Discrete Mathematics

Supervision 8

Marcelo Fiore Ohad Kammar Dima Szamozvancev

11. On surjections and injections

11.1. Basic exercises

- 1. Give two examples of functions that are surjective, and two examples of functions that are not.
- 2. Give two examples of functions that are injective, and two examples of functions that are not.

11.2. Core exercises

- 1. Explain and justify the phrase injections can be undone.
- 2. Show that $f : A \to B$ is a surjection if and only if for all sets C and functions $g,h: B \to C$, $g \circ f = h \circ f$ implies g = h.

What would be an analogous condition for injections?

3. Use the above sufficient condition to show that the identity function is a surjection, and the composition of surjections is a surjection.

12. On images

12.1. Basic exercises

- 1. Let $R_2 = \{(m, n) \mid m = n^2\} \colon \mathbb{N} \to \mathbb{Z}$ be the integer square-root relation. What is the direct image of \mathbb{N} under R_2 ? And what is the inverse image of \mathbb{N} ?
- 2. For a relation $R: A \rightarrow B$, show that:
 - a) $\vec{R}(X) = \bigcup_{x \in X} \vec{R}(\{x\})$ for all $X \subseteq A$
 - b) $\overleftarrow{R}(Y) = \{a \in A \mid \overrightarrow{R}(\{a\}) \subseteq Y\}$ for all $Y \subseteq B$.

12.2. Core exercises

- 1. For $X \subseteq A$, prove that the direct image $\vec{f}(X) \subseteq B$ under an injective function $f : A \rightarrow B$ is in bijection with X; that is, $X \cong \vec{f}(X)$.
- 2. Prove that for a surjective function $f : A \rightarrow B$, the direct image function $\overline{f} : \mathcal{P}(A) \rightarrow \mathcal{P}(B)$ is surjective.
- 3. Show that any function $f : A \rightarrow B$ can be decomposed into an injection and a surjection: that is, there exists a set X, a surjection $s : A \rightarrow X$ and an injection $i : X \rightarrow B$ such that $f = i \circ s$.
- 4. For a relation $R: A \rightarrow B$, prove that
 - a) $\vec{R}(\bigcup \mathcal{F}) = \bigcup \{ \vec{R}(X) \mid X \in \mathcal{F} \}$ for all $\mathcal{F} \subseteq \mathcal{P}(A)$
 - b) $\overleftarrow{R}(\bigcap \mathcal{G}) = \bigcap \{\overleftarrow{R}(Y) \mid Y \in \mathcal{G}\}$ for all $\mathcal{G} \subseteq \mathcal{P}(B)$

- 5. Show that, by the inverse image, every map $A \to B$ induces a Boolean algebra map $\mathcal{P}(B) \to \mathcal{P}(A)$. That is, for every function $f : A \to B$, its inverse image preserves set operations:
 - $\overleftarrow{f}(\emptyset) = \emptyset$

•
$$\overleftarrow{f}(B) = A$$

- $\overleftarrow{f}(X \cup Y) = \overleftarrow{f}(X) \cup \overleftarrow{f}(Y)$
- $\overleftarrow{f}(X \cap Y) = \overleftarrow{f}(X) \cap \overleftarrow{f}(Y)$
- $\overleftarrow{f}(X^c) = \left(\overleftarrow{f}(X)\right)^c$

13. On countability

13.1. Basic exercises

- 1. Prove that every finite set is countable.
- 2. Demonstrate that $\mathbb N$, $\mathbb Z$, $\mathbb Q$ are countable sets.

13.2. Core exercises

- 1. Let A be an infinite subset of \mathbb{N} . Show that $A \cong \mathbb{N}$. Hint: Adapt the argument shown in the proof of Proposition 144, showing that the map $\mathbb{N} \to A$ is both injective and surjective.
- 2. For an infinite set *A*, prove that the following are equivalent:
 - a) There is a bijection $\mathbb{N} \xrightarrow{\cong} A$.
 - b) There is a surjection $\mathbb{N} \twoheadrightarrow A$.
 - c) There is an injection $A \rightarrow \mathbb{N}$.
- 3. Prove that:
 - a) Every subset of a countable set is countable.
 - b) The product and disjoint union of countable sets is countable.
- 4. For a set *A*, prove that there is no injection $\mathcal{P}(A) \rightarrow A$.

13.3. Optional advanced exercise

1. Prove that if A and B are countable sets then so are A^* , $\mathcal{P}_{fin}(A)$ and $PFun_{fin}(A, B)$.