Discrete Mathematics

Supervision 9

Marcelo Fiore Ohad Kammar Dima Szamozvancev

14. On inductive definitions

- 1. Let L be the subset of $\{a, b\}^*$ inductively defined by the axiom $\frac{1}{\epsilon}$ and rule $\frac{u}{aub}$ for $u \in \{a, b\}^*$.
 - a) Use *rule induction* to prove that every string in L is of the form $a^n b^n$ for some $n \in \mathbb{N}$.
 - b) Use mathematical induction to prove that for all $n \in \mathbb{N}$, $a^n b^n \in L$.
 - c) Conclude that $L = \{ a^n b^n \mid n \in \mathbb{N} \}.$
 - d) Suppose we add the string a to L to get $L' = L \cup \{a\}$. Is L' closed under the axiom and rule? If not, characterise the strings that would be in the smallest set containing L' that is closed under the axiom and rule.
- 2. Suppose $R: X \to X$ is a binary relation on a set X. Let $R^{\dagger}: X \to X$ be inductively defined by the following axioms and rules:

$$\frac{(x, y) \in R^{\dagger}}{(x, z) \in R^{\dagger}} \quad (x \in X) \qquad \frac{(x, y) \in R^{\dagger}}{(x, z) \in R^{\dagger}} \quad (x \in X \text{ and } y Rz)$$

- a) Show that R^{\dagger} is reflexive and that $R \subseteq R^{\dagger}$.
- b) Use rule induction to show that R^{\dagger} is a subset of

$$S \triangleq \left\{ (y,z) \in X \times X \mid \forall x \in X. (x,y) \in R^{\dagger} \Longrightarrow (x,z) \in R^{\dagger} \right\}$$

Deduce that R^{\dagger} is transitive.

- c) Suppose that $T: X \rightarrow X$ is a reflexive and transitive binary relation and that $R \subseteq T$. Use rule induction to show that $R^{\dagger} \subseteq T$.
- d) Deduce from above that R^{\dagger} is equal to R^* , the reflexive-transitive closure of R.
- 3. Let L be a subset of $\{a, b\}^*$ inductively defined by the axiom and rules (for $u \in \{a, b\}^*$):

	аи	ab ³ u
ab	au^2	аи

- a) Is ab^5 in L? Give a derivation, or show that there isn't one.
- b) Use rule induction to show that every $u \in L$ is of the form ab^n with $n = 2^k 3m \ge 0$ for some $k, m \in \mathbb{N}$.
- c) Is ab^3 in L? Give a derivation, or show that there isn't one.
- d) Find an explicit characterisation of the elements of the language as a set comprehension, and prove (along the lines of §14.1) that it coincides with the inductively defined set *L*.

15. On regular expressions

- 1. Find regular expressions over $\{0, 1\}$ that determine the following languages:
 - a) $\{u \mid u \text{ contains an even number of } 1's \}$
 - b) $\{u \mid u \text{ contains an odd number of } 0's \}$
- 2. Show that $b^*a(b^*a)^*$ and $(a|b)^*a$ are equivalent regular expressions, that is, a string matches one iff it matches the other. Your reasoning should be rigorous but can be informal.
- 3. Extend the concrete syntax, abstract syntax, parsing relation of regular expressions, and the matching relation between strings and regular expressions with the following constructs:
 - a) r?: matches the regex r zero or one times. For example, *ab*?*c* is matched by *ac* and *abc*, but not *abbc*.
 - b) r⁺: matches the regex r one or more times. For example, ab^+c is matched by abc and abbbbc, but not ac.

Show that (r^+) ? is equivalent to r^* . Is that the case for $(r^2)^+$ as well?

16. On finite automata

- 1. For each of the two languages mentioned in §15.1 (string containing an even number of 1's or an odd number of 0's), find a DFA that accepts exactly that set of strings.
- 2. Given an NFA^{ε} $M = (Q, \Sigma, \Delta, s, F, T)$, we write $q \stackrel{u}{\Rightarrow} q'$ to mean that there is a path in M from state q to state q' whose non- ε labels form the string $u \in \Sigma^*$. Show that $L = \left\{ (q, u, q') \middle| q \stackrel{u}{\Rightarrow} q' \right\}$ is equal to the subset of $Q \times \Sigma^* \times Q$ inductively defined by the axioms and rules:

$$\frac{(q, u, q')}{(q, \varepsilon, q)} \qquad \qquad \frac{(q, u, q')}{(q, u, q'')} \text{ if } q' \xrightarrow{\varepsilon} q'' \text{ in } M \qquad \qquad \frac{(q, u, q')}{(q, ua, q'')} \text{ if } q' \xrightarrow{a} q'' \text{ in } M$$

Hint: recall the method from §14.1. for showing that a language defined via set comprehension is equal to an inductively defined set: first show that L is closed under the rules and axioms, then show that every string in L has a derivation.

3. The example of the subset construction given on Slide 58 constructs a DFA with eight states whose language of accepted strings happens to be $L(a^*b^*)$. Give an "optimised" DFA with the same language of accepted strings, but fewer states. Give an NFA with even fewer states that does the same job.