polynomial reduces to 0, which is the sum of the square number
0= 02.

Inductive step: n= k+ 1. Assume the Induction Hypothesis:

p2(k) =
1
3

k3 +
1
2

k2 +
1
6

k =
k
∑

i=0

i2 IH©

We need to prove that

p2(k+ 1) =
k+1
∑

i=0

i2

The polynomial expands as follows:

p2(k+ 1) =
1
3
(k+ 1)3 +

1
2
(k+ 1)2 +

1
6
(k+ 1)

=
1
3

k3 + k2 + k+
1
3
+

1
2

k2 + k+
1
2
+

1
6

k+
1
6

=
�

1
3

k3 +
1
2

k2 +
1
6

k
�

+ k2 + 2k+
1
3
+

1
2
+

1
6

=
k
∑

i=0

i2 + (k2 + 2k+ 1) (by IH©)

=
k
∑

i=0

i2 + (k+ 1)2 =
k+1
∑

i=0

i2

Thus p2(k+ 1) is the sum of consecutive squares, as required.

1Chapter 2.5 of Concrete Mathematics by R.L. Graham, D.E. Knuth and O. Patashnik looks at this in great detail.

D I S C R E T E M AT H E M AT I C S S O LU T I O N S W I T H CO M M E N TA RY

� As is usual with existence proofs, the hard work is done behind the scenes and we
start o� the formal proof by magically producing a witness that just so happens to
satisfy the required property. The required witness for the existence was calculated
from the supplied hint:

(n+ 1)3 =
n
∑

i=0

(i + 1)3 −
n
∑

i=0

i3

=
n
∑

i=0

(i3 + 3i2 + 3i + 1)−
n
∑

i=0

i3

=

�

n
∑

i=0

3i2 + 3i + 1

�

+
n
∑

i=0

i3 −
n
∑

i=0

i3

=
n
∑

i=0

3i2 + 3i + 1= 3 ·
n
∑

i=0

i2 +
n
∑

i=0

3i + 1

Rearranging, we get that
n
∑

i=0

i2 =
1
3

�

(n+ 1)3 −
n
∑

i=0

3i + 1

�

=
1
3

�

n3 + 3n2 + 3n+ 1−
�

n+ 1+
3
2
(n2 + n)

��

=
1
3

n3 + n2 + n+
1
3
−

1
3

n−
1
3
−

1
2

n2 +
1
2

n

=
1
3

n3 +
1
2

n2 +
1
6

n

Now, we suspect that this is the right answer, but the formal proof should start with
the statement of the answer followed by a proof that it satisfies the required property.
This is especially important in this case, when the proposed witness was calculated
using the (unverified) hint; separately proving that the polynomial is a sum of squares
makes our answer independent of the hint. The formal proof may well be done using a
di�erent technique (in this case, induction), but it should not present any unpleasant
surprises since our proposed witness is almost certainly correct.

Of course, the statement for this question is a rather obfuscated way of saying “find a
formula for the sum of the first n square numbers”. You may already have it memorised
as

n
∑

i=0

i2 =
n(n+ 1)(2n+ 1)

6

Multiplying things out indeed leads to the formula for the polynomial p2(n) we had
above. Even if we recognise this shortcut (instead of deriving it from the hint), we still
need to prove that the formula works – this is still best accomplished using induction.

(d) Show that, for every k ∈ N, there exists a polynomial pk(x) such that, for all n ∈ N,
pk(n) =

∑n
i=0 ik = 0k + 1k + · · ·+ nk.

D I S C R E T E M AT H E M AT I C S S O LU T I O N S W I T H CO M M E N TA RY

Hint: Generalise the hint above, and the similar identity

(n+ 1)2 =
n
∑

i=0

(i + 1)2 −
n
∑

i=0

i2

For k ∈ N, P(k) be the statement

There exists a polynomial pk(x) such that, for all n ∈ N, pk(n) =
∑n

i=0 ik.

We prove this by the Principle of Strong Induction.

Base case: The polynomial needs to satisfy p0(n) =
∑n

i=0 i0; since i0 = 1, this is
simply equal to p0(n) = n+ 1, which is a polynomial.

Inductive step: Assume the Strong Induction Hypothesis: for all 0≤ l ≤ k,

there exists a polynomial pl(x) such that, for all n ∈ N, pl(n) =
n
∑

i=0

i l . IH©S

We need to show that P(k+ 1) holds, that is

there exists a polynomial pk+1(x) such that, for all n ∈ N, pk+1(n) =
∑n

i=0 ik+1

The required witness of existence is

pk+1(n) =
1

k+ 2

�

(n+ 1)k+2 −
k
∑

j=0

�

k+ 2
j

�

· p j(n)

�

E©

This is indeed a polynomial since:

• p j(n) is a polynomial for all 0≤ j ≤ k by the Strong Induction Hypotheses, and
∑k

j=0

�k+2
j

�

p j(n) is a linear combination of polynomials which is a polynomial;

• (n+ 1)k+2 can be expanded using the Binomial Theorem into a sum of powers of
n with binomial coe�cients, so it too is a polynomial;

• the sum of two polynomials is a polynomial, and 1
k+2 is a rational coe�cient.

We prove that pk+1(n) =
∑n

i=0 ik+1 for all n ∈ N by induction on n.

Base case: As before, pk+1(0) = 0.

Inductive step: Assume the Induction Hypothesis

pk+1(n) =
n
∑

i=0

ik+1 IH©

and prove that

pk+1(n+ 1) =
n+1
∑

i=0

ik+1

D I S C R E T E M AT H E M AT I C S S O LU T I O N S W I T H CO M M E N TA RY

First, we note the following two calculations:

(n+ 2)k+2 = ((n+ 1) + 1)k+2 =
k+2
∑

i=0

�

k+ 2
i

�

(n+ 1)i (Binomial Theorem)

= (n+ 1)k+2 + (k+ 2) · (n+ 1)k+1 +
k
∑

i=0

�

k+ 2
i

�

(n+ 1)i (extract two summands)

k
∑

j=0

�

k+ 2
j

�

· p j(n+ 1)

=
k
∑

j=0

�

k+ 2
j

�

·
n+1
∑

a=0

a j =
n+1
∑

a=0

k
∑

j=0

�

k+ 2
j

�

· a j (by IH©S and distributivity)

=
k
∑

j=0

�

k+ 2
j

�

· (n+ 1) j +
n
∑

a=0

k
∑

j=0

�

k+ 2
j

�

· a j (extract last summand)

Combining the two, we have that

(n+ 2)k+2 −
k
∑

j=0

�

k+ 2
j

�

· p j(n+ 1)

= (n+ 1)k+2 + (k+ 1) · (n+ 1)k+1 −
n
∑

a=0

k
∑

j=0

�

k+ 2
j

�

· a j 1©

Now we are ready to expand the polynomial of the inductive step:

pk+1(n+ 1)

=
1

k+ 2

�

(n+ 2)k+2 −
k
∑

j=0

�

k+ 2
j

�

· p j(n+ 1)

�

=
1

k+ 2

�

(n+ 1)k+2 + (k+ 2) · (n+ 1)k+1 −
n
∑

a=0

k
∑

j=0

�

k+ 2
j

�

· a j

�

(by 1©)

=
1

k+ 2

�

(n+ 1)k+2 −
n
∑

a=0

k
∑

j=0

�

k+ 2
j

�

· a j

�

+ (n+ 1)k+1

=
1

k+ 2

�

(n+ 1)k+2 −
k
∑

j=0

�

k+ 2
j

�

·
n
∑

a=0

a j

�

+ (n+ 1)k+1

=
1

k+ 2

�

(n+ 1)k+2 −
k
∑

j=0

�

k+ 2
j

�

· p j(n)

�

+ (n+ 1)k+1 (by IH©S)

= pk+1(n) + (n+ 1)k+1 =
n
∑

i=0

ik+1 + (n+ 1)k+1 =
n+1
∑

i=0

ik+1 (by E© and IH©)

Thus, we have shown (by the nested Mathematical Induction) that our definition of

D I S C R E T E M AT H E M AT I C S S O LU T I O N S W I T H CO M M E N TA RY

pk+1(n) by E© indeed satisfies pk+1(n) =
∑n

i=0 ik+1 for all n ∈ N. Then, by the outer
Strong Induction, we can conclude that there exists a polynomial pk(n) for all k ∈ N
that satisfies pk(n) =

∑n
i=0 ik for all n ∈ N.

� Once again, we found the witness E© by calculating backwards from the (conjec-
tured) generalisation of the hint

(n+ 1)k =
n
∑

i=0

(i + 1)k −
n
∑

i=0

ik

We could prove that this holds, but we can also use it without proof to derive the
witness, as long as we then formally show that the witness is correct. Given that the
property is only used behind the scenes as an “educated guess”, it will not invalidate
the proof even if the conjecture is actually incorrect. The calculation of the witness is
as follows:

(n+ 1)k+2 =
n
∑

m=0

(m+ 1)k+2 −
n
∑

m=0

mk+2

=

�

n
∑

m=0

k+2
∑

j=0

�

k+ 2
j

�

·m j

�

−
n
∑

m=0

mk+2 (Binomial Theorem)

=

�

k+2
∑

j=0

n
∑

m=0

�

k+ 2
j

�

·m j

�

−
n
∑

m=0

mk+2 (commute summation)

=
k+1
∑

j=0

n
∑

m=0

�

k+ 2
j

�

·m j (subtract last summand)

=
n
∑

m=0

�

k+ 2
k+ 1

�

·mk+1 +
k
∑

j=0

n
∑

m=0

�

k+ 2
j

�

·m j (extract last summand)

= (k+ 2)
n
∑

m=0

mk+1 +
k
∑

j=0

�

k+ 2
j

�

·
n
∑

m=0

m j (binom. coe�cient)

= (k+ 2)
n
∑

m=0

mk+1 +
k
∑

j=0

�

k+ 2
j

�

· p j(n) (IH©S)

We rearrange this to get
∑n

m=0 mk+1 and set that as the witness formula for pk+1(n).

� This proof is a rather involved example of a nested, mixed induction proof: we do
strong induction over k ∈ N and mathematical induction over n ∈ N when proving
that our proposed witness E© for pk+1(n) (the inductive case of the outer induction)
is correct. The strong induction hypothesis IH©S is used throughout the proof, both in
the derivation of the witness and the proof of its correctness.

� Note that we haven’t actually constructed a closed-form expression for pk(n), but
a recursive algorithm for computing it from formulae for lower degrees. Importantly,
we established that the recursive expression is indeed a polynomial using the clos-

D I S C R E T E M AT H E M AT I C S S O LU T I O N S W I T H CO M M E N TA RY

ure properties proved in earlier parts. This is su�cient to prove that there exists a
polynomial expression for

∑n
i=0 ik, but of course one has to do quite some additional

work to extract the degree and the coe�cients of the polynomial from the recursive
construction. The general, closed-form expression is known as Faulhaber’s Formula
and features the Bernoulli numbers, a rather irregular-looking sequence of rational
numbers used throughout mathematics; for instance, B14 =

7
6 , B15 = 0, B16 = −

3617
510 .

5. On sets
5.1. Basic exercises

1. Prove that ⊆ is a partial order, that is, it is:

a) reflexive: ∀ sets A. A⊆ A

Let A be a set; we need to show that for all x ∈ A, x is in A, which follows immediately.

b) transitive: ∀ sets A, B, C . (A⊆ B ∧ B ⊆ C) =⇒ A⊆ C

Let A, B, C be sets and x ∈ A an element. We need to show that x ∈ C . Since A⊆ B,
x ∈ B; and since B ⊆ C , x ∈ C , as required.

c) antisymmetric: ∀ sets A, B. (A⊆ B ∧ B ⊆ A) ⇐⇒ A= B

Let A, B be sets and suppose A ⊆ B and B ⊆ A. Then, if x ∈ A then x ∈ B, and
conversely, if x ∈ B then x ∈ A. That is, x ∈ A if and only if x ∈ B, which implies that
A and B are equal sets.

� Straightforward properties of the subset relation that follow from the fact that implica-
tion (in terms of which ⊆ is defined) is itself a partial order. The first two properties enable
partial order reasoning to establish A⊆ B as a chain of subset relations starting at A and
ending at B; antisymmetry gives rise to a proof technique for showing that two sets are
equal i� they are both subsets of each other.

2. Prove the following statements:

a) ∀ sets A. ; ⊆ A

Let A be a set. We need to show that every element of ; is in A, but since there are no
elements in ;, this vacuously holds.

b) ∀ sets A. (∀x . x /∈ A) ⇐⇒ A= ;

Let A be a set.

(⇒) Assume ∀x . x /∈ A. We need to show that A= ;, or equivalently, ; ⊆ A and A⊆ ;.
The former holds by the previous property, and to show the latter, we need to prove
that for all x , if x is in A then x is in ;. But, by assumption, x /∈ A, so the rest follows
vacuously.

D I S C R E T E M AT H E M AT I C S S O LU T I O N S W I T H CO M M E N TA RY

(⇐) Assume A= ; and x an element. We need to show that x is not in A. But A is the
empty set, and by definition, it has no elements; therefore x is not in A.

� Properties like this are sometimes harder to prove than more complicated set-theoretic
statements – they just seem too obvious to warrant or require a proof, and attempting
one feels like circular reasoning. However, if something is obvious, it should have an
accompanying formal proof built from first principles (otherwise we really can’t call the
property obvious)! The first part of this exercise used proof by “vacuous truth”, which
is based on the logical principle that falsity implies anything. If we have an assumption
which is false (such as that an element x is in the empty set), any conclusion could follow
vacuously. A related principle is that every element in the empty set satisfies any property
P : ∀x ∈ ;. P(x). The second part of the question could be established by simply saying
that it follows from the defining property of the empty set.

3. Find the union, and intersection of:

a) {1,2, 3,4, 5 } and {−1, 1,3, 5,7 }

Let A= {1, 2,3, 4,5 } and B = {−1, 1,3, 5,7 }. Then:

A∪ B = {−1, 1,2,3, 4,5, 7 } A∩ B = {1, 3,5 }

b) { x ∈ R | x > 7 } and { x ∈ N | x > 5 }

Let C = { x ∈ R | x > 7 } and D = { x ∈ N | x > 5 }. Then:

C ∪ D = {6 } ∪ { x ∈ R | x ≥ 7 } C ∩ D = { x ∈ N | x > 7 }

4. Find the Cartesian product and disjoint union of {1, 2,3,4, 5 } and {−1,1, 3,5, 7 }.

Let A= {1, 2,3,4, 5 } and B = {−1, 1,3, 5,7 }. Then:

A× B = { (1,−1), (1,1), (1,3), (1, 5), (1,7), (2,−1), (2,1), (2, 3), (2,5), (2,7),

(3,−1), (3,1), (3, 3), (3, 5), (3,7), (4,−1), (4,1), (4, 3), (4,5), (4,7),

(5,−1), (5,1), (5, 3), (5, 5), (5,7) }

A] B = { (1, 1), (1,2), (1,3), (1, 4), (1,5), (2,−1), (2,1), (2, 3), (2,5), (2,7) }

5. Let I = {2,3, 4,5 } and for each i ∈ I , let Ai = { i, i + 1, i − 1, 2 · i }.

a) List the elements of all sets Ai for i ∈ I .

A2 = {2,3, 1,4 } A3 = {3, 4,2, 6 } A4 = {4, 5,3, 8 } A5 = {5,6, 4,10 }

b) Let {Ai | i ∈ I } stand for {A2, A3, A4, A5 }. Find
⋃

{Ai | i ∈ I } and
⋂

{Ai | i ∈ I }.

⋃

{Ai | i ∈ I }= {1, 2,3, 4,5, 6,8, 10 }
⋂

{Ai | i ∈ I }= {4 }

D I S C R E T E M AT H E M AT I C S S O LU T I O N S W I T H CO M M E N TA RY

� The last three exercises are intended to make you comfortable with these important set-
theoretic constructions through concrete examples – make sure you have a good intuition
for them going forward.

6. Let U be a set. For all A, B ∈ P(U), prove that:

a) Ac = B ⇐⇒ (A∪ B = U ∧ A∩ B = ;)

(⇒) Let A, B ∈ P(U) be sets and assume Ac = B. We show that A∪ B = U and
A∩ B = ;. By definition, A∪ Ac = { a ∈ U | x ∈ A ∨ x ∈ Ac } = { x ∈ U | x ∈ A ∨ x /∈
A} = { x ∈ U | >} = U , since every element of U is either in A or not in A. Dually,
A∩ Ac = { x ∈ U | x ∈ A ∧ x ∈ Ac } = { x ∈ U | x ∈ A ∧ x /∈ A} = { x ∈ U | ⊥} = ;,
since no element can be both in A and not in A.

� This direction proves that (·)c satisfies the complementation laws on Slide 300.

(⇐) Let A, B ∈ P(U) be sets and assume A∪ B = U ; that is, every x ∈ U is in A or B.
This is logically equivalent to

∀x ∈ U . x /∈ A=⇒ x ∈ B

so A∪B = U implies that Ac ⊆ B. Similarly, assume A∩B = ;; that is, for every x ∈ U ,
it is not the case that x is in both A and B. This is logically equivalent to

∀x ∈ U . x ∈ B =⇒ x /∈ A

so A∩ B = ; implies that B ⊆ Ac. By the antisymmetry of ⊆, we conclude that Ac = B.

b) Double complement elimination: (Ac)c = A

Presented are two di�erent arguments.

A© We reason using part (a): to show (Ac)c = A, it is su�cient to show that Ac ∪ A=
U and Ac ∩ A = ;. Both of these follow from the complementation laws and the
commutativity of union and intersection.

B© We can prove the equality of the sets directly via equational reasoning.

(Ac)c = { x ∈ U | ¬(x ∈ Ac) }

= { x ∈ U | ¬(x ∈ { y ∈ U | y /∈ A}) }

= { x ∈ U | ¬(x /∈ A) }

= { x ∈ U | x ∈ A} (double negation elimination)
= A

� This self-inverse property of complementation (and negation) is called involution.

c) The de Morgan laws: (A∪ B)c = Ac ∩ Bc and (A∩ B)c = Ac ∪ Bc

https://www.cl.cam.ac.uk/teaching/2122/DiscMath/DiscMathProofsNumbersSetsNotes.pdf#page=302

D I S C R E T E M AT H E M AT I C S S O LU T I O N S W I T H CO M M E N TA RY

Presented are two di�erent arguments.

A©We reason using part (a). To show the de Morgan law (A∪B)c = Ac∩Bc, it is enough
to show that

(A∪ B)∪ (Ac ∩ Bc) = U and (A∪ B)∩ (Ac ∩ Bc) = ;

We calculate as follows:

(A∪ B)∪ (Ac ∩ Bc)

= ((A∪ B)∪ Ac)∩ ((A∪ B)∪ Bc) (∪ distributes over ∩)
= (B ∪ (A∪ Ac))∩ (A∪ (B ∪ Bc)) (commutativity and associativity of ∪)
= (B ∪ U)∩ (A∪ U) (complementation laws)
= U ∩ U (U annihilates ∪)
= U (idempotence of ∩)

(A∪ B)∩ (Ac ∩ Bc)

= (A∩ (Ac ∩ Bc))∪ (B ∩ (Ac ∩ Bc)) (∩ distributes over ∪)
= ((A∩ Ac)∩ Bc)∪ ((B ∩ Bc)∩ Ac) (commutativity and associativity of ∩)
= (; ∩ Bc)∪ (; ∩ Ac) (complementation laws)
= ; ∪ ; (; annihilates ∩)
= ; (idempotence of ∪)

To show the other de Morgan law (A∩ B)c = Ac ∪ Bc, one proceeds analogously or
derives it from the previous de Morgan law and part (b):

Ac ∪ Bc = ((Ac ∪ Bc)c)c (complement is an involution)
= ((Ac)c ∩ (Bc)c)c (previous de Morgan law)
= (A∩ B)c (complement is an involution)

B© We can work with i�-reasoning, where the crucial third step uses the propositional
de Morgan laws ¬(P ∨ Q) ⇐⇒ ¬P ∧ ¬Q and ¬(P ∧ Q) ⇐⇒ ¬P ∨ ¬Q.

x ∈ (A∪ B)c ⇐⇒ ¬(x ∈ A∪ B) x ∈ (A∩ B)c ⇐⇒ ¬(x ∈ A∩ B)

⇐⇒ ¬(x ∈ A ∨ x ∈ B) ⇐⇒ ¬(x ∈ A ∧ x ∈ B)

⇐⇒ ¬(x ∈ A) ∧ ¬(x ∈ B) ⇐⇒ ¬(x ∈ A) ∨ ¬(x ∈ B)

⇐⇒ x ∈ Ac ∧ x ∈ Bc ⇐⇒ x ∈ Ac ∨ x ∈ Bc

⇐⇒ x ∈ Ac ∩ Bc ⇐⇒ x ∈ Ac ∪ Bc

� Many set-theoretic proofs involve establishing the equality of two sets, and there are
several ways of formulating such proofs. Two sets A and B are equal if they have the same

D I S C R E T E M AT H E M AT I C S S O LU T I O N S W I T H CO M M E N TA RY

elements: ∀x . x ∈ A ⇐⇒ x ∈ B. Separating the bi-implication into two directions gives
rise to a derived proof technique: to prove A= B, it is su�cient to prove A⊆ B and B ⊆ A.
These individual subset relation may be established element-wise (∀x ∈ A. x ∈ B and
∀x ∈ B. x ∈ A), or via a transitive chain of subset relations. The equality A= B itself can
be shown via equivalence reasoning, either by equating set comprehensions, or using a
collection of known equalities (such as the ones proved in this exercise) and “algebraic
manipulation” of sets. Finally, a way to combine element-wise and calculational reasoning
is via a chain of bi-implications between membership predicates, which often reduces the
proof to a purely logical argument, treating “x ∈ A” as an atomic proposition. All of these
proof techniques are perfectly appropriate (as long as the nontrivial calculational steps
are all justified): one may be easier or harder than another, depending on the problem.

� The non-calculational proofs in parts A© of (b) and (c) may seem rather contrived: they
are longer and fiddlier than the alternative proofs, and proceed in a very roundabout way
compared to directly calculating with elements. But this is precisely what makes them
illuminating: they make no reference whatsoever to notions and constructions specific
to sets, like the membership relation or set comprehension. The reasoning is carried out
entirely using the abstract properties of unions, intersections, and complementation, such
as commutativity, distributivity, annihilation, etc. Thus, the proofs can be directly translated
to any setting that supports operators with similar properties; namely order-theoretic
structures called Boolean algebrasa. Powersets of a set form a Boolean algebra (see §5.3.2),
but so does the familiar set of truth values with conjunction, disjunction and negation. If
logical negation is only characterised via the properties P ∨¬P ⇐⇒ > and P ∧¬P ⇐⇒ ⊥,
the proofs above show that negation must also satisfy the property ¬(¬P) ⇐⇒ P and the
familiar de Morgan dualities (that we used as a given in the alternative proofs in part (c)).

Why bother with all this, you may ask? We can already obviously see that ¬(¬P) ⇐⇒ P
and the de Morgan laws hold from the truth tables. The guiding principle here (and most of
mathematics) is simple: results that have fewer assumptions are stronger than results that
have more. The fact that these propositions follow from a small, discrete set of algebraic
properties makes them stronger than if we had to rely on notions like truth tables, set
comprehensions, etc., which would restrict them to the particular area of mathematics we
are working with. Sure, the proofs are more cumbersome than using these “domain-specific”
concepts, but they are possible and therefore need not be reproved as long as we are
working with a Boolean algebra. Much of mathematics is about proving more abstract and
general results than what one actually needs, because relying on fewer assumptions makes
them more widely applicable.

a You should be familiar with the notion of Boolean algebra as a branch of "normal" algebra which uses
truth values instead of numbers – this is what you used in Digital Electronics. Thus it may seem weird to
refer to the plural "algebras" in this context. The name clash is unfortunate, but here we are discussing
the algebraic structure known as "a Boolean algebra", similarly to how we would discuss "a monoid" or
"a field" – and Boolean algebras are the setting in which you can do Boolean algebra (the calculational
process). There are other kinds of algebras too, like Heyting algebras and Lindenbaum–Tarski algebras,
all with slightly di�erent operations and properties.

D I S C R E T E M AT H E M AT I C S S O LU T I O N S W I T H CO M M E N TA RY

5.2. Core exercises
1. Prove that for all for all sets U and subsets A, B ⊆ U :

a) ∀X . A⊆ X ∧ B ⊆ X ⇐⇒ (A∪ B) ⊆ X b) ∀Y. Y ⊆ A ∧ Y ⊆ B ⇐⇒ Y ⊆ (A∩ B)

a) Let X ⊆ U be a set.

(⇒) Assume that 1© A⊆ X and 2© B ⊆ X . We need show that for all x ∈ U , x ∈ A∨ x ∈
B implies x ∈ X . So, let x ∈ U and assume 3© x ∈ A ∨ x ∈ B. Then, if x ∈ A we have
x ∈ X by assumption 1©; and, if x ∈ B we also have x ∈ X , by assumption 3©. Thus,
assumption 3© yields x ∈ X as required.

(⇐) Assume A∪ B ⊆ X . Then, since A⊆ A∪ B and B ⊆ A∪ B, we have by transitivity of
⊆ (Lemma 84) both that A⊆ X and B ⊆ X .

b) Let Y ⊆ U be a set.

(⇒) Assume that 1© Y ⊆ A and 2© Y ⊆ B. We need show that for all y ∈ U , y ∈ Y
implies y ∈ A ∧ y ∈ B. So, let y ∈ U and assume y ∈ Y . Then, by assumption 1©,
y ∈ A and, by assumption 2©, y ∈ B, as required.

(⇐) Assume Y ⊆ A∩ B. Then, since A∩ B ⊆ A and A∩ B ⊆ B, we have by transitivity of
⊆ (Lemma 84) both that Y ⊆ A and Y ⊆ B.

� These properties are also given in Proposition 86, but they are reproduced here to
highlight their importance. Once again, these are if-and-only-if characterisations of unions
and intersections, which usually hints at an underlying universal property that uniquely
describes what it means for something to be a union/intersection. In other words, these
properties are the specification for the set-theoretic concept of a union/intersection, and
the proofs above verify that the specific way we define them (via disjunction/conjunction
of membership) satisfies the specification. As Corollary 87 suggests, this gives rise to a
proof strategy for showing that a set C is the union of A and B: if C is a superset of both
A and B, and it is a subset of any other set X that is a superset of A and B, then C must
equal A∪ B (and there is a dual pair of conditions for intersections). The benefit of this
formulation is that some properties about unions/intersections are easier to approach via
this universal property, rather than directly unwrapping the set-theoretic definitions of
the operators. Moreover, just like with the complement proofs above, it gives us a way of
proving properties with minimal reference to set-theoretic constructions like membership
or comprehension, making them more general.

Now, you may have recognised similar formulations from last term, in an entirely di�erent
field of mathematics: number theory. Indeed, if we spell out the universal property of
intersections:

1© A∩ B ⊆ A ∧ A∩ B ⊆ B 2© ∀Y ∈ P(U). (Y ⊆ A ∧ Y ⊆ B) =⇒ Y ⊆ A∩ B

https://www.cl.cam.ac.uk/teaching/2122/DiscMath/DiscMathProofsNumbersSetsNotes.pdf#page=288
https://www.cl.cam.ac.uk/teaching/2122/DiscMath/DiscMathProofsNumbersSetsNotes.pdf#page=288
https://www.cl.cam.ac.uk/teaching/2122/DiscMath/DiscMathProofsNumbersSetsNotes.pdf#page=303
https://www.cl.cam.ac.uk/teaching/2122/DiscMath/DiscMathProofsNumbersSetsNotes.pdf#page=306

D I S C R E T E M AT H E M AT I C S S O LU T I O N S W I T H CO M M E N TA RY

and compare it with the universal property of greatest common divisors:

1© gcd(m, n) | m ∧ gcd(m, n) | n 2© ∀d ∈ Z+. (d | m ∧ d | n) =⇒ d | gcd(m, n)

we can notice a clear and striking similarity. The secret is that both intersections and gcds
are instances of a more general construction called a greatest lower bound, which is a
concept that can be defined (but doesn’t necessarily have to exist) in any partially ordered
set (poset), i.e. a set with a reflexive, transitive and antisymmetric ordering relation.

Intuitively, a greatest lower bound of two elements of a poset is the largest element that is
smaller than both (it is “just below” both of them, but not smaller than necessary). For an
abstract poset (P,v), the greatest lower bound of two elements x and y in P is usually
denoted x u y (also an element of P , if it exists) and often called their (binary) meet. It
has the properties that it is a lower bound of both x and y :

1© x u y v x ∧ x u y v y

and it is greater than any lower bound of both x and y :

2© ∀l ∈ P. (l v x ∧ l v y) =⇒ l v x u y

Binary meets (just like all concepts defined via an universal property) are unique, if they
exist; an important consequence is that any element that satisfies these two properties
will be equal to x u y . This lets us prove results about x u y completely abstractly, without
knowing how it is defined in a particular poset.

The properties 1© and 2© of intersections and gcds exactly align with those of the abstract
definition of a binary meet: they are the exact same concept, manifested in di�erent
partially ordered sets. In the case of intersections, the poset is the powerset P(U) with the
subset ordering relation, which we proved in §5.1.1 to be a partial order. In the case of gcds,
the poset is that of natural numbers, with divisibility as the ordering relation: d is “less
than” n if d | n. This may seem like a peculiar way of ordering (in particular, 0 becomes
the “greatest element” since d | 0 for any d ∈ N, and 1 becomes the “least element” since
1 | n for any n ∈ N), but it satisfies all the required properties of being a partial order. In
the divisibility poset, “lower bounds” of two numbers are their common divisors, so the
“greatest lower bound” is indeed the greatest common divisor.

With this abstract understanding, we can consider binary meets in other known posets.
What would the meet of two natural numbers m and n be in the standard ≤ ordering? It
would be the number that is less than (or equal to) both m and n, but not “too small”; the
obvious choice would simply be the minimum of the two numbers, the greatest number
that is not larger than either m or n. Slightly more esoteric is the partial order of Boolean
truth values, {>,⊥}, whose intuitive ordering (reflexive and ⊥ less than >) coincides with
the Boolean operator of implication. Then, the binary meet of propositions P and Q is a
proposition that implies both P and Q, and is implied by anything that implies both P and

D I S C R E T E M AT H E M AT I C S S O LU T I O N S W I T H CO M M E N TA RY

Q. It is easy to see that the conjunction P ∧ Q satisfies this characterisation: it clearly
implies both P and Q, and if R=⇒ P and R=⇒Q, we can conclude that R=⇒ P ∧ Q.

And of course, by dualising everything, we get two concepts for the price of one: the dual
notion of a greatest lower bound is the least upper bound, also called the (binary) join and
denoted x t y , with universal properties:

1© x v x t y ∧ y v x t y 2© ∀u ∈ P. (x v u ∧ x v u) =⇒ x t y v u

All the posets described above have binary joins given by the “expected” dual constructions:
union, least common multiple, minimum, disjunction.

One important point to highlight is the “unique, if it exists” nature of meets and joins: they
are not guaranteed to exist for any pair of elements in a poset. This is di�erent from saying
that in any monoid (M ,•,ε), we can combine any two elements a and b into a• b ∈ M . The
monoid product a • b is guaranteed to exist because •: M ×M → M is a binary operator,
mapping two elements a and b to a new element of M – it “generates” the element a • b,
and since it is an operator on M , asking if a • b exists in M or not is uninteresting. The
symbols u and t are not operators: they are simply used to denote the unique meet/join
of two elements of a poset, if it happens to exist. The family of sets F = {;, {1}, {2} } is a
poset under subset inclusion, and ; is indeed the meet (intersection) of {1} and {2}; but
their union {1, 2 } is not an element of F and there is no other common upper bound that
could be called the join, so the elements {1} and {2} in F have no binary join.

Having said that, we can analyse sets which have binary meets and joins for all pairs of
elements; such posets are called lattices. It so happens that all of the above examples are
lattices, and some are moreover bounded lattices with greatest and least elements (with
the exception being that (N,≤) has no greatest element). A consequence of this is that
the meet and join can indeed be presented as binary operators in a lattice, since x u y
and x t y are guaranteed to exist for any x , y ∈ P . The binary operators u: P × P → P
and t: P × P → P satisfy several properties “for free”: they are associative, commutative,
and idempotent. These follow – unsurprisingly – from the universal properties of the
corresponding (order-theoretic) concepts: for example, to show that x u x = x , it is
su�cient to show that x v x (by reflexivity), and for any y ∈ P such that y v x , y v x
holds (sure). Similar proofs of commutativity and associativity are actually demonstrated
in the notes, following the statements of these properties for gcds in Lemma 63. Since the
arguments are done purely by universal properties, they can be adapted directly to binary
meets in any poset, and then specialised to other lattices like (P(U),⊆) or (N,≤).

2. Either prove or disprove that, for all sets A and B,

a) A⊆ B =⇒ P(A) ⊆ P(B)

Assume A ⊆ B and let X ∈ P(A). Then, X ⊆ A and A ⊆ B. Hence, X ⊆ B and so
X ∈ P(B).

b) P(A∪ B) ⊆ P(A)∪P(B)

https://www.cl.cam.ac.uk/teaching/2122/DiscMath/DiscMathProofsNumbersSetsNotes.pdf#page=203

D I S C R E T E M AT H E M AT I C S S O LU T I O N S W I T H CO M M E N TA RY

One can disprove it by taking two di�erent singleton sets A and B and noticing that
(A∪ B) ∈ P(A∪ B) while it is not the case that (A∪ B) ∈ P(A)∪P(B). For instance,
{1} ∪ {2}= {1, 2 } ∈ {;, {1}, {2}, {1,2} }, but {1,2 } /∈ {;, {1}, {2} }.

c) P(A)∪P(B) ⊆ P(A∪ B)

Assume X ∈ P(A)∪P(B); that is, either 1© X ∈ P(A) or 2© X ∈ P(B).

In case 1©, X ⊆ A and since A⊆ (A∪B) we have X ⊆ (A∪B); and hence X ∈ P(A∪B).

In case 2©, X ⊆ B and since B ⊆ (A∪B) we have X ⊆ (A∪B); and hence X ∈ P(A∪B).

d) P(A∩ B) ⊆ P(A)∩P(B)

Assume X ∈ P(A∩ B); that is X ⊆ (A∩ B) or, equivalently, X ⊆ A and X ⊆ B. Hence,
X ∈ P(A) and X ∈ P(B); so that X ∈ P(A)∩P(B).

e) P(A)∩P(B) ⊆ P(A∩ B)

Assume X ∈ P(A)∩P(B); that is, X ∈ P(A) and X ∈ P(B). Then, X ⊆ A and X ⊆ B;
so that X ⊆ (A∩ B) and hence X ∈ P(A∩ B).

� Parts (d) and (e) used the universal property of intersections from §5.2.1. We could have
formulated the proof for (c) entirely using universal properties: to show P(A)∪P(B) ⊆
P(A∪ B), it is su�cient to show that P(A∪ B) is an upper bound of P(A) and P(B); but
both follow from the fact that A⊆ A∪ B, B ⊆ A∪ B, and part (a) which lifts these subset
relations to powersets. A UP proof for (d) is very similar: to show P(A∩ B) ⊆ P(A)∩P(B),
it is su�cient to show that P(A∩ B) is a common subset of P(A) and P(B), both of which
follow from lifting A∩ B ⊆ A and A∩ B ⊆ B to powersets. It is not necessarily the case that
a UP proof is shorter or simpler than one done from first principles, but it often allows for
higher-level reasoning than going down to element-wise definitions. The rule of thumb
should be: if the proof goal is of the form A∪ B ⊆ X or Y ⊆ A∩ B, a UP proof may be
possible since it is su�cient to show that X is a common superset or Y is a common subset.

3. Let U be a set. For all A, B ∈ P(U) prove that the following statements are equivalent.

a) A∪ B = B b) A⊆ B c) A∩ B = A d) Bc ⊆ Ac

Let U be a set and consider A, B ∈ P(U). To prove that the statements are equivalent, it is
su�cient that they cyclically imply each other.

(a)⇒ (b) Assume A∪ B = B. Then, A⊆ (A∪ B) = B and we are done.

(b)⇒ (c) Assume A ⊆ B. Since, (A∩ B) ⊆ A we need only show A ⊆ (A∩ B) or, by §5.2.1,
that A⊆ A and A⊆ B; which respectively hold by reflexivity of ⊆ and assumption.

(c)⇒ (d) Assume (A∩ B) = A and let x ∈ U . Then, x /∈ B implies x /∈ (A∩ B) = A.

(d)⇒ (b) Because Bc ⊆ Ac stands for x /∈ B =⇒ x /∈ A for all x ∈ U which is the

D I S C R E T E M AT H E M AT I C S S O LU T I O N S W I T H CO M M E N TA RY

contrapositive of x ∈ A=⇒ x ∈ B for all x ∈ U .

(b)⇒ (a) Assume A⊆ B. Since also B ⊆ B, by §5.2.1 above, we have (A∪ B) ⊆ B; and as
B ⊆ (A∪ B) we are done.

� Questions of the form “prove that the following n statements are equivalent” require
one to prove (at least) n implications that form a cycle; thanks to the transitivity and
symmetry of implication, this is su�cient to take care of a bi-implication between any
two statements. The order and number of implications proved is not important, as long
as there is a way to get from any statement to another. In this question we could have
done the chain (a)⇒ (b)⇒ (c)⇒ (d)⇒ (a), but (d) is simply a contrapositive of (b) so the
implication (d)⇒ (b) is easier. However, this only results in one outgoing implication from
(a), so that needed to be “patched” up with an extra (straightforward) proof.

4. For sets A, B, C , D, prove or disprove at least three of the following statements:

a) (A⊆ C ∧ B ⊆ D) =⇒ A× B ⊆ C × D

Assume A⊆ C and B ⊆ D, and let (a, b) be an element of A× B. We need to show
that (a, b) is also an element of C × D. Since a ∈ A and A⊆ C , we have that a ∈ C ;
similarly, b ∈ D. Thus, (a, b) ∈ C × D, as required.

� We slightly glossed over a few formal steps here, but this is rarely an issue. What we
mean by “let (a, b) be an element of A× B” is that we consider an element x ∈ A× B
and use the fact that all elements of A× B are pairs; so x must be of the form (a, b)
for an a ∈ A and b ∈ B. Such “pattern-matching” is very common in formal proofs
and needs not be elaborated on too much, unless the patterns are interesting in their
own right or the relationships between the sets are more complex.

b) (A∪ C)× (B ∪ D) ⊆ (A× B)∪ (C × D)

This statement is false. As a counterexample, consider A = {1 }, D = {2 } and
B = C = ;. A∪C = {1 } and B∪D = {2 }; the first Cartesian product is thus { (1, 2) }.
However, A× B = C × D = ;. so their union is also the empty set, not a superset of
{ (1, 2) }.

c) (A× C)∪ (B × D) ⊆ (A∪ B)× (C ∪ D)

By the universal property of unions it is su�cient to prove that A×C ⊆ (A∪B)×(C∪D)
and B×D ⊆ (A∪B)×(C∪D). Part (a) implies the former with A⊆ A∪B and C ⊆ C∪D,
as well as the latter with B ⊆ A∪ B and D ⊆ C ∪ D.

� Again we notice that the question asks us to prove that the union of two sets X and
Y is below another set Z , for which it is su�cient to prove that Z is a common superset
of both X and Y so the least common superset (a.k.a. the union) is necessarily going
to be below it. The requirements can be discharged using property (a), that lets us

D I S C R E T E M AT H E M AT I C S S O LU T I O N S W I T H CO M M E N TA RY

“apply” subset relations within components of a Cartesian product. Note how we do
not need to refer to elements of the sets at all.

d) A× (B ∪ C) ⊆ (A× B)∪ (A× C)

Let (a, x) be an element of A×(B∪C). By the definition of unions, x is either in B or in
C ; in the former case the tuple (a, x) is in A×B, which is a subset of (A×B)∪ (A×C);
in the latter, (a, x) ∈ A× C which is again a subset of the union (A∪ B)× (C ∪ D), as
required.

e) (A× B)∪ (A× D) ⊆ A× (B ∪ D)

By the universal property of unions it is su�cient to prove that A× B ⊆ A× (B ∪ D)
and A× D ⊆ A× (B ∪ D). Both follow from property (a) and the fact that B ∪ D is a
common superset of both B and D.

5. For sets A, B, C , D, prove or disprove at least three of the following statements:

a) (A⊆ C ∧ B ⊆ D) =⇒ A] B ⊆ C] D

Assume A⊆ C and B ⊆ D, and let x be an element of A] B. We need to prove that x
is in C] D. By the definition of disjoint union, x is either of the form (1, a) for a ∈ A,
or (2, b) for b ∈ B. In the first case we use the assumption A⊆ C to derive that a ∈ C ,
but then (1, a) is in C]D. In the second case we use the assumption B ⊆ D to derive
that b ∈ D, so (2, b) is in C] D, as required.

b) (A∪ B)] C ⊆ (A] C)∪ (B] C)

Let x be an element of (A∪ B)] C . By the definition of unions and disjoint unions,
we consider three cases: x is of the form (1, a) with a ∈ A, or (1, b) for b ∈ B, or
(2, c) for c ∈ C . In the first case, (1, a) is in A] C and therefore in (A] C)∪ (B] C);
similarly, in the second case, (1, b) is in B] C so in (A] C)∪ (B] C). Finally, in the
third case, (2, c) is in both A] C and B] C , so it will certainly be in (A] C)∪ (B] C).

c) (A] C)∪ (B] C) ⊆ (A∪ B)] C

By the UP of unions it is su�cient to prove that A] C ⊆ (A∪ B)] C and B] C ⊆
(A∪ B)] C . Both follow using part (a) and the fact that A∪ B is a superset of both A
and B.

d) (A∩ B)] C ⊆ (A] C)∩ (B] C)

By the UP of intersections it is su�cient to prove that (A∩ B)] C is in A] C and in
B] C . Both follow using part (a) and the fact that A∩ B is a common subset of both
A and B.

e) (A] C)∩ (B] C) ⊆ (A∩ B)] C

D I S C R E T E M AT H E M AT I C S S O LU T I O N S W I T H CO M M E N TA RY

Let x be an element of (A] C)∩ (B] C). By definition of intersections it must be
both in A] C and B] C , which is possible if it has the same tag: either x is of the
form (1, y) where y is both in A and B, or of the form (2, c) with c ∈ C . In the first
case (1, y) is the first injection of (A∩ B)] C , and in the second case (2, c) is the
second injection of (A∩ B)] C .

6. Prove the following properties of the big unions and intersections of a family of setsF ⊆ P(A):

a) ∀U ⊆ A. (∀X ∈ F . X ⊆ U) ⇐⇒
⋃

F ⊆ U

Let U be a subset of A.

(⇒) Assume that U is a superset of every element of F and let x be a member of
⋃

F .
We need to show that x is also in U . By the definition of big unions, there exists a set
F ∈ F such that x ∈ F ; but since U is a superset of every set in F , we know that F ⊆ U
and therefore that x ∈ U .

(⇐) Assume
⋃

F ⊆ U and let X be a set in F . Since
⋃

F is the union of all sets in F , we
know that X ⊆

⋃

F , and by transitivity with the first assumption we can conclude that
X ⊆ U , as required.

b) ∀L ⊆ A. (∀X ∈ F . L ⊆ X) ⇐⇒ L ⊆
⋂

F

Let L be a subset of A.

(⇒) Assume that L is a subset of every element of F and let x be a member of L. We need
to show that x is also in

⋂

F , that is, it is a member of every set in F . To this end, let F be
an arbitrary element of F . By assumption, we know that L ⊆ F , but then x ∈ L must also
be in F . Since F was arbitrary, this holds for every element of F , so indeed x ∈

⋂

F .

(⇐) Assume L ⊆
⋂

F and let X be a set in F . Since
⋂

F is the intersection of all sets in
F , we know that

⋂

F ⊆ X , and by transitivity with the first assumption we can conclude
that L ⊆ U , as required.

� These two propositions generalise the universal properties of unions and intersections.
The union of a family of sets F is the least common superset of all the sets in the family:

1© ∀X ∈ F . X ⊆
⋃

F 2© ∀U ⊆ A. (∀X ∈ F . X ⊆ U) =⇒
⋃

F ⊆ U

Dually, the intersection is the greatest common subset of all sets in F :

1© ∀X ∈ F .
⋂

F ⊆ X 2© ∀L ⊆ A. (∀X ∈ F . L ⊆ X) =⇒ L ⊆
⋂

F

You should be able to read such properties with relative ease: the first one says that the
big union is an upper bound of all elements in F , and the second one characterises it as

D I S C R E T E M AT H E M AT I C S S O LU T I O N S W I T H CO M M E N TA RY

the smallest such set. As in the binary case, the real power of universal properties comes
when proving statements of the form

⋃

F ⊆ U or L ⊆
⋂

F , since all one needs to show
next is that U and L are upper and lower bounds, respectively.

7. Let A be a set.

a) For a family F ⊆ P(A), let U ¬ {U ⊆ A | ∀S ∈ F . S ⊆ U }. Prove that
⋃

F =
⋂

U .

The family U is the set of upper bounds of F , i.e. the family of sets which are all
supersets of every set in F .

(⊆) By the universal property of big unions (§5.2.6), it is su�cient to prove that
∀X ∈ F . X ⊆

⋂

U . By the universal property of intersections, for this it is su�cient
to prove that ∀X ∈ F . ∀U ∈ U . X ⊆ U , and this holds by the definition of U as the
set of upper bounds of F .

(⊇)We know from the universal property of big unions that
⋃

F is an upper bound,
so ∀S ∈ F . S ⊆

⋃

F . But then
⋃

F must be in U , the set of upper bounds. By the UP
of intersections,

⋂

U is a subset of every element of U , and in particular,
⋂

U ⊆
⋃

F ,
as required.

b) Analogously, define the family L ⊆ P(A) such that
⋂

F =
⋃

L. Also prove this statement.

The family L is the set of lower bounds of F , that is,

L¬ { L ⊆ A | ∀S ∈ F . L ⊆ S }

We prove that
⋂

F =
⋃

L.

(⊆)We know from the universal property of big intersections that
⋂

F is a lower
bound, so ∀S ∈ F .

⋃

F ⊆ S. But then
⋂

F must be in L, the set of lower bounds.
By the UP of unions,

⋃

L is a superset of every element of L, and in particular,
⋂

F ⊆
⋃

L, as required.

(⊇) By the universal property of big unions (§5.2.6), it is su�cient to prove that
∀L ∈ L. L ⊆

⋂

F . By the universal property of intersections, for this it is su�cient
to prove that ∀L ∈ L. ∀X ∈ F . L ⊆ X , and this holds by the definition of L as the
set of lower bounds of F .

� One could approach such questions from first principles, by expanding all definitions
and reasoning purely by logic. However, it would be rather cumbersome, and the higher-
level proof techniques derived from universal properties have a clear advantage. They may
take some getting used to, but it’s worth the practice.

5.3. Optional advanced exercises
1. Prove that for all families of sets F1 and F2,

�
⋃

F1

�

∪
�
⋃

F2

�

=
⋃

(F1 ∪F2)

D I S C R E T E M AT H E M AT I C S S O LU T I O N S W I T H CO M M E N TA RY

State and prove the analogous property for intersections of non-empty families of sets.

The stated identity for unions is a special case of the associativity law for big unions, so
let us just consider the case of intersections; that is: for non-empty collections of sets F1

and F2,
�
⋂

F1

�

∩
�
⋂

F2

�

=
⋂

(F1 ∪F2)

Indeed, for all x , we have

x ∈
�
⋂

F1

�

∩
�
⋂

F2

�

⇐⇒
�

x ∈
⋂

F1

�

∧
�

x ∈
⋂

F2

�

⇐⇒ (∀X ∈ F1. x ∈ X) ∧ (∀X ∈ F2. x ∈ X)

⇐⇒ ∀X . (X ∈ F1⇒ x ∈ X) ∧ (X ∈ F2⇒ x ∈ X)

⇐⇒ ∀X . (X ∈ F1 ∨ X ∈ F2) =⇒ x ∈ X

⇐⇒ ∀X . X ∈ (F1 ∪F2) =⇒ x ∈ X

⇐⇒ x ∈
⋂

(F1 ∪F2)

2. For a set U , prove that (P(U),⊆,∪,∩, U ,;, (·)c) is a Boolean algebra.

Let U be a set. We have the following:

• ⊆: P(U)×P(U)→ B is a partial order, as shown in §5.1.1.
• Every two sets A and B have a union A ∪ B which is their least upper bound, as

well as an intersection A∩ B which is their greatest lower bound (§5.2.1). It follows
from the universal properties that both operations are commutative, associative, and
idempotent.

• The full set U is the neutral element of intersection: given any set A⊆ U , it is the case
that A∩ U = A by §5.2.3.

• The empty set ; is the neutral element of union: given any set A⊆ U , we know that
; ⊆ A so §5.2.3 implies that A∪ ;= A.

• Similarly using §5.2.3 we can deduce that U is the annihilator for union (since A⊆ U
implies A∪ U = U) and ; is the annihilator for intersection (since ; ⊆ A implies
; ∪ A= ;).

• To show the absorption laws, we let Aand B be subsets of U and prove that A∪(A∩B) =
A. Let x be an element of A∪ (A∩ B); by definition, it has to be either in A or in A∩ B,
i.e. in A or in both A and B. In both cases x must be in A. Conversely, assume x ∈ A;
then it is clearly in A∪ (A∩ B), as required. The second absorption law is similar.

• To show distributivity, we let A, B and C be subsets of U$ and prove that A∩ (B∪C) =
(A∩B)∪(A∩C). Let x be an element of A∩(B∪C); by definition, it has to be both in A
and either in B or in C . If it is in B, then it is also in A∩B and hence in (A∩B)∪ (A∩C).
Otherwise, if it is in C , then it is in A∩ C and hence in (A∩ B) ∪ (A∩ C). The other
distributive law is similar.

Thus we can conclude that (P(U),⊆,∪,∩, U ,;, (·)c) is indeed a Boolean algebra.

https://www.cl.cam.ac.uk/teaching/2122/DiscMath/DiscMathProofsNumbersSetsNotes.pdf#page=299

D I S C R E T E M AT H E M AT I C S S O LU T I O N S W I T H CO M M E N TA RY

� As the name implies, a Boolean algebra is an algebraic (or order-theoretic) structure
that generalises Boolean truth values and operators. As an algebraic structure, it is a carrier
set with two idempotent, commutative and associative operators that distribute over each
other and are absorptive; two elements that are units for one operator and annihilators
for the other; and a unary complement operator. As an order-theoretic structure, it is a
complemented, distributive lattice; that is, a poset in which every element has a meet and
a join (i.e. a lattice, see §5.3.2) which distribute over each other, and every element has a
complement.

As this exercise shows, powersets of a set also form a Boolean algebra – this underlies the
intuitive similarity between logical operators (conjunction, disjunction) and set operators
(intersection, union). An interesting question to ponder is the status of implication: it does
not form part of the algebraic structure and is instead defined as P ⇒Q ¬ ¬P ∨ Q. Set-
theoretically the corresponding notion would be Ac∪B, i.e. all the elements of the universe
except the ones that are exclusively in A – not a particularly common or useful notion!
We can also choose to axiomatise logic in terms of implication, and define negation as
¬P ¬ P ⇒⊥. A lattice with least and greatest elements and an appropriately characterised
“implication” operator is called a Heyting algebra. Every Boolean algebra is a Heyting
algebra with the implication defined as above, but not every Heyting algebra is a Boolean
algebra – as a consequence, some logical tautologies like double negation elimination
¬(¬P)⇒ P or the law of excluded middle P ∨ ¬P do not in general hold in a Heyting
algebra. The distinction between Boolean and Heyting algebras is the distinction between
classical and intuitionistic logic, the latter of which is particularly important in computer
science and will be covered in much detail in future courses.

6. On relations
6.1. Basic exercises

1. Let A= {1,2, 3,4 }, B = { a, b, c, d } and C = { x , y, z }.
Let R= { (1, a), (2, d), (3, a), (3, b), (3, d) }: A→ B
and S = { (b, x), (b, y), (c, y), (d, z) }: B → C .

Draw the internal diagrams of the relations. What is the composition S ◦ R: A→ C?

1

2

3

4

a

b
c

d

x
y

z

A B C

The composite S ◦ R is the relation { (2, z), (3, x), (3, y), (3, z) }.

2. Prove that relational composition is associative and has the identity relation as the neutral
element.

D I S C R E T E M AT H E M AT I C S S O LU T I O N S W I T H CO M M E N TA RY

Let R: A→ B, S : B → C , and T : C → D be three relations. We show that their composition
is associative: T ◦ (S ◦R) = (T ◦ S) ◦R. Take a pair (a, d) ∈ T ◦ (S ◦R); by the definition of
relational composition, there must be a c ∈ C such that (a, c) ∈ S ◦R and c T d ; expanding
the former, there must be a b ∈ B such that a R b and b S c. But then (b, d) ∈ T ◦ S via c,
and (a, d) ∈ (T ◦ S) ◦ R via b. The converse proof follows analogously from the definition,
so we conclude that relational composition is associative.

Let R: A→ B be a relation. We show that idB ◦R = R = R ◦ idA. Take a pair (a, b) ∈ idB ◦R;
there must exist a b′ ∈ B such that a R b′ and b′ idB b, but since the identity relation is the
equality, we have that b′ = b and therefore (a, b) ∈ R. Conversely, to show that (a, b) ∈ R
is also in idB ◦ R, we observe that b can be used as the intermediate step in showing that
(a, b) ∈ R and (b, b) ∈ idB . The right inverse proof is analogous, so we conclude that the
identity relation is the two-sided unit of relational composition.

3. For a relation R: A→ B, let its opposite, or dual relation, Rop : B → A be defined by:

b Rop a ⇐⇒ a R b

For R, S : A→ B and T : B → C , prove that:

a) R ⊆ S =⇒ Rop ⊆ Sop

Assume R ⊆ S and show that for all b Rop a, b Sop a. By the definition of opposite
relations, b Rop a if a R b, but by assumption, a S b and thus b Sop a, as required.

b) (R∩ S)op = Rop ∩ Sop

By the previous part and UP of intersections, we have that (R ∩ S)op ⊆ Rop and
(R∩ S)op ⊆ Sop, so (R∩ S)op ⊆ Rop ∩ Sop. Conversely, take a pair (b, a) in Rop and Sop;
then, (a, b) is both in R and S so it is in the intersection and (b, a) ∈ (R∩ S)op.

c) (R∪ S)op = Rop ∪ Sop

For (b, a) ∈ (R∪ S)op, we calculate as follows:

(b, a) ∈ (R∪ S)op ⇐⇒ (a, b) ∈ (R∪ S)

⇐⇒ (a R b ∨ a S b)

⇐⇒ (b Rop a ∨ b Sop a)

⇐⇒ (b, a) ∈ Rop ∪ Sop

d) (T ◦ S)op = Sop ◦ T op

D I S C R E T E M AT H E M AT I C S S O LU T I O N S W I T H CO M M E N TA RY

We calculate as follows:

(T ◦ S)op = { (c, a) | (c, a) ∈ (T ◦ S)op }

= { (c, a) | (a, c) ∈ T ◦ S }

= { (c, a) | ∃b ∈ B. a S b ∧ b T c }

= { (c, a) | ∃b ∈ B. b Sop a ∧ c T op b }

= { (c, a) | (c, a) ∈ Sop ◦ T op }= Sop ◦ T op

As before, these questions concern the equality of sets which can be established in several
ways; three possibilities (universal properties, bi-implication reasoning and set compre-
hension reasoning) are demonstrated here.

6.2. Core exercises
1. Let R, R′ ⊆ A× B and S, S′ ⊆ B × C be two pairs of relations and assume R ⊆ R′ and S ⊆ S′.

Prove that S ◦ R ⊆ S′ ◦ R′.

Assume (a, c) ∈ (S ◦ R). Hence, there exists b ∈ B such that a R b and b S c. Then, since
(a, b) ∈ R and R ⊆ R′, we have that (a, b) ∈ R′; similarly, (b, c) ∈ S′. By the definition of
composition, this implies that (a, c) ∈ S′ ◦ R′, as required.

� A simple, but useful lemma which states that subset relationships can be applied on
both operands of relational composition. We have seen similar properties for powersets
(§5.2.2(a)), Cartesian products (§5.2.4(a)) and disjoint unions (§5.2.5(a)). As usual, special
cases of this property can be derived by expanding only one of the two operands: for
example, S′ ◦ R and S ◦ R′.

2. Let F ⊆ P(A× B) and G ⊆ P(B × C) be two collections of relations from A to B and from B to
C , respectively. Prove that

�
⋃

G
�

◦
�
⋃

F
�

=
⋃

{S ◦ R | R ∈ F , S ∈ G }: A→ C

Recall that the notation {S ◦ R: A→ C | R ∈ F , S ∈ G } is common syntactic sugar for the
formal definition { T ∈ P(A× C) | ∃R ∈ F . ∃S ∈ G. T = S ◦ R }. Hence,

T ∈ {S ◦ R ∈ A→ C | R ∈ F , S ∈ G } ⇐⇒ ∃R ∈ F . ∃S ∈ G. T = S ◦ R

(⊆)We show:
�⋃

G
�

◦
�⋃

F
�

⊆
⋃

{S ◦ R | R ∈ F , S ∈ G }.

Assume (a, c) ∈
�⋃

G
�

◦
�⋃

F
�

. Hence, there exists b ∈ B such that (a, b) ∈
⋃

F and
(b, c) ∈

⋃

G. Then, by the definition of big unions, we have a R b for some R ∈ F and
b S c for some S ∈ G so it follows that (a, c) ∈ S ◦ R for some R ∈ F and S ∈ G. That is,
(a, c) ∈

⋃

{S ◦ R | R ∈ F , S ∈ G }.

(⊇) By the universal property of unions, we have that
⋃

{S ◦ R | R ∈ F , S ∈ G } ⊆
�⋃

G
�

◦

D I S C R E T E M AT H E M AT I C S S O LU T I O N S W I T H CO M M E N TA RY

�⋃

F
�

if and only if S ◦ R ⊆
�⋃

G
�

◦
�⋃

F
�

for all R ∈ F and S ∈ G. This is the case by
§6.2.1 and the fact that R ⊆

⋃

F for all S ∈ F and S ⊆
⋃

G for all S ∈ G, since the big
unions are upper bounds.

� One direction required a direct proof of membership, but the other direction was of the
form

⋃

U ⊆ X and therefore could be approached via the universal property of big unions
as the least upper bound of a family of sets; to show that it is below X , it is su�cient to
show that every element of the family U is below X .

What happens in the case of big intersections?

One direction follows in both cases from the universal property of intersections:
�
⋂

G
�

◦
�
⋂

F
�

⊆
⋂

{S ◦ R | R ∈ F , S ∈ G }

However, the other inclusion fails. Consider a pair (a, c) ∈
⋂

{S ◦ R | R ∈ F , S ∈ G }: it
means that for all R ∈ F and S ∈ G, there exists a bR,S ∈ B such that (a, bR,S) ∈ R and
(bR,S, c) ∈ S. We need to show that (a, c) ∈

�⋂

G
�

◦
�⋂

F
�

, that is, there exists a b ∈ B
such that for all R ∈ F , a R b, and for all S ∈ G, b S c. Note the order of quantification: our
assumption produces an intermediate bR,S for any choices of S and R (and the bR,Ss may
be di�erent depending on the choice), while the goal asks for a single b ∈ B that acts
as an intermediate for every relation in F and G. Since we won’t be able to find such a
single b in general, this direction cannot hold. Abstractly, we only have the implication
∃x . ∀y. P(x , y) =⇒ ∀y. ∃x . P(x , y) but not the other direction; this was not an issue
with union since existentials can be swapped.

3. Suppose R is a relation on a set A. Prove that

a) R is reflexive i� idA ⊆ R

R is reflexive i� for all a ∈ A, a R a. Equivalently, for all a, a′ ∈ A, if a = a′ then a R a′.
Since the identity relation is equality, this is equivalent to idA being a subset of R.

b) R is symmetric i� R= Rop

R is symmetric i� for all a, b ∈ A, if a R b then b R a. Equivalently, we can express this
as a R b implying a Rop b, or b Rop a implying b R a. These conditions in turn say that
R ⊆ Rop and Rop ⊆ R, so R= Rop is equivalent to R being symmetric.

c) R is transitive i� R ◦ R ⊆ R

R is transitive i� for all a, b, c ∈ A, if (a, b) ∈ R and (b, c) ∈ R then (a, c) ∈ R. We first
assume R is transitive and prove that R ◦ R ⊆ R by taking a pair (a, c) ∈ R ◦ R. By the
definition of relation composition, there exists a b ∈ A such that a R b and b R c, but
R is transitive, so a R c. Conversely, assume R ◦ R ⊆ R and suppose a R b and b R c
for three elements a, b, c ∈ A. Then, (a, c) ∈ R ◦ R via b, and by assumption, a R c,
proving that R is transitive.

D I S C R E T E M AT H E M AT I C S S O LU T I O N S W I T H CO M M E N TA RY

� The calculational proof of this property would depend on the equivalence

∀a, c ∈ A. (∃b ∈ A. a R b ∧ b R c) =⇒ a R c

⇐⇒ ∀a, c ∈ A. ∀b ∈ A. (a R b ∧ b R c) =⇒ a R c

which is precisely an instance of the equivalence of the formulae (∃x . P(x))⇒ Q
and ∀x . (P(x)⇒Q) way back from §1.3.2.

d) R is antisymmetric i� R∩ Rop ⊆ idA

R is antisymmetric i� for all a, b ∈ A, a R b and b R a implies a = b. This is equivalent
to the statement that a R b and a Rop b implies a = b, that is, (a, b) ∈ R∩Rop implies
(a, b) ∈ idA. This, in turn, is equivalent to R∩ Rop ⊆ idA.

� These are su�cient and necessary conditions for establishing properties of relations in
terms of set-theoretic operators rather than element-wise proofs. As before, having the
ability to reason without “going down to the level of elements” often results in more direct
and elegant proofs that capture the algebraic nature of set-level calculations; in addition,
not having to introduce a lot of new variable names for elements make such proofs less
finicky and error-prone as well.

4. Let R be an arbitrary relation on a set A, for example, representing an undirected graph. We
are interested in constructing the smallest transitive relation (graph) containing R, called the
transitive closure of R: a relation Clt[R] that satisfies 1© R ⊆ Clt[R]; 2© Clt[R] is transitive; and
3© Clt[R] is the smallest such relation.

a) We define the family of relations which are transitive supersets of R:

TR ¬ {Q : A→ A | R ⊆Q and Q is transitive }

R is not necessarily going to be an element of this family, as it might not be transitive.
However, R is a lower bound for TR, as it is a subset of every element of the family.

Prove that the set
⋂

TR is the transitive closure for R.

We need to prove that
⋂

TR is the 3© smallest 2© transitive relation 1© containing R.

1© By the UP of intersections, R ⊆
⋂

TR holds i� R ⊆Q for all Q ∈ TR; but by definition
of TR we have that R must be a subset of all its elements.

2© To show that
⋂

TR is transitive, it is su�cient to show that
⋂

TR ◦
⋂

TR ⊆
⋂

TR by
§6.2.3. By the UP of intersections (similar to §6.2.2),

⋂

TR◦
⋂

TR ⊆
⋂

{Q ◦Q |Q ∈ TR },
but since all Q ∈ TR are transitive, Q ◦ Q ⊆ Q and thus

⋂

{Q ◦Q |Q ∈ TR } ⊆
⋂

{Q |Q ∈ TR }=
⋂

TR.

3© To show that
⋂

TR is the smallest transitive superset of R, we let S be a transitive
relation with R ⊆ S and prove that

⋂

TR ⊆ S. Since S is transitive and R ⊆ S, it must
also be an element of TR, and by the UP of intersections,

⋂

TR is a subset of every

D I S C R E T E M AT H E M AT I C S S O LU T I O N S W I T H CO M M E N TA RY

element of TR, in particular S.

b)
⋂

TR is the intersection of an infinite number of relations so it’s di�cult to compute the
transitive closure this way. A better approach is to start with R, and keep adding the missing
connections until we get a transitive graph. This can be done by repeatedly composing R
with itself: after n compositions, all paths of length n in the graph represented by R will
have a transitive connection between their endpoints.

Prove that the (at least once) iterated composition R◦+ ¬ R ◦ R◦∗ is the transitive closure
for R, i.e. it coincides with the greatest lower bound of TR: R◦+ =

⋂

TR. Hint: show that
R◦+ is both an element and a lower bound of TR.

By the definition of R◦∗ and §6.2.2 (with F =
�

R◦k
�

� k ∈ N
	

and G = {R }), we have
that

R◦+ = R ◦ R◦∗ = R ◦
⋃
�

R◦k
�

� k ∈ N
	

=
⋃
�

R ◦ R◦k
�

� k ∈ N
	

=
⋃

n∈N+
R◦n

where N+ is the set of positive natural numbers. Again, we show that
⋃

n∈N+ R◦n is
the 3© smallest 2© transitive relation 1© containing R, where 1© and 2© amounts to
proving that R◦+ ∈ TR and 3© that it is a lower bound of TR.

1© We have that R ⊆
⋃

n∈N+ R◦n since R = R◦1 is an element of the indexed family and
big unions are upper bounds.

2© To show that R◦+ it is transitive, it is su�cient to show that R◦+ ◦ R◦+ ⊆ R◦+. By
§6.2.2, we have the following:

R◦+ ◦ R◦+ =

�

⋃

n∈N+
R◦n
�

◦
�

⋃

m∈N+
R◦m

�

=
⋃

n∈N+

⋃

m∈N+
R◦n ◦ R◦m

To proceed, we prove the following lemma: for all k, l ∈ N, R◦k ◦ R◦l = R◦(k+l).

Base case: k = 0. Then, R◦0 ◦ R◦l = idA ◦ R◦l = R◦(0+l) since the identity relation is a
left unit for composition.

Inductive step: k+ 1. Assume the IH©: R◦k ◦R◦l = R◦(k+l). By definition of iterated com-
position, R◦(k+1) ◦R◦l =

�

R ◦ R◦k
�

◦R◦l , but since relational composition is associative,
this equals R ◦

�

R◦k ◦ R◦l
�

which, by the IH©, is R ◦ R◦(k+l) = R◦((k+1)+l), as required.

By this lemma,
⋃

n∈N+
⋃

m∈N+ R◦n ◦ R◦m =
⋃

n∈N+
⋃

m∈N+ R◦(n+m). Now, to show that
⋃

n∈N+
⋃

m∈N+ R◦(n+m) ⊆ R◦+, we can use the UP of big unions twice and equivalently
establish

∀n ∈ N+. ∀m ∈ N+. R◦(n+m) ⊆ R◦+

but this is the case because R◦(n+m) ∈
�

R◦k
�

� k ∈ N+
	

and big unions are upper
bounds. Thus, we have shown that R◦+ ◦ R◦+ ⊆ R◦+, and by §6.2.3, it is transitive.

3© We need to show that R◦+ is the smallest such relation, i.e. it is a lower bound of

D I S C R E T E M AT H E M AT I C S S O LU T I O N S W I T H CO M M E N TA RY

TR. By the UP of unions, we equivalently have
⋃

n∈N+
R◦n ⊆

⋂

TR ⇐⇒ ∀n ∈ N+. ∀Q ∈ TR. R◦n ⊆Q

The latter statement can be proved by induction on n.

Base case: n = 1. We need to show that for all Q ∈ TR, R◦1 = R ⊆ Q; but this is the
case since R ⊆Q by the definition of TR.

Inductive step: n= k+ 1. Assume the IH©: ∀Q ∈ TR. R◦k ⊆Q. We need to prove that
∀Q ∈ TR. R◦(k+1) ⊆Q. Let Q ∈ TR be such a relation, and show that R◦(k+1) = R◦R◦k ⊆
Q. By the induction hypothesis, R◦k ⊆ Q and R ⊆ Q by assumption on Q, so §6.2.1
implies that

R ◦ R◦k ⊆Q ◦Q ⊆Q

where the last step follows from the fact that Q is transitive. Thus, R◦(k+1) ⊆Q. By the
principle of mathematical induction, we have that ∀n ∈ N+. R◦n ⊆ Q for all Q ∈ TR,
so R◦+ is indeed a lower bound of TR.

Putting everything together, we have that R◦+ is the transitive closure of R, as required.

� A rather involved proof with many distinct steps, references to established prop-
erties and several proof techniques. Notice, however, that at no point did we have
to reason about elements of the relations: we got to the end without ever having to
say “take (a, a′) ∈ R◦+”, for example. It would have been possible to get a low-level
proof like this, but expanding all definitions and resorting to purely logical reasoning
is often lengthier and more error-prone. Gaining the fluency to work with universal
properties and recognising common patterns (su�cient conditions for transitivity,
operand-wise application of subsets in composition, etc.) is a worthwhile, time-saving
skill to learn for discrete mathematics and other mathematical subjects.

� The concept of a closure is a common and powerful tool for characterising mathem-
atical constructions. Abstractly, we say that a set A is closed under an n-ary operation
f if it maps n elements of A to an element of A; that is, if the operation can be rep-
resented as a function f : An→ A. Familiar examples are addition and multiplication
on natural numbers, union and intersection on P(U) for a set U , list concatenation
on the set of all lists of some type. However, natural numbers are not closed un-
der subtraction (e.g. 2− 5 = −3 6∈ N), odd numbers are not closed under addition
(e.g. 3+ 5= 8), subsets of U are not closed under Cartesian product (because the
output is a set of pairs in U × U , not an element of U), etc.

More generally, we can talk about the closure of a set under some property P : for
example P(G) ⇐⇒ G is transitive, or P(A) ⇐⇒ A is closed under operation f .

Naturally, we may be interested in taking a set A and turning it into one that is closed
under a particular property P “with the least amount of e�ort”. In particular, we don’t

D I S C R E T E M AT H E M AT I C S S O LU T I O N S W I T H CO M M E N TA RY

want to do anything if A already satisfies P ; but if it doesn’t, we only want to add
the minimal number of extra elements to make it so, not more. Thus, we want to
construct the set ClP[A] with the following properties: 1© it should certainly contain
all elements of A, so A ⊆ ClP[A]; 2© it should satisfy property P ; and 3© it should
be the smallest superset of A which satisfies P . Hopefully you recognise this as a
universal construction, defining the smallest set ClP[A] in the family CP defined as:

CP ¬ {C | A⊆ C and P(C) }

As we saw before, the least element of such a family is exactly the big intersection
⋂

CP ,
since it is below every closed superset C of A by its UP – this is what part (a) shows
in the particular case of the transitive closure of a graph. While this proof succeeds,
the construction of a closure as a big intersection is inconvenient: it proceeds by
overapproximating (potentially quantifying over an infinite number of supersets) and
taking the common elements of every overapproximation. In many cases the closure
can be built bottom-up, adding elements to the set up until the closure property
is satisfied. The exact approach depends on what property one is considering, but
often involves repeated phases of adding elements to a set to fix all the current
deficiencies, and checking if the new elements gave rise to new holes that need to be
fixed. For example, if a graph G has edges (a, b) and (b, c), its transitive closure will
have to include the edge (a, c); however, if G also has an edge (c, d), it can combine
with (a, c) so the edge (a, d) will be included in the next phase. This is repeated until
there are no more edges needed to make the graph transitive – for a finite graph, this
state will be reached in a finite number of steps. As this question shows, the step of
glueing together transitive edges is done via relation composition, and iterating this
process a potentially infinite number of times will construct the transitive closure.

7. On partial functions
7.1. Basic exercises

1. Let A2 = {1, 2 } and A3 = { a, b, c }. List the elements of the sets PFun(Ai, A j) for i, j ∈ {2, 3 }.
Hint: there may be quite a few, so you can think of ways of characterising all of them without
giving an explicit listing.

PFun(A2, A2). We have 4 possible total functions: { (1,1), (2,1) }, { (1,1), (2,2) },
{ (1, 2), (2, 1) },{ (1, 2), (2, 2) }. All singleton subsets of these are also partial functions, of
which there are 4 more: { (1,1) }, { (1,2) },{ (2,1) },{ (2,2) }. Finally we have the totally
undefined function {}, giving the expected number of (2+ 1)2 = 9 of partial functions.

PFun(A2, A3). We have 9 possible total functions: { { (1, x), (2, y) } | x , y ∈ A3 }. The
singletons map 1 or 2 to any of a, b, c, so there are 6 of those: { { (1, x) } | x ∈ A3 } ∪
{{ (2, y) } | y ∈ A3 }. With {}, we have 16= (3+ 1)2 partial functions, as expected.

PFun(A3, A2). We have 8 possible total functions: { { (a, x), (b, y), (c, z) } | x , y, z ∈ A2 }.

D I S C R E T E M AT H E M AT I C S S O LU T I O N S W I T H CO M M E N TA RY

There are 3 · 2 · 2= 12 partial functions undefined at one argument (where the notation
{Ai }i∈I for an indexed family of sets stands for {Ai | i ∈ I }):

{ { (a, x), (b, y) } }x ,y∈A2
∪ {{ (a, x), (c, z) } }x ,z∈A2

∪ {{ (b, y), (c, z) } }y,z∈A2

There are 3 · 2= 6 partial functions undefined at two arguments:

{ { (a, x) } }x∈A2
∪ {{ (b, y) } }y∈A2

∪ {{ (c, z) } }z∈A2

With {}, we have 27= (2+ 1)3 partial functions, as expected.

PFun(A3, A3). We have 27 possible total functions: { { (a, x), (b, y), (c, z) } | x , y, z ∈ A3 }.
There are 3 · 3 · 3= 27 partial functions undefined at one argument:

{ { (a, x), (b, y) } }x ,y∈A3
∪ {{ (a, x), (c, z) } }x ,z∈A3

∪ {{ (b, y), (c, z) } }y,z∈A3

There are 3 · 3= 9 partial functions undefined at two arguments:

{ { (a, x) } }x∈A3
∪ {{ (b, y) } }y∈A3

∪ {{ (c, z) } }z∈A3

With {}, we have 64= (3+ 1)3 partial functions, as expected.

2. Prove that a relation R: A→ B is a partial function i� R ◦ Rop ⊆ idB .

(⇒) Assume R: A→ B is a partial function: that is, for all a ∈ A and b1, b2 ∈ B, if a R b1 and
a R b2 then b1 = b2. We need to show that if (b1, b2) ∈ R ◦ Rop, b1 = b2. By the definition
of relational composition and the opposite relation, there exists a a ∈ A such that a R b1

and a R b2; but since R is functional, b1 = b2.

(⇐) Assume R ◦ Rop ⊆ idB and take a ∈ A, b1, b2 ∈ B with a R b1 and a R b2. Then, b1 Rop a
and therefore (b1, b2) ∈ R ◦ Rop through a. By assumption, this implies that b1 = b2, as
required.

3. Prove that the identity relation is a partial function, and that the composition of partial functions
is a partial function.

We show that for all a, a1, a2 ∈ A, if a idA a1 and a idA a2, a1 = a2. Since idA is the equality
relation, we haven that a = a1 and a = a2, so a1 = a2.

Let f : A * B and g : B * C be two partial functions. To show that g ◦ f is a partial
function, it is su�cient to show that (g ◦ f) ◦ (g ◦ f)op ⊆ idC (§7.1.2). By §6.1.3(d), we have
that (g ◦ f) ◦ (g ◦ f)op = g ◦ f ◦ f op ◦ gop. Since f is a partial function, f ◦ f op ⊆ idB and
g ◦ gop ⊆ idC ; thus, by §6.2.1, we have:

g ◦ (f ◦ f op) ◦ gop ⊆ g ◦ idA ◦ gop = g ◦ gop ⊆ idC .

� We could of course prove the latter by unwrapping the definition of partial functions and
composition, or doing case analysis on when the functions are defined. But approaching it
via a su�cient condition is quite neat too!

D I S C R E T E M AT H E M AT I C S S O LU T I O N S W I T H CO M M E N TA RY

7.2. Core exercises
1. Show that (PFun(A, B),⊆) is a partial order. What is its least element, if it exists?

Any subset of a partial function is itself a partial function, since it may be defined on
fewer elements of the domain, but functionality is not violated. The set of partial functions
between two sets therefore has the standard subset ordering f ⊆ g which is reflexive,
transitive and antisymmetric as shown in §5.1.1. The least element is the empty set seen as
the totally undefined partial function from A to B.

2. Let F ⊆ PFun(A, B) be a non-empty collection of partial functions from A to B.

a) Show that
⋂

F is a partial function.

By §7.1.2, it is su�cient to show that
�⋂

F
�

◦
�⋂

F
�

op ⊆ idB . We calculate as follows:
�
⋂

F
�

◦
�
⋂

F
�

op =
�
⋂

F
�

◦
�
⋂

{ Fop | F ∈ F }
�

(by §6.1.3(b))

⊆
⋂

{ F ◦ Fop | F ∈ F } (by UP of intersections)

⊆
⋂

{ idB | F ∈ F }= idB (by §7.1.2 and assumption)

b) Show that
⋃

F need not be a partial function by defining two partial functions f , g : A* B
such that f ∪ g : A→ B is a non-functional relation.

We can simply have f = { (1, a) } and g = { (1, b) } for A= {1 } and B = { a, b }. Both
are partial (in fact total) functions, but the union { (1, a), (1, b) } maps 1 to both a
and b, violating functionality.

c) Let h: A* B be a partial function. Show that if every element of F is below h then
⋃

F
is a partial function.

If for all f ∈ F , f ⊆ h, then h is an upper bound ofF and therefore we have
⋃

F ⊆ h.
But subsets of partial functions are themselves partial functions, since they cannot
have more mappings from any particular element of A than h.

� You may wonder why the high-level proof we used for intersections doesn’t work
for unions. The issue is that the UP of unions only allows the inclusion

⋃

{F ◦Fop | F ∈ F } ⊆
�
⋃

F
�

◦
�
⋃

{ Fop | F ∈ F }
�

and while a seemingly more general property
⋃
�

F ◦ F ′
�

� F, F ′ ∈ F
	

=
�
⋃

F
�

◦
�
⋃

F
�

holds in both directions (see §6.2.2), the F and F ′ are independent (since they come
from two existential assumptions) and F ′ cannot be specialised to Fop.

D I S C R E T E M AT H E M AT I C S S O LU T I O N S W I T H CO M M E N TA RY

8. On functions
8.1. Basic exercises

1. Let A2 = {1, 2 } and A3 = { a, b, c }. List the elements of the sets Fun(Ai, A j) for i, j ∈ {2, 3 }.

The total functions have already been listed amongst the partial functions in §7.1.1:

Fun(A2, A2) = { { (1, x), (2, y) } | x , y ∈ A2 }

Fun(A2, A2) = { { (1, x), (2, y) } | x , y ∈ A3 }

Fun(A3, A2) = { { (a, x), (b, y), (c, z) } | x , y, z ∈ A2 }

Fun(A3, A3) = { { (a, x), (b, y), (c, z) } | x , y, z ∈ A3 }

2. Prove that the identity partial function is a function, and the composition of functions yields a
function.

We need to show that for all a ∈ A there exists a unique a′ ∈ A such that idA(a) = a′. Of
course, a is the witness of the existence, and it is unique since sets have no duplicate
elements.

Let f : A→ B and g : B → C be functions. We show that the composite g ◦ f is also a
function, that is, for all a ∈ A, there exists a unique c ∈ C such that (g ◦ f)(a) = c. By the
definition of function composition, (g ◦ f)(a) = g(f (a)), where f (a) = b for a unique
b ∈ B and g(b) = c for a unique c ∈ C . Thus, a unique c does exist, and g ◦ f is a function.

3. Prove or disprove that (Fun(A, B),⊆) is a partial order.

Unlike partial functions, functions are not closed under taking subsets or supersets: the
number of mappings (i.e. the graph) of a function must be equal to the size of the domain
(or, more precisely, isomorphic), so we can’t add or remove mappings without breaking
functionality or totality. We may be tempted to conclude that (Fun(A, B),⊆) is not a partial
order, but we should remember that there is still an ordering on the set even if di�erent
functions can’t be compared: f ⊆ g if and only if f = g . Thus, the subset ordering on
functions simply restricts to equality, which is trivially a partial order: we have reflexivity
since f ⊆ f , and antisymmetry and transitivity hold because the hypotheses like f ⊆ g
and g ⊆ h simply become f = g = h.

4. Find endofunctions f , g : A→ A such that f ◦ g 6= g ◦ f .

Let f : N→ N be the successor function n 7→ n+1, and g : N→ N be the squaring function
m 7→ m2. Then, for all n, (g ◦ f)(n) = (n+ 1)2 = n2 + 2n+ 1, but (f ◦ g)(n) = n2 + 1.

� Many other examples exist of course. This is merely a reminder that function composition
(and relational composition in general) is not commutative, and it doesn’t have many other
properties that we tend to expect from binary operators: for example, f ◦ g = f ◦ h does
not imply g = h in general.

D I S C R E T E M AT H E M AT I C S S O LU T I O N S W I T H CO M M E N TA RY

8.2. Core exercises
1. A relation R: A→ B is said to be total if ∀a ∈ A. ∃b ∈ B. a R b. Prove that this is equivalent to

idA ⊆ Rop ◦R. Conclude that a relation R: A→ B is a function i� R ◦Rop ⊆ idB and idA ⊆ Rop ◦R.

(⇒) Assume that R: A→ B is a total relation, that is, for all a ∈ A there exists a b ∈ B such
that a R b. We need to show that for all (a, a′) ∈ idA, (a, a′) ∈ Rop ◦ R – that is, that Rop ◦ R
is reflexive. A pair (a, a) for a ∈ A is in Rop ◦ R if there exists a b ∈ B such that a R b and
b Rop a, i.e. a R b, which is satisfied if there exists a b ∈ B such that a R b. But this follows
from the assumption that R is total.

(⇐) Assume that Rop ◦ R is reflexive and show that R is total. Take a ∈ A; as Rop ◦ R is
reflexive, (a, a) ∈ Rop ◦ R, so there exists a b ∈ B such that a R b. Taking this b as the
witness of existence, we conclude that R is a total relation.

A total function is both a total relation and a partial function, so a relation R is total if and
only if it satisfies both idA ⊆ Rop ◦ R (from above) and R ◦ Rop ⊆ idB (from §7.1.2).

� This question establishes that partial functions are in some sense dual to total rela-
tions: instead of asking for uniqueness (functionality), they require an existence (totality).
Consequently, we can dualise several results from the previous section. For example, we
have that the union of total relations is total, but the intersection is not, with the proofs
being the duals of the arguments in §7.2.2 (and the proof attempt for intersections failing
because their universal property is the “wrong way around”).

2. Let χ : P(U) → (U ⇒ [2]) be the function mapping subsets S ⊆ U to their characteristic
functions χS : U → [2].

a) Prove that for all x ∈ U ,

• χA∪B(x) = (χA(x) ∨ χB(x)) =max(χA(x),χB(x))

Let x ∈ U . Then,

χA∪B(x) ⇐⇒ x ∈ (A∪ B) ⇐⇒ (x ∈ A) ∨ (x ∈ B) ⇐⇒ (χA(x) ∨ χB(x))

and the latter holds i� χA(x) = 1 or χB(x) = 1, so max(χA(x),χB(x)) = 1.

• χA∩B(x) = (χA(x) ∧ χB(x)) =min(χA(x),χB(x))

Let x ∈ U . Then,

χA∩B(x) ⇐⇒ x ∈ (A∩ B) ⇐⇒ (x ∈ A) ∧ (x ∈ B) ⇐⇒ (χA(x) ∧ χB(x))

and the latter holds i� χA(x) = 1 and χB(x) = 1, so min(χA(x),χB(x)) = 1.

• χAc(x) = ¬(χA(x)) = (1−χA(x))

Let x ∈ U . Then,

χAc(x) ⇐⇒ x 6∈ A ⇐⇒ ¬(x ∈ A) ⇐⇒ ¬(χA(x))

D I S C R E T E M AT H E M AT I C S S O LU T I O N S W I T H CO M M E N TA RY

and the latter holds i� χA(x) = 0, so 1−χA(x) = 1.

b) For what construction A?B on sets A and B does it hold that

χA?B(x) = (χA(x)⊕χB(x)) = (χA(x) +2 χB(x))

for all x ∈ U , where ⊕ is the exclusive or operator? Prove your claim.

The element x must be exactly in one of A or B, not their intersection. This leads to
the definition

A?B = (A\ B)∪ (B \ A) = (A∪ B) \ (A∩ B)

which is known as the symmetric di�erence and written A4 B. Then, for x ∈ U ,

χA4B(x) ⇐⇒ x ∈ (A4 B)

⇐⇒ (x ∈ A ∧ x 6∈ B) ∨ (x ∈ B ∧ x 6∈ A)

⇐⇒ (χA(x) ∧ ¬χB(x)) ∨ (χB(x) ∧ ¬χA(x))

⇐⇒ χA(x)⊕χB(x)

and the latter doesn’t hold i� χA(x) = χB(x) = 0 or χA(x) = χB(x) = 1. Adding
χA(x) and χB(x) can give the values of 0, 1 or 2, but we only want the case where
the sum is 1 and use the addition modulo 2 to route the other possibilities to 0.

8.3. Optional advanced exercise
Consider a set A together with an element a ∈ A and an endofunction f : A→ A.

Say that a relation R: N→ A is (a, f)-closed whenever

R(0, a) and ∀n ∈ N, x ∈ A. R(n, x) =⇒ R(n+ 1, f (x))

Define the relation F : N→ A as

F ¬
⋂

{R: N→ A | R is (a, f)-closed }

a) Prove that F is (a, f)-closed.

b) Prove that F is total, that is: ∀n ∈ N. ∃y ∈ A. F(n, y).

c) Prove that F is a function N→ A, that is: ∀n ∈ N. ∃!y ∈ A. F(n, y).

Hint: Proceed by induction. Observe that, in view of the previous item, to show that ∃!y ∈
A. F(k, y) it su�ces to exhibit an (a, f)-closed relation Rk such that ∃!y ∈ A. Rk(k, y). (Why?)
For instance, as the relation R0 = { (m, y) ∈ N× A | m = 0 =⇒ y = a } is (a, f)-closed one
has that F(0, y) =⇒ R0(0, y) =⇒ y = a.

d) Show that if h is a function N→ A with h(0) = a and ∀n ∈ N. h(n+ 1) = f (h(n)) then h= F .

Thus, for every set A together with an element a ∈ A and an endofunction f : A→ A there exists a

D I S C R E T E M AT H E M AT I C S S O LU T I O N S W I T H CO M M E N TA RY

unique function F : N→ A, typically said to be inductively defined, satisfying the recurrence relation

F(n) =

(

a for n= 0

f (F(n− 1)) for n≥ 1

9. On bijections
9.1. Basic exercises

1. a) Define a function that has (i) none, (ii) exactly one, and (iii) more than one retraction.

b) Define a function that has (i) none, (ii) exactly one, and (iii) more than one section.

� The general pattern (for finite sets) is that the domain of sections is smaller than (or
equal to) the codomain so elements can be “selected” from a larger set. Conversely, the
domain of a retraction is greater than or equal to the codomain, so a group of elements
can be “collapsed” into one. The section-retraction condition states that a section at a ∈ A
selects one of the elements that get mapped to a by the retraction.

2. Let n be an integer.

a) How many sections are there for the absolute-value map x 7→ |x |: [−n..n]→ [0..n]?

The absolute value function maps two integers k and −k to the same natural number
|k| (other than 0), so a section for this map can select either of the two integers. The
codomain [0..n] has size n+ 1 but 0 can only be mapped to 0 ∈ [−n..n]; for the
remaining n inputs we have 2 choices each, giving us 2n possible sections.

b) How many retractions are there for the exponential map x 7→ 2x : [0..n]→ [0..2n]?

The retraction only needs to map the powers of two back to their exponents, leaving
2n − n naturals in [0..2n] that are not in the range of the exponential map and
therefore are not constrained by the section-retraction condition. Since each of these
can be mapped to any of the #[0..n] = n+ 1 possible inputs, the exponential map
has (n+ 1)2

n−n retractions.

3. Give an example of two sets A and B and a function f : A→ B such that f has a retraction but
no section. Explain how you know that f has these properties.

See §9.1.1.

4. Prove that the identity function is a bijection and that the composition of bijections is a bijection.

To show that the identity idA : A→ A is a bijection , it is su�cient to exhibit a two sided
inverse, namely idA itself. Since it is the unit of composition, we have idA ◦ idA = idA, which
is both the left and right inverse condition.

Let f : A→ B and g : B→ C be bijections, with respective inverses f −1 and g−1. We need to
show that the composite g ◦ f : A→ C is a bijection. Consider the function f −1◦ g−1 : C → A,

D I S C R E T E M AT H E M AT I C S S O LU T I O N S W I T H CO M M E N TA RY

and calculate using the inverse properties of f and g :

(f −1 ◦ g−1) ◦ (g ◦ f) = f −1 ◦ (g−1 ◦ g) ◦ f = f −1 ◦ idB ◦ f = f −1 ◦ f = idA

(g ◦ f) ◦ (f −1 ◦ g−1) = g ◦ (f ◦ f −1) ◦ g−1 = g ◦ idB ◦ g−1 = g ◦ g−1 = idC

Thus, f −1 ◦ g−1 is a two-sided inverse of g ◦ f , making it into a bijection.

5. For f : A→ B, prove that if there are g, h: B→ A such that g ◦ f = idA and f ◦ h = idB then
g = h. Conclude as a corollary that, whenever it exists, the inverse of a function is unique.

We show that if a map f : A→ B has two opposite-sided inverses, they must be equal.
Assume g, h: B→ A satisfy g ◦ f = idA and f ◦h = idB . We consider the composite g ◦ f ◦h
and calculate:

g ◦ (f ◦ h) = g ◦ idB = g (g ◦ f) ◦ h= idA ◦ h= h

and since composition is associative, we have that g = h.

Assume a function f : A→ B has two inverses f1
−1, f2

−1 : B→ A. Then, in particular, they
satisfy f1

−1 ◦ f = idA and f ◦ f2
−1 = idB , so by the first part, we have that f1

−1 = f2
−1.

9.2. Core exercises
1. We say that two functions s : A → B and r : B → A are a section-retraction pair whenever

r ◦ s = idA; and that a function e : B→ B is an idempotent whenever e ◦ e = e. This question
demonstrates that section-retraction pairs and idempotents are closely connected: any section-
retraction pair gives rise to an idempotent function, and any idempotent function can be split
into a section-retraction pair.

a) Let f : C → D and g : D→ C be functions such that f ◦ g ◦ f = f .

(i) Can you conclude that f ◦ g is idempotent? What about g ◦ f ? Justify your answers.

Both are idempotent, since by associativity of ◦ and the assumption we have:

(f ◦ g) ◦ (f ◦ g) = (f ◦ g ◦ f) ◦ g = f ◦ g

(g ◦ f) ◦ (g ◦ f) = g ◦ (f ◦ g ◦ f) = g ◦ f

(ii) Define a map g ′ using f and g that satisfies both

f ◦ g ′ ◦ f = f and g ′ ◦ f ◦ g ′ = g ′

Let g ′ = g ◦ f ◦ g . Then:

f ◦ g ′ ◦ f = f ◦ g ◦ (f ◦ g ◦ f) = f ◦ g ◦ f = f

g ′ ◦ f ◦ g ′ = g ◦ (f ◦ g ◦ f) ◦ g ◦ f ◦ g = g ◦ (f ◦ g ◦ f) ◦ g = g ◦ f ◦ g = g ′

D I S C R E T E M AT H E M AT I C S S O LU T I O N S W I T H CO M M E N TA RY

� Straightforward questions intended to get you used to “the algebra of functions”:
calculating with compositions of functions, rather than their values at arguments.

b) Show that if s : A→ B and r : B → A are a section-retraction pair then the composite
s ◦ r : B→ B is idempotent.

Let s : A→ B and r : B→ A be a section-retraction pair with r ◦ s = idA. We show that
s ◦ r : B→ B is idempotent as follows:

(s ◦ r) ◦ (s ◦ r) = s ◦ (r ◦ s) ◦ r = s ◦ idA ◦ r = s ◦ r

where we use assumption along with the associativity of composition and neutrality
of the identity function.

c) Show that for every idempotent e : B→ B there exists a set A (called a retract of B) and a
section-rectraction pair s : A→ B and r : B→ A such that s ◦ r = e.

Let e : B→ B be an idempotent function. We need to show that there exists a set A
such that e can be split into the composition e = s ◦ r where s : A→ B and r : B→ A
form a section-retraction pair.

Take A to be the subset { e(x) | x ∈ B } ⊆ B, i.e. the direct image of B under e.
Let s : A→ B be the subset injection A� B, and r : B → A be e with its codomain
restricted to its range. That is:

s(x) = x r(y) = e(y)

Now, the composite s◦r maps x ∈ B to e(x) ∈ Awhich is then injected to B unchanged,
so s◦r = e. The reverse composite r◦s maps an element y : A to e(y), but by definition
of A there must be an x ∈ B such that y = e(x), and by the idempotence of e we
have that e(y) = e(e(x)) = e(x) = y ; thus, r ◦ s = idA and the two maps form a
section-retraction pair.

� This is a rather abstract exercise which establishes a connection between idem-
potent maps and section-retraction pairs, namely: every sr-pair gives rise to an
idempotent map, and every idempotent map can be split into a sr-pair.

Idempotent maps are functions which do not need to be applied more than once:
f (f (x)) = f (x), so in general f n(x) = f (x) for any natural number n. Examples are
the absolute value function |−|: Z→ Z, sorting algorithms and other “normalisation”
procedures (once something is brought into a standardised, normal form, it should
not change if normalised again), mapping a set X to its closure under some property
ClP(X) (e.g. for an arbitrary relation R, taking the transitive closure of Clt(R) should
be a no-op), pressing the elevator or road crossing indicator button, etc.

Section-retraction pairs normally capture the idea of sorting a set of elements B into
disjoint groupings labelled by A: the retraction r : B→ A maps an element b ∈ B to

D I S C R E T E M AT H E M AT I C S S O LU T I O N S W I T H CO M M E N TA RY

its group label in A, while the section s : A→ B selects a particular element s(a) ∈ B
labelled by a ∈ A. Clearly the group that a particular element of the group belongs
to will be the starting group, giving rise to the required one-sided inverse condi-
tion. Examples are cities grouped by countries, students grouped by subject/college,
products grouped by brands, employees grouped by department, and so on (you can
probably find even more examples in the Databases course).

A common characteristic of all of these is that the set of entities is larger than the
set of groups, and each group has at least one element (since the section has to
select something). This is usually visualised as a vertical internal diagram, where
the retraction r maps several entities in B to a single element in A, and the section
s maps an element in A to one of the elements that is mapped to it by r . As this
representation demonstrates, elements in B get clustered by which group they belong
to, which equips B with an implicit partitioning (see §10.2.3). The section then selects a
“representative element” of each partition. The section-retraction condition r◦s = idA

simply states that the representative elements are in the clusters they represent –
certainly desirable! For the example of cities grouped by countries, the representative
element of each city cluster may be the capital city (and let’s assume every country
has exactly one capital), which of course has to be in the country it is a capital of.

r

B

A

s

B

A

Section-retraction parts only have a one-directional inverse property r ◦ s = idA;
nevertheless, the reverse composite s ◦ r – not required to be the identity – cannot be
completely arbitrary either. As shown in the exercise, it has to be an idempotent map:
once we do one round trip between B and A, we are “stuck” no matter how many new
round trips we do. Mathematically, we have found the fixed point of an endofunction,
i.e. the value x such that f (x) = x . It is easy to see that every idempotent map
e : B → B has a fixed point e(x) for all x ∈ B, since the idempotence condition
e(e(x)) = e(x) is precisely a fixed point equation. Graphically, we can see that
following any 2-step path from x ∈ B will lead us to the representative element, from
which any round trip is merely the identity map. The composite s ◦ r can therefore be
seen as a function on B, representing the mapping of any element in a cluster to its
representative; for example, any city to the capital of its country, any student to their
college student union president, any employee to their department manager.

D I S C R E T E M AT H E M AT I C S S O LU T I O N S W I T H CO M M E N TA RY

Now, we consider a di�erent problem: we start with a set B and an endomap e : B→
B satisfying e ◦ e = e. As before, idempotence clusters elements in B since one
application of e maps them to a unique representative and any new applications will
simply loop on the representatives.

þ þ

þ þ

B

e

The question is: can we recover the set A and the section-retraction pair that induces
e just from B and e? While we can’t expect to be able to do this exactly – we’d need
to figure out the names of colleges only based on the students – we can do the next
best thing: find a decomposition which will be isomorphic to the original grouping.
Looking at the diagram, it should be quite clear which elements act as representatives
of the clusters and can therefore be abstractly characterised: all the outputs of the
idempotent map e, i.e. the set of fixed points of e. Thus, we take the retract A to
be nothing more than the subset A ¬ { f (x) | x ∈ B }. Intuitively, we exploit the
(simplified) fact that the set of capitals/presidents/managers is isomorphic to the
set of countries/colleges/departments. Now, we need to find s : A→ B and r : B→ A
satisfying r ◦ s = idA and s◦ r = e. Since A is a subset of B, there is a canonical section
s : A→ B that embeds A into its superset: s(x ∈ A) = x ∈ B. Conversely, the retraction
that maps B to A is the idempotent function e itself, with its codomain restricted
to its range: r(y ∈ B) = e(y). The composite s ◦ r is an application of e followed
by an “identity” map, so we clearly have s ◦ r = e. To prove the section-retraction
condition, take an x ∈ A and consider r(s(x)) = r(x) = e(x), which is not exactly
what we need; however, we know that x ∈ A so it must be of the form x = e(y) for
some y ∈ B. Thus, r(s(x)) = r(s(e(y))) = e(e(y)) = e(y) = x , as required.

10. On equivalence relations
10.1. Basic exercises

1. Prove that the isomorphism relation ∼= between sets is an equivalence relation.

Reflexive. The identity idA : A→ A is a bijection (§9.1.4), so we have the isomorphism A ∼= A
for all sets A.

Symmetric. Assume A ∼= B; that is, there is a bijection f : A→ B. Its inverse f −1 : B→ A is
a bijection too, so we have the isomorphism B ∼= A, as required.

Transitive. Assume A ∼= B and B ∼= C with respective bijections f and g . Then the composite
g ◦ f : A→ C is a bijection too (§9.1.4) and exhibits the isomorphism A ∼= C .

2. Prove that the identity relation idA on a set A is an equivalence relation, and that A/idA
∼= A.

D I S C R E T E M AT H E M AT I C S S O LU T I O N S W I T H CO M M E N TA RY

The identity relation idA : A→ A is equal to the equality relation { (x , y) ∈ A× A | x = y }
which is an equivalence relation.

The quotient set A/idA is the set of equivalence classes of A under the equality relation:
A/idA = { [a]= ⊆ A | a ∈ A}. The equivalence class [a]= contains all elements that are
equal to a, which of course is a itself since sets have no repeated elements. Hence every
equivalence class is the singleton set, and we can construct a bijection f : A→ A/idA by
mapping x ∈ A to { x } ∈ A/idA, and the inverse f −1 mapping { y } to y .

3. Show that, for a positive integer m, the relation ≡m on Z given by

x ≡m y ⇐⇒ x ≡ y (mod m)

is an equivalence relation. What are the equivalence classes of this relation?

We have already proved that congruence is reflexive, transitive and symmetric in §2.1.1, so
it is indeed an equivalence relation. The equivalence classes of congruence modulo m are
the congruence classes km = {n ∈ Z | (m | k− n) }, and the quotient Z/≡m is isomorphic
to the set Zm of integers modulo m.

4. Show that the relation ≡ on Z×Z+ given by

(a, b)≡ (x , y) ⇐⇒ a · y = x · b

is an equivalence relation. What are the equivalence classes of this relation?

Reflexive. We have to show that (a, b)≡ (a, b) for a ∈ Z and b ∈ Z+; by definition, this is
a · b = a · b, which is true by reflexivity of equality.

Symmetric. Assume (a, b) ≡ (x , y); that is, a y = x b. By symmetry of equality we have
x · b = a · y which implies (x , y)≡ (a, b), as required.

Transitive. Assume (a, b) ≡ (x , y) and (x , y) ≡ (m, n); then, 1© a · y = x · b and 2©
x · n = m · y . We have to show that 3© a · n = m · b. Multiplying both sides of 1© by n, then
rearranging and applying 2©, we have the following:

a · y · n= x · b · n= x · n · b = m · y · b

Since y ∈ Z+, it is nonzero and we can divide both sides of a · y · n = m · b · y to get 3©, as
required.

An equivalence class of this relation for a pair (a, b) contains all pairs (x , y) such that
a · y = x · b; in other words, a

b =
x
y . Thus, the relation expresses the equality of fractions,

with an equivalence class corresponding to di�erent “representations” of the same fraction,
and a representative element for every class being the fraction in lowest terms. The quotient
set Z×Z+/≡ has elements corresponding to rational numbers (represented by an infinite
number of distinct, but equivalent fractions of integers) so it is isomorphic to Q.

D I S C R E T E M AT H E M AT I C S S O LU T I O N S W I T H CO M M E N TA RY

10.2. Core exercises
1. Let E1 and E2 be two equivalence relations on a set A. Either prove or disprove the following

statements.

a) E1 ∪ E2 is an equivalence relation on A.

The statement is false. Let A = { a, b, c } and consider the equivalence relations
E1 = { (a, a), (a, b), (b, a), (b, b), (c, c) } and E2 = { (a, a), (b, b), (b, c), (c, b), (c, c) }.
Then, the union E1 ∪ E2 contains the pairs (a, b) and (b, c) but not the pair (a, c), so
the union – while still being reflexive and symmetric – is not transitive.

b) E1 ∩ E2 is an equivalence relation on A.

Let E1 and E2 be two equivalence relations on A. We show that E1∩E2 is an equivalence
relation as well, using the su�cient conditions of §6.2.3.

Reflexive. We show that idA ⊆ E1 ∩ E2 or equivalently, idA ⊆ E1 and idA ⊆ E2, which
hold since E1 and E2 are reflexive.

Symmetric. By §6.1.3(b), (E1 ∩ E2)op = E1
op ∩ E2

op = E1 ∩ E2, since both relations are
symmetric.

Transitive. It is su�cient to show that (E1 ∩ E2) ◦ (E1 ∩ E2) ⊆ E1 ∩ E2, or equivalently,
(E1 ∩ E2) ◦ (E1 ∩ E2) ⊆ E1 and (E1 ∩ E2) ◦ (E1 ∩ E2) ⊆ E2. Since E1 ∩ E2 ⊆ E1, by §6.2.1
we have (E1 ∩ E2) ◦ (E1 ∩ E2) ⊆ E1 ◦ E1, and by transitivity of E1, E1 ◦ E1 ⊆ E1. The
case for E2 is similar.

� Could we have done this quite easily with element-wise reasoning? Yes. Is this
approach far more satisfying? Also yes.

2. For an equivalence relation E on a set A, show that [a1]E = [a2]E i� a1 E a2, where

[a]E = { x ∈ A | x E a }.

Let E be an equivalence relation on A, and take two elements a1, a2 ∈ A.

(⇒) Assume [a1]E = [a2]E ; we need to prove that a1 E a2. By definition of equivalence
classes and set equality, all elements x ∈ A are related to a1 if and only if they are related
to a2: x E a1 ⇐⇒ x E a2. In particular, for x = a1, we have a1 E a1 ⇐⇒ a1 E a2; but E is
reflexive, so a1 E a1 and from this a1 E a2 follows.

(⇐) Assume a1 E a2 and prove that for all x ∈ A, x E a1 if and only if x E a2. If x E a1, then
by assumption and the transitivity of E, x E a2. Conversely, if x E a2, we can chain this with
the opposite assumption a2 E a1 to get x E a1, as required.

3. For a function f : A→ B define a relation ≡ f on A by the rule: for all a, a′ ∈ A,

a ≡ f a′ ⇐⇒ f (a) = f (a′)

a) Show that for every function f : A→ B, the relation ≡ f is an equivalence relation on A.

D I S C R E T E M AT H E M AT I C S S O LU T I O N S W I T H CO M M E N TA RY

Reflexive. We need to show that for all a ∈ A, a ≡ f a, or equivalently, f (a) = f (a) –
but the latter holds by reflexivity.

Symmetric. Assume a ≡ f b, that is, f (a) = f (b). Then f (b) = f (a), so b ≡ f a,
proving that ≡ f is symmetric.

Transitive. Assume a ≡ f b and b ≡ f c, that is, f (a) = f (b) and f (b) = f (c). By
transitivity of equality, f (a) = f (c), so a ≡ f c, as required.

b) Prove that every equivalence relation E in a set A is equal to ≡q, where q : A� A/E is the
quotient function q(a) = [a]E .

Let E be an equivalence relation on A. We need to show that for all a, b ∈ A, a E b if
and only if a ≡q b, or, by definition, [a]E = [b]E . But this follows directly from §10.2.2.

c) Prove that for every surjection f : A� B,

B ∼=
�

A/≡ f

�

Let f : A� B be a surjection. We prove the isomorphism by exhibiting a bijection
g : B→

�

A/≡ f

�

with a two-sided inverse g−1 :
�

A/≡ f

�

→ B.

Let g map a b ∈ B to the set { a ∈ A | f (a) = b }; this is a non-empty set since f is a
surjection, and it is an equivalence class of elements under ≡ f because any a1, a2 in
the set gets mapped to b by f and therefore f (a1) = b = f (a2) implies a1 ≡ f a2.

Let g−1 be a mapping from an equivalence class [a]≡ f
of an a ∈ A to f (a) ∈ B.

We show that for all b ∈ B, g−1(g(b)) = b. By definition of g , g(b) = { a ∈ A | f (a) =
b } which is nonempty by the surjectivity of f ; let a be one of its representative
elements so that g(b) = [a]≡ f

. Then, g−1([a]≡ f
) = f (a), but by assumption, f (a) = b,

so we indeed have g−1 ◦ g = idB .

Conversely, let [a]≡ f
∈
�

A/≡ f

�

be the equivalence class of an element a ∈ A. We
then have g(g−1([a]≡ f

)) = g(f (a)) = { a′ ∈ A | f (a′) = f (a) }. But this set is
precisely { a′ ∈ A | a′ ≡ f a }, the equivalence class [a]≡ f

of a. Thus, g ◦ g−1 = idA/≡ f
,

and the bijection g exhibits the isomorphism B ∼=
�

A/≡ f

�

, as required.

� As before, the best way to get an intuition for this question is to draw a diagram.
A useful visualisation of functions – similar to the clustering representation in §9.2.1 –
is as elements of the domain stacked over the elements of the codomain that they
are mapped to, with the individual mapping arrows left implicit (and functionality
captured by the fact that a dot in A can only be over exactly one dot in B).

D I S C R E T E M AT H E M AT I C S S O LU T I O N S W I T H CO M M E N TA RY

f

A

B

If the function is an injection, each column can at most one element; if it is a surjection
(like f here), each column must have at least one element. The equivalence relation
≡ f in this question relates two elements in A precisely when they are in the same
column, and since f is a surjection, the elements of A are all partitioned into disjoint,
non-empty columns. Since each column is above an element in B, there is a bijection
between the set of partitions (i.e. the set A quotiented by ≡ f) and B, exhibited by a
mapping between b ∈ B and the stack of A elements that get mapped to b (sometimes
called the fiber over b).

11. On surjections and injections
11.1. Basic exercises

1. Give two examples of functions that are surjective, and two examples of functions that are not.

Surjective. Absolute value function to the naturals |−|: Z � N; natural log function
ln: R+0 �R; first projection function from the Cartesian product of two (nonempty) sets
π1 : A× B� A.

Not surjective. Integer squaring function on the naturals: (−)2 : N→ N (only returns perfect
squares); constant function cb : A→ B with value b ∈ B (always outputs b if B is not the
singleton set); successor function (−) + 1: N→ N (0 is not the successor of any number).

2. Give two examples of functions that are injective, and two examples of functions that are not.

Injective. The inclusion/injection function ι : S � A for any subset S of A; exponential
function x 7→ ex : R�R; perfect hash function.

Not injective. Integer squaring function: (−)2 : Z→ Z (since x2 = (−x)2); quotient function
q(a) = [a]E : A→ A/E for an equivalence relation E (related elements map to the same
equivalence class); sin(x): [0, 2π]→ [−1, 1] since sin(0) = sin(2π) = 0.

11.2. Core exercises
1. Explain and justify the phrase injections can be undone.

Every injection (from a non-empty domain) has a retraction which “undoes” its e�ect. If
i : A� B is an injection, every b in B is mapped to by at most a ∈ A; thus, a retraction can

https://en.wikipedia.org/wiki/Perfect_hash_function

D I S C R E T E M AT H E M AT I C S S O LU T I O N S W I T H CO M M E N TA RY

be defined as

r(b) =

(

a if ∃a ∈ A. i(a) = b

a0 otherwise

where a0 is any element of A. This is total, since every b is either mapped to the source a
for which i(a) = b, or to the fixed a0. It is also functional, since there may only be at most
one a for which i(a) = b. By construction, r ◦ i = idA, so the two form a section-retraction
pair.

The implication holds in the other direction as well: every section s : A→ B (with a retraction
r : B→ A) is an injection. To see this, consider a, a′ ∈ A and assume s(a) = s(a′). But since
r ◦ s = idA, we have that r(s(a)) = r(s(a′)) implies a = a′, so s must be an injection.

2. Show that f : A→ B is a surjection if and only if for all sets C and functions g, h: B → C ,
g ◦ f = h ◦ f implies g = h.

(⇒) Let f : A� B be a surjection: for all b ∈ B there exists an a ∈ A such that f (a) = b.
Furthermore, let g, h: B→ C be functions and assume 1© g ◦ f = h ◦ f . We need to show
that g = h, that is, for all b ∈ B, g(b) = h(b). But by assumption any b ∈ B is equal to
f (a) for some a ∈ A, so the condition is equivalent to g(f (a)) = h(f (a)), which is just 1©.

(⇐)We show the contrapositive: if f : A� B is not surjective, then there exists a C and
functions g, h: B→ C such that g ◦ f = h ◦ f but g 6= h. If f is not surjective, there exists
a b0 ∈ B such that for all a ∈ A, f (a) 6= b0. We can therefore choose two functions g and h
such that they match on the range of f , but di�er on b0. For example, take C to be B with
a new distinguished element ? added: C = B ∪ {? }. Let g : B→ B ∪ {? } be the inclusion
g(b) = b, and let h(b0) = ? and h(b) = b for all b 6= b0. Then, g ◦ f = h ◦ f , since g and h
defined to be equal for all elements in the range of f , but they di�er on the element b0

not “covered” by f , hence g 6= h.

� The (⇐) direction can be presented as a non-contrapositive argument as well. Let
f : A � B be a function and assume for all g, h: B → C , if g ◦ f = h ◦ f then g = h.
We need to show that for all b ∈ B there exists an a ∈ A such that f (a) = b. Choose
C = [2] = {0,1 } and define g = χB and h = χ −→f (A), where

−→
f (A) ⊆ B is also called the

range of f , i.e. the set { f (a) ∈ B | a ∈ A}. That is, g(b) = 1 for all b, and h(b) = 1 for
all b in the range of f , and 0 otherwise. Now, for all a ∈ A, g(f (a)) = h(f (a)), but by
assumption this implies that g = h. This is only possible if the range of f is B itself, i.e. f
is surjective.

What would be an analogous condition for injections?

Injectivity is equivalent to left-cancellability: f : B→ C is an injection i� for all sets A and
functions g, h: A→ B, if f ◦ g = f ◦ h then g = h.

(⇒) Assume f : B� C is an injection, and suppose that f ◦ g = f ◦h for some g, h: A→ B.
We need to show that for all a ∈ A, g(a) = h(a). Injectivity means that for all b1, b2 ∈ B, if

D I S C R E T E M AT H E M AT I C S S O LU T I O N S W I T H CO M M E N TA RY

f (b1) = f (b2) then b1 = b2. Instantiating this for g(a), h(a) ∈ B, and using the assumption
f ◦ g = f ◦ h, we deduce that f (g(a)) = f (h(a)) implies g(a) = h(a). Since a ∈ A was
arbitrary, we have that g = h.

(⇐) Assume that for all A and g, h: A→ B, 1© f ◦ g = f ◦ h implies g = h. We need to
show that for all b1, b2 ∈ B, if f (b1) = f (b2) then b1 = b2. Take b1, b2 ∈ B and assume
that 2© f (b1) = f (b2); for A= { () } the singleton set, define g, h: A→ B as g() = b1, and
h() = b2. Then, by 2©, f (g()) = f (b1) = f (b2) = f (h()), but then by 1© g = h so b1 = b2.

3. Use the above su�cient condition to show that the identity function is a surjection, and the
composition of surjections is a surjection.

Identity. We show that idA : A→ A is a surjection. Let X be a set and g, h : A→ X be two
functions, and assume g ◦ idA = h ◦ idA. Since the identity is the unit of composition, we
get g = h immediately, so idA is a surjection by §11.2.2.

Composition. Let f : A� B and g : B� C be surjections. We show that g ◦ f : A→ C is a
surjection via §11.2.2. Let h, i : C → X be two functions and assume h◦ (g ◦ f) = i ◦ (g ◦ f);
we need to prove that h = i. Composition is associative, so (h ◦ g) ◦ f = (i ◦ g) ◦ f – and f
is a surjection, so we have that h ◦ g = i ◦ g : B→ X . Similarly, g is surjective, so h= i.

� As is hopefully apparent now, exercises of the form [object] is [defined set-theoretic
concept] i� [it satisfies set-theoretic property] are powerful and reusable proof principles:

X is the union of A and B i� A⊆ X , B ⊆ X , and for all Y , (A⊆ Y ∧ B ⊆ Y)⇒ X ⊆ Y

R is an equivalence relation i� idA ⊆ R, R= Rop and R ◦ R ⊆ R

R is a partial function i� R ◦ Rop ⊆ idB

f is surjective i� for all g, h: B→ X , g ◦ f = h ◦ f ⇒ g = h

Thus, to prove that [object] is [defined set-theoretic concept], instead of expanding the
set-theoretic definition (which is usually given in terms of individual elements), we can
reason via the higher-level set-theoretic properties which may result in more abstract and
elegant proofs with preorder or equational reasoning. While perhaps not immediately as
intuitive and not necessarily shorter, once you get used to the approach, you will be able
to recognise and appreciate opportunities for reasoning via su�cient/universal properties
rather than reaching for “let x ∈ A and show x ∈ B” right away and making your proof
low-level and often harder to follow. That said, for explicitly defined sets and functions,
proving surjectivity (for example) from first principles may be more direct – see some
exercises in the next section.

12. On images
12.1. Basic exercises

1. Let R2 = { (m, n) | m = n2 }: N→ Z be the integer square-root relation. What is the direct
image of N under R2? And what is the inverse image of N?

D I S C R E T E M AT H E M AT I C S S O LU T I O N S W I T H CO M M E N TA RY

By the definition of the direct and inverse relational images, we have:
−→
R2(N) = Z

←−
R2 (N) = {0 } ∪ {n ∈ N | n is not square }

� This may well be called a “trick question”, since the answer could hardly be more coun-
terintuitive – then again, it follows directly from the definition of inverse relation images so
there is not much to argue about! R2 relates every integer (on the right) with its square (on
the left), a natural number: R2 = { (0, 0), (1,−1), (1, 1), (4, 2), (4,−2), (9,−3), (9, 3), . . . }.
The direct image of the natural numbers is therefore Z itself, since the square of every
integer is in N. It may seem intuitively obvious that the inverse image of N ⊆ Z under the
square root relation would be the set of square numbers, but this is distinctly not the case.
Recall the definition of inverse relational images:

←−
R(Y ⊆ B)¬ { a ∈ A | ∀b ∈ B. a R b⇒ b ∈ Y }

For R2, and Y = N ⊆ Z, this becomes:
←−
R2 (N)¬ {m ∈ N | ∀n ∈ Z. m= n2⇒ n ∈ N }

In other words, if there are any integers that square to an element of←−R2 (N), they all have
to be natural numbers. 0 is certainly in the inverse image, since the only number that
squares to 0 is 0 itself, and it is in N. The problems start with nonzero square numbers like
1, 4, 9, etc.: there are exactly two integers that square to the same perfect square number,
namely the square root, and the negative of the square root. Only one of these is a natural
number, the other violates m = n2⇒ n ∈ N and therefore cannot be an element of the
inverse image. Thus, the inverse image of natural numbers under the square-root relation
contains no square numbers other than 0. Even worse is that every natural number which
is not a perfect square (and therefore isn’t related to any integers) vacuously satisfies the
condition: for any n ∈ Z, 2 6= n2 so the hypothesis is never satisfied and the implication
holds! As a result, the inverse image contains all the non-square natural numbers and 0.

You may rightly ask: why do we define inverse images in such a way? The answer is simply
that this is the most natural way to define it as a dual of the direct image −→R(X) ¬ { b ∈
B | ∃x ∈ X . x R b }. Indeed, if we slightly rephrase the condition ∃x ∈ X . x R b to separate
existence and membership of X , and compare it to the inverse image definition, we get:

−→
R(X)¬ { b ∈ B | ∃x ∈ A. x R b ∧ x ∈ X }
←−
R(Y)¬ { a ∈ A | ∀y ∈ B. a R y ⇒ y ∈ Y }

As is often the case with mathematics, symmetry and simplicity takes precedence over
intuition, and trying to define the inverse image to yield the “expected” results would
needlessly complicate the definition. In fact, what we intuitively expect the inverse image
of N under R2 to be (the set of perfect squares) is nothing more than the direct image of N
under the opposite relation Rop

2 .

D I S C R E T E M AT H E M AT I C S S O LU T I O N S W I T H CO M M E N TA RY

2. For a relation R: A→ B, show that:

a) −→R(X) =
⋃

x∈X
−→
R({ x }) for all X ⊆ A

Let X be a subset of A. We calculate as follows:
−→
R(X) = { b ∈ B | ∃x ∈ X . x R b }

=
�

b ∈ B
�

� ∃x ∈ X . ∃y ′ ∈ { x }. y ′ R b
	

=
�

b ∈ B
�

� ∃x ∈ X . b ∈ −→
R({ x })

	

=
⋃

x∈X

−→
R({ x })

b) ←−R(Y) =
�

a ∈ A
�

�

−→
R({ a }) ⊆ Y

	

for all Y ⊆ B.

Let Y be a subset of B. We calculate as follows:
←−
R(Y) = { a ∈ A | ∀y ∈ B. a R y ⇒ y ∈ Y }

=
�

a ∈ A
�

� ∀y ∈ B.
�

∃a′ ∈ { a }. a′ R y
�

⇒ y ∈ Y
	

=
�

a ∈ A
�

� ∀y ∈ B. y ∈ −→
R({ a })⇒ y ∈ Y

	

=
�

a ∈ A
�

�

−→
R({ a }) ⊆ Y

	

� This equivalent characterisations of inverse images highlights the requirement
that every y ∈ B related to an a ∈ A has to be in Y , not just at least one.

12.2. Core exercises
1. For X ⊆ A, prove that the direct image

−→
f (X) ⊆ B under an injective function f : A� B is in

bijection with X ; that is, X ∼=
−→
f (X).

Let f : A→ B be an injective function and let X be a subset of A. We show that the direct
image of X under f is isomorphic to X by constructing a bijection h: X ∼=−→

−→
f (X). Define

h as
h(x ∈ X) = f (x) ∈

−→
f (X)

By construction, h is a function from X to
−→
f (X) because every output of f for an input in

X ends up in the direct image. We show that h is surjective and injective. Take any element
y ∈

−→
f (X); by definition, there must exist an element x ∈ X such that f (x) = h(x) = y ,

which is the condition for surjectivity of h. Now, take x1, x2 ∈ X and assume that h(x1) =
h(x2). Then, f (x1) = f (x2), but f is injective, so x1 = x2 – proving that h is injective too.
As a direct corollary, the range of an injection is isomorphic to the domain:

−→
f (A) ∼= A.

� This is a situation where proving injectivity and surjectivity is more convenient than
trying to precisely formulate an inverse function that maps y ∈

−→
f (X) to “the element in X

that got uniquely mapped to y” and using this to calculate the inverse laws.

2. Prove that for a surjective function f : A� B, the direct image function
−→
f : P(A)→ P(B) is

surjective.

D I S C R E T E M AT H E M AT I C S S O LU T I O N S W I T H CO M M E N TA RY

Assume f : A� B is a surjection: for all b ∈ B, there exists an a ∈ A such that f (a) = b.
We need to prove that for any element Y ∈ P(B) there exists an X ∈ P(B) such that
−→
f (X) = Y . Thus, take a subset Y ⊆ A, and let the corresponding subset of A be the inverse
image

←−
f (Y) ⊆ A. We now need to show that

−→
f
�←−

f (Y)
�

= Y , for which we calculate:

−→
f
�←−

f (Y)
�

= { b ∈ B | ∃a ∈
←−
f (Y). f (a) = b }

= { b ∈ B | ∃a ∈ A. f (a) ∈ Y ∧ f (a) = b }

= { b ∈ Y | ∃a ∈ A. f (a) = b }

but the last set is precisely Y since f is surjective and therefore the comprehension
condition holds for all b ∈ Y . As a direct corollary, the range of a surjection is equal to the
codomain:

−→
f (A) = B. A bijection is both an injection and a surjection, so A ∼=

−→
f (A) = B.

3. Show that any function f : A→ B can be decomposed into an injection and a surjection: that
is, there exists a set X , a surjection s : A� X and an injection i : X � B such that f = i ◦ s.

Let f : A→ B be a function, not necessarily a surjection or injection. Take X to be the
range of f , that is, the direct image of its domain: X =

−→
f (A) ⊆ B. Then, by definition, every

element b ∈
−→
f (A) has an associated element a ∈ A such that f (a) = b, so f with its

codomain restricted to its range is a surjection – hence, s(a) = f (a): A�
−→
f (A). The range

of f is a subset of the codomain, so we have the canonical inclusion i(b) = b :
−→
f (A)� B

which is an injection. For all a ∈ A, i(s(a)) = i(f (a)) = f (a), so the composite i ◦ s is
indeed equal to f , as required.

� When A= B (and f : A→ A is an endofunction), the construction of course still works.
In fact, it gives one half of the idempotent-splitting example §9.2.1, in which an idempotent
endofunction e : A→ A is split through its range { e(b) | b ∈ B }= −→e (B) into functions r
and s as s◦r = e which, thanks to the idempotence condition, form a section-retraction pair:
r ◦ s = idB . Sections are always injections, and the constructed retraction is a surjection,
matching the result shown in this exercise.

4. For a relation R: A→ B, prove that

a) −→R
�⋃

F
�

=
⋃� −→

R(X)
�

� X ∈ F
	

for all F ⊆ P(A)

Let F ⊆ P(A) be a family of subsets. We have the following calculation:

b ∈ −→R
�
⋃

F
�

⇐⇒ ∃a ∈
⋃

F . a R b

⇐⇒ ∃X ∈ F . ∃a ∈ X . a R b

⇐⇒ ∃X ∈ F . b ∈ −→R(X)

⇐⇒ ∃Y ∈
� −→

R(X)
�

� X ∈ F
	

. b ∈ Y

⇐⇒ b ∈
⋃
� −→

R(X)
�

� X ∈ F
	

b) ←−R
�⋂

G
�

=
⋂�←−

R(Y)
�

� Y ∈ G
	

for all G ⊆ P(B)

D I S C R E T E M AT H E M AT I C S S O LU T I O N S W I T H CO M M E N TA RY

Let F ⊆ P(A) be a family of subsets. We have the following calculation:

a ∈←−R
�
⋂

G
�

⇐⇒ ∀b ∈ B. a R b⇒ a ∈
⋂

G
⇐⇒ ∀b ∈ B. a R b⇒∀Y ∈ G. a ∈ Y

⇐⇒ ∀Y ∈ G. ∀b ∈ B. a R b⇒ a ∈ Y

⇐⇒ ∀Y ∈ G. a ∈←−R(Y)

⇐⇒ ∀X ∈
�←−

R(Y)
�

� Y ∈ G
	

. a ∈ X

⇐⇒ a ∈
⋂
�←−

R(Y)
�

� Y ∈ G
	

5. Show that, by the inverse image, every map A→ B induces a Boolean algebra mapP(B)→ P(A).
That is, for every function f : A→ B, its inverse image preserves set operations:

•
←−
f (;) = ;

a ∈
←−
f (;) ⇔ f (a) ∈ ; ⇔ false ⇔ a ∈ ;

•
←−
f (B) = A

a ∈
←−
f (B) ⇔ f a ∈ B ⇔ true ⇔ a ∈ A

•
←−
f (X ∪ Y) =

←−
f (X)∪

←−
f (Y)

a ∈
←−
f (X ∪ Y) ⇔ f (a) ∈ (X ∪ Y) ⇔ f (a) ∈ X ∨ f (a) ∈ Y

⇔ a ∈
←−
f (X) ∨ a ∈

←−
f (X) ⇔ a ∈

←−
f (X)∪

←−
f (Y)

•
←−
f (X ∩ Y) =

←−
f (X)∩

←−
f (Y)

a ∈
←−
f (X ∩ Y) ⇔ f (a) ∈ (X ∩ Y) ⇔ f (a) ∈ X ∧ f (a) ∈ Y

⇔ a ∈
←−
f (X) ∧ a ∈

←−
f (X) ⇔ a ∈

←−
f (X)∩

←−
f (Y)

•
←−
f (X c) =

�←−
f (X)

�c

a ∈
←−
f (X c) ⇔ f (a) ∈ X c ⇔ ¬(f (a) ∈ X) ⇔ ¬(a ∈

←−
f (X)) ⇔ a ∈

�←−
f (X)

�c

13. On countability
13.1. Basic exercises

1. Prove that every finite set is countable.

If the set is empty, it is countable by definition. Otherwise, if A is finite, it has at most
#A= n> 0 elements. Thus, an enumeration N� A can be constructed by mapping the
first n natural numbers to distinct elements of A (e.g. by putting them in some order and
assigning k : [0..n− 1] to the kth element), and the rest of the naturals to a single element
a0 ∈ A. The mapping is surjective by construction (the kth element of A is listed at k) so it

D I S C R E T E M AT H E M AT I C S S O LU T I O N S W I T H CO M M E N TA RY

is an enumeration.

2. Demonstrate that N, Z, Q are countable sets.

N is enumerated by the identity function, which is in particular a surjection.

Z is enumerated by alternating between positive and negative numbers: 0, 1,−1, 2,−2,
Explicitly, e : N� Z is the enumeration

e(n)¬

(

n+1
2 if n is odd

− n
2 if n is even

Q is enumerable using the traversal of the coordinate plane demonstrated on Slide 398.

13.2. Core exercises
1. Let A be an infinite subset of N. Show that A ∼= N. Hint: Adapt the argument shown in the proof

of Proposition 144, showing that the map N→ A is both injective and surjective.

Let A be an infinite subset of N. We construct a bijection N ∼=−→ A to show that they are
isomorphic. To this end, define the function µ: N→ A as follows:

µ(0)¬min(A) µ(n+ 1)¬min{ k ∈ A | µ(n)< k }=min(A\ {µ(k) | k ≤ n })

We will denote the set A\ {µ(k) | k ≤ n } as An, so that µ(n+ 1) =min(An).

To show that µ is an injection, we need to prove that if µ(m) = µ(n) then m = n. We
equivalently prove the contrapositive: if m 6= n, then µ(m) 6= µ(n). Without loss of
generality, assume that m < n; then, µ(m) ∈ {µ(k) | k ≤ n− 1 }, so µ(m) /∈ {µ(k) | k ≤
n− 1 }c = A\ {µ(k) | k ≤ n− 1 }. On the other hand, µ(n) is an element of the latter set
(its minimum), which means that µ(m) cannot equal µ(n).

To show that µ is a surjection, we let a be an arbitrary element of A and show that there
is an i ∈ N such that µ(i) = a. Consider the set { k ∈ N | µ(k) < a } of numbers which
get mapped to an element below a in A, and let N be the size of this set (which, by the
Pigeonhole Principle, must be at most a). Now, AN is the subset of A obtained by removing
its N least elements, and by construction, its least element is a. But if a =min(AN), then it
is equal to µ(N +1) by the definition of µ, so we indeed have the natural number i = N +1
such that µ(i) = a.

2. For an infinite set A, prove that the following are equivalent:

a) There is a bijection N ∼=−→ A.
b) There is a surjection N� A.
c) There is an injection A�N.

(a)⇒ (b), (c) Every bijection f : N ∼=−→ A has an inverse f −1 : A ∼=−→ N which is itself a
bijection. Every bijection is a surjection (giving N� A from f) and an injection (giving
A�N from f −1).

https://www.cl.cam.ac.uk/teaching/2122/DiscMath/DiscMathProofsNumbersSetsNotes.pdf#page=400
https://www.cl.cam.ac.uk/teaching/2122/DiscMath/DiscMathProofsNumbersSetsNotes.pdf#page=402

D I S C R E T E M AT H E M AT I C S S O LU T I O N S W I T H CO M M E N TA RY

(b)⇒ (c) Let s : N � A be a surjection. We need to construct an injection i : A � N,
assigning a unique numeric code to every element of A. As s is a surjection, the inverse
images of the singleton subsets of A (also called the set of fibres of elements of A)
are all non-empty, and as they are subsets of the natural numbers, they must have
a minimal element. Thus, define i : A→ N as a function that maps an x ∈ A to the
smallest natural number that maps to x :

i(x) =min
�←−s ({x})

�

=min{n ∈ N | s(n) = x }

This encodes an element x ∈ Aby the position of its first occurrence in the enumeration
given by s. We can see that i is injective as s acts as its retraction: for any x ∈ S,
s(i(x)) = s(n) where n is the smallest natural number such that s(n) = x so clearly
s(i(x)) = s(n) = x and s ◦ i = idA, as required.

(c)⇒ (a) Let i : A � N be an injection. We need to construct a bijection A ∼=−→ N, or
equivalently, show that A and N are isomorphic. By §12.2.1, the direct image of the
domain under the injection i (i.e. the range of i) is isomorphic to the domain: −→i (A) ∼= A.
By assumption, A is infinite, so −→

i (A) ⊆ N is infinite as well. But then it is an infinite
subset of the natural numbers, and by §13.2.1, it is isomorphic to N. Hence we have
the chain A ∼=

−→
i (A) ∼= N, establishing the bijection N ∼=−→ A.

� If you look at other resources on countability, you will face several competing, but equi-
valent (but sometimes not quite equivalent) definitions which make translating between
various statements and proofs a bit of a chore – especially since the same terms are used
by di�erent authors for di�erent purposes. This course uses enumerable for sets which
have a surjection N � A, and countable for sets which are enumerable or empty (since
one can’t have a function into the empty set so this needs to be handled as a special case).
Other literature (e.g. Wikipedia) calls sets which are isomorphic to N countably infinite,
and sets which are either finite or countably infinite are called countable. The countability
condition can be equivalently stated as the set being isomorphic to some subset of the
natural numbers, i.e. coming with an injection A�N. Yet other terms used for the above
notions are at most countable, enumerable, denumerable, equinumerous, listable, etc.

As this exercise shows, the bijection/surjection/injection notions are equivalent when the
set A is infinite, and appropriate connections can be made when the sets are empty or
finite. This gives us two equivalent ways of showing that a set is enumerable: either by
constructing an enumeration N� A, or by defining an encoding function A�N that maps
every element of A to a unique natural number. This is related to a concept called Gödel
encoding which will be covered in more detail in the IB Computation Theory course.

3. Prove that:

a) Every subset of a countable set is countable.

https://en.wikipedia.org/wiki/Countable_set

D I S C R E T E M AT H E M AT I C S S O LU T I O N S W I T H CO M M E N TA RY

Assume S ⊆ A for some sets A. If A is finite, so is S and it is countable. If A is infinite
and S is finite, S is countable. If S is also infinite, we can show that it is enumerable by
providing an injection S�N. But by assumption we have an injection f : A�N and
subsets come with a canonical injective inclusion function ι : S� A, so the composite
S� A�N is an injection.

b) The product and disjoint union of countable sets is countable.

Assume A and B are countable sets.

If either is empty, the Cartesian product will be empty too and therefore countable.
In the general case, assume they are enumerable and there are injections f : A�N
and g : B�N that uniquely encode the elements of the sets. We define a function
p : A× B→ N as follows:

p(a, b) = 2 f (a) · 3g(a)

By the Fundamental Theorem of Arithmetic, the mapping is injective: the output of
this mapping will have a unique prime decomposition, and the number of 2 and 3
factors will give the unique code of elements of A and B, respectively. By §13.2.2, the
injection p will imply that A× B is enumerable.

If both sets are empty, their disjoint union will be empty and therefore countable.
If either is empty, the disjoint union will be isomorphic to the other set, which is
countable by assumption. In the general case, assume A and B are enumerable and
come with injections f : A�N and g : B�N. We define the function u: A] B→ N
as follows:

u(0, a) = 2 f (a) u(1, b) = 3g(b)

Again, by the Fundamental Theorem of Arithmetic, the prime decomposition of the
output of u will uniquely determine the output of f (a) or g(b) which in turn uniquely
determine the input a and b by assumption. By §13.2.2, the injection u will imply that
A] B is enumerable.

� Constructing unique encodings using products of primes is a useful alternative
to the visually descriptive “diagonal traversal” enumeration which is often quite
di�cult to define explicitly. The specific choice of encoding can of course vary (e.g. we
could have encoded disjoint unions via even and odd numbers) but there is no
reason to look for the most “e�cient” solution since all we care about is whether the
enumeration/encoding is possible or not.

4. For a set A, prove that there is no injection P(A)� A.

We suppose there is an injection f : P(A)� A and derive a contradiction. By §11.2.1, the
injection f has a retraction r : A→ P(A) which must be a surjection since it undoes the
application of f on any element of A. But then r would be a surjection from a set to its
powerset, which is impossible due to Cantor’s Theorem.

https://www.cl.cam.ac.uk/teaching/2122/DiscMath/DiscMathProofsNumbersSetsNotes.pdf#page=424

D I S C R E T E M AT H E M AT I C S S O LU T I O N S W I T H CO M M E N TA RY

13.3. Optional advanced exercise
1. Prove that if A and B are countable sets then so are A∗, Pfin(A) and PFunfin(A, B).

All the results follow from Proposition 154: an enumerable indexed disjoint union of
enumerable sets is enumerable. An enumeration-style proof is presented in the notes, but
an encoding-style argument is straightforward too: we can encode elements of

⊎

i∈I Ai as

d(i ∈ I , a ∈ Ai) = p(c(i), ci(a)) = 2c(i) · 3ci(a)

where c : I �N is the encoding of the index set, and ci : Ai �N is an encoding for every
element of the indexed family.

A∗ =
⊎

n∈N An is the set of finite sequences on A. If A is empty, the only finite sequence
with elements from A is the empty sequence, so { () } is finite and countable. In the general
case, we know that N is enumerable, and An is the iterated binary Cartesian product of
enumerable sets and hence is an enumerable set for every n ∈ N (quick inline induction
proof: A0 = ; is countable; Ak+1 = Ak × A is the Cartesian product of countable Ak by IH,
and countable A by assumption). By the above proposition, the N-indexed disjoint union
of countable sets is countable.

Pfin(A) = {S ⊆ A | S is finite } is the set of finite subsets of A. If A is empty, Pfin(A) = {;}
which is finite so countable. Otherwise, the set A has an encoding c : A�N which imposes
an ordering on the elements on A based on the ordering of their code: for a, b ∈ A, a v b
if c(a)≤ c(b). This ordering restricts to every subset of A, so in particular, finite subsets of
A can be mapped to finite sequences of elements of A according to the ordering v. Then,
the set of finite subsets of A is isomorphic to the set of finite sequences on A, which is
countable for a countable A.

PFunfin(A, B) =
⊎

S∈Pfin(A)
S ⇒ B is the set of partial functions with a finite domain of

definition from A to B. If A or B are empty, the totally undefined function is the only
element of the set so it is countable. Otherwise, the disjoint union is indexed by Pfin(A)
which is enumerable by the result above. The function space S⇒ B has a finite domain S,
so a single function f : S→ B can be captured as a finite sequence of elements of B as
(f (s1), f (s2), f (s3), . . . , f (sn)) where n = #S and si is the ith element of S in some ordering
(which is always possible to define for a finite S). Thus, S⇒ B ∼= B#S which is countable for
any countable B. By Proposition 154, the set PFunfin(A, B) is a countable indexed disjoint
union of countable sets and is therefore itself countable.

14. On inductive definitions
1. Let L be the subset of { a, b }∗ inductively defined by the axiom

ε
and rule

u
aub

for u ∈ { a, b }∗.

a) Use rule induction to prove that every string in L is of the form an bn for some n ∈ N.

https://www.cl.cam.ac.uk/teaching/2122/DiscMath/DiscMathProofsNumbersSetsNotes.pdf#page=418

D I S C R E T E M AT H E M AT I C S S O LU T I O N S W I T H CO M M E N TA RY

We prove that for every string s in the set L inductively defined by the axiom and rule,
there exists a natural number n such that s = an bn.

Axiom
ε

The string s must be the empty string ε, and for n = 0 we have that ε = a0 b0.

Rule u
aub

Let s = aub for some string u and assume the IH©: there exists a natural

number k such that u = ak bk. Then, s = aub
IH
= aak bk b = ak+1 bk+1 so the witness

n= k+ 1 satisfies the required property.

b) Use mathematical induction to prove that for all n ∈ N, an bn ∈ L.

Base case: n= 0. The string a0 b0 is the empty string ε, which is an element of L by
the defining axiom.

Inductive step n = k+ 1. Assume the IH©: ak bk ∈ L. We prove that the string ak+1 bk+1

is in L as well. By definition of string repetition, ak+1 bk+1 = aak bk b. The IH© states
that ak bk ∈ L, and the rule can be applied to deduce that aak bk b ∈ L as well.

c) Conclude that L = { an bn | n ∈ N }.

In the previous two parts we have shown that every string of L is of a particular form
an bn for n ∈ N, and that every string of this form is in L. Thus, we have the subset
inclusions L ⊆ { an bn | n ∈ N } and { an bn | n ∈ N } ⊆ L, proving that the sets are
equal.

d) Suppose we add the string a to L to get L′ = L ∪ { a }. Is L′ closed under the axiom and
rule? If not, characterise the strings that would be in the smallest set containing L′ that is
closed under the axiom and rule.

The resulting language L′ would not be closed: we can use the rule to generate the
strings aab, aaabb, an+1 bn, which are not of the required form and therefore are
not already part of the language. The closure of L′ under the rule and axiom would
therefore be { an bn | n ∈ N } ∪ { an+1 bn | n ∈ N }.

2. Suppose R: X → X is a binary relation on a set X . Let R† : X → X be inductively defined by
the following axioms and rules:

(x , x) ∈ R†
(x ∈ X)

(x , y) ∈ R†

(x , z) ∈ R†
(x ∈ X and y Rz)

a) Show that R† is reflexive and that R ⊆ R†.

We show that R† is reflexive by giving a derivation of (x , x) ∈ R† for all x ∈ X . This is
simply the first axiom defining the relation.

Next, we show that for all (x , y) ∈ R, (x , y) ∈ R† by providing a derivation:

D I S C R E T E M AT H E M AT I C S S O LU T I O N S W I T H CO M M E N TA RY

(x , x) ∈ R†

(x , y) ∈ R†
(x ∈ X and x R y)

b) Use rule induction to show that R† is a subset of

S ¬
�

(y, z) ∈ X × X
�

� ∀x ∈ X . (x , y) ∈ R† =⇒ (x , z) ∈ R†
	

Deduce that R† is transitive.

We show that for all (y, z) ∈ R†, we have that for all x ∈ X such that (x , y) ∈ R†,
(x , z) ∈ R† by rule induction.

Axiom
(y, y) ∈ R†

We clearly have (x , y) ∈ R† implying (x , y) ∈ R†, as required.

Rule (x , y) ∈ R†

(x , z) ∈ R†
with 1© y R z. Assume the IH©: (x , y) ∈ S. To show (x , z) ∈ S, let w ∈ X

be an element and suppose that 2© (w, x) ∈ R†; we prove (w, z) ∈ R† by giving a
derivation:

IH©

(w, y) ∈ R†

(w, z) ∈ R†
(w ∈ X and 1© y Rz)

where the IH© (x , y) ∈ S is applied to the assumption 2© (w, x) ∈ R† to deduce
(w, y) ∈ R†, as required.

To prove that R† is transitive, we need to show that (x , y), (y, z) ∈ R† implies (x , z) ∈
R†. Since R† ⊆ S, we also have (y, z) ∈ S, which, by definition of S and the assumption
(x , y) ∈ R† implies (x , z) ∈ R†.

c) Suppose that T : X → X is a reflexive and transitive binary relation and that R ⊆ T . Use
rule induction to show that R† ⊆ T .

We show that for all (x , y) ∈ R†, (x , y) ∈ T by rule induction.

Axiom
(y, y) ∈ R†

Since T is reflexive, we have that (y, y) ∈ T .

Rule (x , y) ∈ R†

(x , z) ∈ R†
with 1© y R z. Assume the IH©: (x , y) ∈ T . Since R ⊆ T , we also have

(y, z) ∈ T from 1©; then, since T is transitive, we deduce (x , z) ∈ T using the IH©,
which is what we were meant to prove.

d) Deduce from above that R† is equal to R∗, the reflexive-transitive closure of R.

In parts (a) and (b) we showed that R† is reflexive and transitive; in part (a) we
also proved that R ⊆ R†. Finally, part (c) established that R† is smaller than any
other reflexive-transitive superset of R, which is the universal characterisation of the
reflexive-transitive closure of R.

D I S C R E T E M AT H E M AT I C S S O LU T I O N S W I T H CO M M E N TA RY

3. Let L be a subset of { a, b }∗ inductively defined by the axiom and rules (for u ∈ { a, b }∗):

ab

au

au2

ab3u

au

a) Is ab5 in L? Give a derivation, or show that there isn’t one.

The string ab5 is indeed in L, as witnessed by the following derivation:

ab

ab2

ab4

ab8

ab5

b) Use rule induction to show that every u ∈ L is of the form abn with n= 2k − 3m≥ 0 for
some k, m ∈ N.

Axiom
ab

We have that ab= ab1 and 1= 2k − 3m for k = m= 0.

Rule au
au2

If by the IH we have that u= b2l−3n, then u2 = b2l+1−3·(2n), so au2 is of the
required form with k = l + 1 and m= 2n.

Rule ab3u
au

If by the IH we have that b3u= b2l−3n, then by removing the first 3 bs we

have that u= b2l−3(n+1); thus, au is of the required form with k = l and m= n+ 1.

c) Is ab3 in L? Give a derivation, or show that there isn’t one.

If ab3 were in L, by part (b) it must be of the form ab2k−3m for some k, m ∈ N. This is
not possible however, since 2k−3m = 3 ⇐⇒ 2k = 3(m+1) would require 3(m+1)
to be a power of 2; but the only prime factor of 2k is 2 so it can’t a multiple of 3.

d) Find an explicit characterisation of the elements of the language as a set comprehension,
and prove (along the lines of §14.1) that it coincides with the inductively defined set L.

We claim that L =
¦

ab2k−3m
�

�

� 2k − 3m≥ 0
©

. We’ve already shown the ⊆ direction,
proving that every string in L is of the appropriate form. We now show that every
string of the appropriate form has a derivation; namely, that for all k ∈ N,

∀m ∈ N. 2k − 3m≥ 0=⇒ ab2k−3m ∈ L

which we prove by mathematical induction on k.

Base case: k = 0. The only m for which the hypothesis 20 − 3m ≥ 0 is satisfied is
m= 0, and for this we have a derivation of ab20−3·0 = ab ∈ L by the axiom.

D I S C R E T E M AT H E M AT I C S S O LU T I O N S W I T H CO M M E N TA RY

Inductive step: k = l + 1. Assume the IH©:

∀m ∈ N. 2l − 3m≥ 0=⇒ ab2l−3m ∈ L

and prove ∀m ∈ N. 2l+1 − 3m≥ 0=⇒ ab2l+1−3m ∈ L by nested mathematical induc-
tion on m.

Inner base case: m = 0. By the IH© we have that ab2l
∈ L, and by applying the rule au

au2

we can derive ab2l+1
∈ L.

Inner inductive step: m= n+ 1. If, by the nested IH we have that ab2l+1−3n ∈ L, then
by applying the rule ab3u

au
we can derive ab2l+1−3n−3 = ab2l+1−3(n+1) ∈ L.

15. On regular expressions
1. Find regular expressions over {0, 1 } that determine the following languages:

a) {u | u contains an even number of 1’s }

We should only be able to add 1s in pairs, so we take the regex (0|10∗1)∗.

b) {u | u contains an odd number of 0’s }

After requiring one 0, we ask for an even number of 0s: 1∗0(1|01∗0)∗.

2. Show that b∗a(b∗a)∗ and (a|b)∗a are equivalent regular expressions, that is, a string matches
one i� it matches the other. Your reasoning should be rigorous but can be informal.

First note that any string u matching b∗a(b∗a)∗ is a concatenation u= u1u2 · · ·un of one
or more (i.e. n ≥ 1) strings in { a, b }∗ matching b∗a. Each ui ends with an a and hence
(because n≥ 1), so does u. Therefore u matches (a|b)∗a.

Conversely, if u matches (a|b)∗a it is a string in { a, b }∗ ending with an a: looking at the
occurrences of a in u, we can express u as u = bn1 abn2 a · · · bnk a for some k ≥ 1 and some
n1, . . . nk ≥ 0; and hence u matches b∗a(b∗a)∗.

� Equivalence of regular expressions is more di�cult to establish in general – reasoning
by “observation” or pattern analysis like above does not scale to more complicated regexes.
The question will be revisited, however, in the second half of the course, using some
additional developments that will allow us to check equivalence of regular expressions in
finite time.

3. Extend the concrete syntax, abstract syntax, parsing relation of regular expressions, and the
matching relation between strings and regular expressions with the following constructs:

a) r?: matches the regex r zero or one times. For example, ab?c is matched by ac and abc,
but not abbc.

b) r+: matches the regex r one or more times. For example, ab+c is matched by abc and
abbbbc, but not ac.

https://www.cl.cam.ac.uk/teaching/current/DiscMath/2022-stajano-discmath-slides.pdf#page=27
https://www.cl.cam.ac.uk/teaching/current/DiscMath/2022-stajano-discmath-slides.pdf#page=30
https://www.cl.cam.ac.uk/teaching/current/DiscMath/2022-stajano-discmath-slides.pdf#page=32
https://www.cl.cam.ac.uk/teaching/current/DiscMath/2022-stajano-discmath-slides.pdf#page=36

D I S C R E T E M AT H E M AT I C S S O LU T I O N S W I T H CO M M E N TA RY

We extend the alphabet Σ′ with the symbols ? and + and the concrete syntax with the
following rules:

r

r?

r

r+

The abstract syntax is extended with the unary constructors Opt and Plus, and parsing is
modified as follows:

r ∼ R

r?∼ Opt(R)

r ∼ R

r+ ∼ Plus(R)

Finally, we add the following axioms and rules to the matching relation:

(ε, r?)

(u, r)

(u, r+)

(u, r)

(u, r?)

(u, r) (v, r+)

(uv, r+)

Show that (r+)? is equivalent to r∗. Is that the case for (r?)+ as well?

The regex (r+)? matches either the empty string ε, or one or more repetitions of a string
matched by r . Combined, it matches zero or more repetitions of a string matched by r ,
which is precisely the meaning of r∗.

The regex (r?)+ matches one or more repetitions of either the empty string, or a string
matched by r . In particular, it matches the empty string (if all the repetitions are empty),
and any nonzero number of occurrences of r . Again, this is the same as the meaning of r∗.

� This question involved adding two new constructs to our regex syntax, and as the last
part showed, the system is now “non-orthogonal” in that certain regexes are interderivable.
This is not necessarily a problem – many formal systems exhibit this form of redundancy –
but it does make the inductively defined syntax larger which may complicate reasoning
about the system (for example, every recursive definition or inductive proof on regexes now
has two extra cases that would be covered by existing ones). Thus we may also reasonably
choose to define r? and s+ as “syntactic sugar” (extra notation added for convenience)
abbreviating r|ε and ss∗, respectively. These, and other derived operators and patterns
form the basis of practical regex engines used widely in text processing applications.

16. On finite automata
1. For each of the two languages mentioned in §15.1 (string containing an even number of 1’s or

an odd number of 0’s), find a DFA that accepts exactly that set of strings.

We can construct both with only two states each, corresponding to whether we have seen

D I S C R E T E M AT H E M AT I C S S O LU T I O N S W I T H CO M M E N TA RY

an even or odd number of 1’s or 0’s and making the appropriate state accepting.

e1s o1s

0

1

0

1

e0s o0s

1

0

1

0

2. Given an NFAε M = (Q,Σ,∆, s, F, T), we write q
u
=⇒ q′ to mean that there is a path

in M from state q to state q′ whose non-ε labels form the string u ∈ Σ∗. Show that
L =

n

(q, u, q′)
�

�

� q
u
=⇒ q′

o

is equal to the subset of Q × Σ∗ × Q inductively defined by the
axioms and rules:

(q,ε, q)

(q, u, q′)

(q, u, q′′)
if q′

ε
−→ q′′ in M

(q, u, q′)

(q, ua, q′′)
if q′

a
−→ q′′ in M

Hint: recall the method from §14.1. for showing that a language defined via set comprehension
is equal to an inductively defined set: first show that L is closed under the rules and axioms,
then show that every string in L has a derivation.

(⊆)We show that every element (q, u, q′) of the inductively defined set L satisfies q
u
=⇒ q′

by rule induction.

Axiom
(q,ε, q)

We can always transition from a state to itself without consuming any

symbols, so q
ε
=⇒ q holds vacuously.

Rule (q, u, q′)
(q, u, q′′)

where q′
ε
−→ q′′ in M . The IH states that q

u
=⇒ q′. If there is an ε-transition

from q′ to q′′, we can make one further step without consuming a symbol, so the overall
string formed by the non-ε labels will still be u – hence, q

u
=⇒ q′′, as required.

Rule (q, u, q′)
(q, ua, q′′)

where q′
a
−→ q′′ in M . The IH states that q

u
=⇒ q′. If there is a transition from

q′ to q′′ labelled with a, we can make a further step that extends the recognised string
with the symbol a – hence, q

ua
=⇒ q′′, as required.

(⊇)We show that we can derive (q, u, q′) ∈ L whenever q
u
=⇒ q′ in M by mathematical

induction on the length |u| ∈ N of the string u.

Base case: |u| = 0, so u = ε. If the number of non-ε symbols in the path is 0, all of the
steps must have been ε-transitions. Such paths can be captured by the axiom, and any
number of applications of the first rule to transition between states without consuming an
input.

Indutive step: |u| = k + 1, so u = va for a ∈ Σ and |v| = k. Assume the IH©: we have a
path q

v
=⇒ q′ and therefore (q, v, q′) ∈ L. If we have a path labelled va, there must be a

D I S C R E T E M AT H E M AT I C S S O LU T I O N S W I T H CO M M E N TA RY

transition from q′ to q′′ labelled by a; then, the second rule can be applied to (q, v, q′) ∈ L
and q′

a
−→ q′′ to deduce (q, va, q′) ∈ L, as required.

� Even though strings are no di�erent from finite lists of symbols of the alphabet, they are
formally elements of Σ∗, not a set inductively defined with an axiom for the empty string,
and a rule for “consing” a symbol to the string. Performing induction on the length of the
string simulates the kind of (structural) induction one would perform on an OCaml-style
list.

3. The example of the subset construction given on Slide 58 constructs a DFA with eight states
whose language of accepted strings happens to be L(a∗b∗). Give an “optimised” DFA with the
same language of accepted strings, but fewer states. Give an NFA with even fewer states that
does the same job.

The simplified NFA and DFA are as follows:

q1 q2 q3

a

b

b

a

a, b

q1 q2

a

b

b

The main di�erence is that the DFA needs to handle the symbol a occurring in state q2,
which would mean seeing an occurrence of a after a b which disqualifies the string from
being in L(a∗b∗). The usual way of marking this as an invalid input in a DFA is to transition
into a state from which it is impossible to reach an accepting state; upon any further input
just stays stuck in q3.

17. On regular languages
1. Why can’t the automaton Star(M) used in step (iv) of the proof of part (a) of Kleene’s Theorem

be constructed by simply taking M , making its start state the only accepting state and adding
new ε-transitions back from each old accepting state to its start state?

The problem is that we would be meddling with the internals of the automaton in unex-
pected ways by turning a (potentially) non-accepting start state into an accepting one.
If M has transitions looping back to the start state, we may be able to accept partially
recognised strings prematurely. For example, the automaton on the left below recognises
the language L(a(aa)∗b), but naively adding an ε-transition from q3 to q1 and making q1

accepting would result in a machine that accepts not only the expected L((a(aa)∗b)∗),
but also (aa)∗. By adding a new start state we ensure that the automaton “commits” to

https://www.cl.cam.ac.uk/teaching/current/DiscMath/2022-stajano-discmath-slides.pdf#page=58
https://www.cl.cam.ac.uk/teaching/current/DiscMath/2022-stajano-discmath-slides.pdf#page=74

D I S C R E T E M AT H E M AT I C S S O LU T I O N S W I T H CO M M E N TA RY

performing a full repetition by explicitly transitioning into the start state of M .

q1 q2 q3
a

a

b q1 q2 q3
a

a

b

ε

2. Construct an NFAε M satisfying L(M) = L((ε|b)∗aab∗) using Kleene’s construction.

Using the entirely algorithmic construction we get the following automaton:

ε
ε

ε
b

ε

ε

εaεaε

b ε

� Of course, there is a lot of redundancy, especially the large number of ε-transitions
that could be safely collapsed. The regex is not in its simplest form either, since (ε|b)∗ is
equivalent to b∗. However, these are concerns of implementation e�ciency, and Kleene’s
theorem is a result that the two formalisms are “in principle” equivalent. There are examples
of languages that could be concisely expressed as regexes but the size of DFAs recognising
the language is exponential in the length of the redex (such as the strings which have a
specific symbol in the kth last position); conversely, some languages are simple to recognise
by a DFA, but the corresponding regexes are enormous (divisibility by 7 requires a DFA of 7
states, and converts to a regex of 10791 characters).

3. Show that any finite set of strings is a regular language.

Let L = {u1, u2, . . . , uk } be a finite set of strings. We construct the regular expression
u1|u2| . . . |uk which is clearly matched by all strings in L. Since such a regex exists, by
Kleene’s Theorem we conclude that L is regular.

4. Use the construction given in the proof of part (b) of Kleene’s Theorem to find a regular
expression for the DFA M whose state set is {0,1,2 }, whose start state is 0, whose only
accepting state is 2, whose alphabet of input symbols is { a, b }, and whose next-state function
is given by the following table.

δ a b
0 1 2
1 2 1
2 2 1

https://codegolf.stackexchange.com/questions/3503/hard-code-golf-regex-for-divisibility-by-7

D I S C R E T E M AT H E M AT I C S S O LU T I O N S W I T H CO M M E N TA RY

The DFA specified in the question is as follows:

0

1 2

a b

b a
a

b

We apply Kleene’s regex construction by first removing state 1, then state 2 – other orderings
are possible. The recursive cases are not expanded further when the required redex is
easily constructed by observation.

r{0,2}
0,2 = ba∗

r{0,2}
0,1 = r{0}0,1 | r

{0}
0,2

�

r{0}2,2

�∗
r{0}2,1 = a|ba∗b

r{0,2}
1,1 = r{0}1,1 | r

{0}
1,2

�

r{0}2,2

�∗
r{0}2,1 = b|aa∗b

r{0,2}
1,2 = r{0}1,2 | r

{0}
1,2

�

r{0}2,2

�∗
r{0}2,2 = a|aa∗a

r{0,1,2}
0,2 = r{0,2}

0,2 | r{0,2}
0,1

�

r{0,2}
1,1

�∗
r{0,2}

1,2 = ba∗|(a|ba∗b)(b|aa∗b)∗(a|aa∗a)

5. If M = (Q,Σ,∆, s, F) is an NFA, let Not(M) be the NFA (Q,Σ,∆, s,Q \ F) obtained from M by
interchanging the role of accepting and nonaccepting states. Give an example of an alphabet Σ
and an NFA M with set of input symbols Σ such that {u ∈ Σ∗ | u 6∈ L(M) } is not the same as
L(Not(M)).

A simple minimal example is the following automaton M with alphabet Σ= { a }:

q0

We have that L(M) = {ε }, but interchanging the accepting and nonaccepting states would
turn q0 into a nonaccepting state so the language recognised is ;. However, ; 6= { a }∗ \{ε }.

6. Let r = (a|b)∗ab(a|b)∗. Find a regular expression that is equivalent to the complement for r
over the alphabet { a, b } with the property L(∼ r) = {u ∈ { a, b }∗ | u 6∈ L(r) }.

The language matching r consists of all strings that contain ab as a substring. Thus, the
complement of L(r) is the setof strings that do not contain ab as a substring, which is only
possible if there are no occurrences of b after the first occurrence of a. The corresponding
regular expression is thus simply b∗a∗.

7. Given DFAs Mi = (Q i,Σ,δi, si, Fi) for i = 1, 2, let And(M1, M2) be the DFA

(Q1 ×Q2,Σ,δ, (s1, s2), F1 × F2)

where δ : (Q1 ×Q2)×Σ→ (Q1 ×Q2) is given by

δ((q1, q2), a) = (δ1(q1, a),δ2(q2, a))

D I S C R E T E M AT H E M AT I C S S O LU T I O N S W I T H CO M M E N TA RY

for all q1 ∈Q1, q2 ∈Q2 and a ∈ Σ. Show that L(And(M1, M2)) = L(M1)∩ L(M2).

We prove the following lemma: for all strings u ∈ Σ∗ and states q1, q2, q′1, q′2 ∈Q,

(q1, q2)
u
=⇒ (q′1, q′2) in And(M1, M2) ⇐⇒ q1

u
=⇒ q′1 in M1 ∧ q2

u
=⇒ q′2 in M2

This will directly imply the required result for q1, q2 the start states s1, s2 and q′1, q′2 a pair
of accepting states in F1, F2. The lemma will be proved by induction on the length of the
string u.

Base case: |u| = 0, so u = ε. If (q1, q2)
ε
=⇒ (q′1, q′2) in And(M1, M2), we must have that

q1 = q′1 and q2 = q′2 because the automaton is deterministic and has no ε-transitions. But
this is exactly the case when q1

ε
=⇒ q1 and q2

ε
=⇒ q2.

Inductive case: |u| = k+ 1, so u = va with |v| = k and a ∈ Σ. Assume the IH© for the string
v. If there is a path (p1, q1)

va
=⇒ (p3, q3) in And(M1, M2), there must be two states p2, q2

such that (p1, q1)
v
=⇒ (p2, q2) and (p2, q2)

a
−→ (p3, q3). By the IH©, we have that p1

v
=⇒ p2

and q1

v
=⇒ q2, and δ((p2, q2), a) = (p3, q3) by definition holds if δ1(p2, a) = p3 and

δ2(q2, a) = q3. Combining p1

v
=⇒ p2 with p2

a
−→ p3 and q1

v
=⇒ q2 with q2

a
−→ q3, we have a

path p1

va
=⇒ p3 and q1

va
=⇒ q3 in M1 and M2 respectively, as required.

18. On the Pumping Lemma
1. Briefly summarise the proof of the Pumping Lemma in your own words.

� Bookwork exercise, mainly intended to get you to read and understood the proof in
order to be able to reproduce it if needed. The core points to remember are:

• The pumping lemma property is a necessary condition: regularity of L implies PLP, but
not the other way around.

• The statement of the PLP should be read as a kind of dialogue: what are the objects
and constraints you are given (a regular language L, a word of an appropriate length,
and the number of repetitions of the central string), and what are things you have
control over (the minimum length of the string, and the decomposition).

• The negation of PLP (used in the contrapositive) is the same dialogue but flipped
around. An important consequence that is easy to overlook in informal proofs of
non-regularity is that the “opponent” chooses the decomposition: they will try their
very best to “catch you out” so the proof must not make any assumptions on how the
string is split (other than the constraints stated, which are there precisely to stop the
opponent choosing a decomposition for which the expected reasoning doesn’t work).

2. Consider the language L ¬ { cman bn | m≥ 1 ∧ n≥ 0 } ∪ { am bn | m, n≥ 0 }. The notes show
that L has the pumping lemma property. Show that there is no DFA M which accepts L.

Hint: argue by contradiction. If there were such an M , consider the DFA M ′ with the same states

D I S C R E T E M AT H E M AT I C S S O LU T I O N S W I T H CO M M E N TA RY

as M , with alphabet of input symbols just consisting of a and b, with transitions all those of
M which are labelled by a or b, with start state δM(sM , c) where sM is the start state of M ,
and with the same accepting states as M . Show that the language accepted by M ′ has to be
{ an bn | n≥ 0 } and deduce that no such M can exist.

We follow the hint and take M and M ′ as given. We show that L(M ′) = { an bn | n≥ 0 }.

(⊆) If w ∈ { a, b }∗ is accepted by M ′, then cw ∈ L(M) since the start state of M ′ is reached
with a single c-transition from the start state of M . By definition of M , w must be of the
form an bn for some n ∈ N.

(⊇) If w = an bn, we have that can bn ∈ L(M), and by the definition of M ′, we have that
an bn ∈ L(M ′).

Thus, from the assumption that the DFA M exists, we constructed a DFA M ′ such that
L(M ′) = { an bn | n≥ 0 }; however, we know from the contrapositive statement of the
Pumping Lemma that { an bn | n≥ 0 } is not regular, so our assumption that M exists was
wrong. Consequently, the language L is not regular.

� The proof presented here is done using a technique called reduction: we reduce the
question of determining the membership of a string u in { an bn | n≥ 0 } to the question of
determining the membership of cu in L, so if the latter is answerable using a DFA, then so
is the former (which leads to a contradiction). The central property of the mapping u 7→ cu
is that u ∈ { an bn | n≥ 0 } if and only if cu ∈ L. Reduction proofs will be discussed in more
detail in the IB Computation Theory and Complexity Theory courses.

	On proofs
	Basic exercises
	Core exercises
	Optional exercises

	On numbers
	Basic exercises
	Core exercises
	Optional exercises

	More on numbers
	Basic exercises
	Core exercises
	Optional exercises

	On induction
	Basic exercises
	Core exercises
	Optional exercises

	On sets
	Basic exercises
	Core exercises
	Optional advanced exercises

	On relations
	Basic exercises
	Core exercises

	On partial functions
	Basic exercises
	Core exercises

	On functions
	Basic exercises
	Core exercises
	Optional advanced exercise

	On bijections
	Basic exercises
	Core exercises

	On equivalence relations
	Basic exercises
	Core exercises

	On surjections and injections
	Basic exercises
	Core exercises

	On images
	Basic exercises
	Core exercises

	On countability
	Basic exercises
	Core exercises
	Optional advanced exercise

	On inductive definitions
	On regular expressions
	On finite automata
	On regular languages
	On the Pumping Lemma

