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Set isomorphisms establish a type of equivalence between two sets: we can always translate between
elements of isomorphic sets with the bijection exhibiting the isomorphism, so “for all intents and
purposes” two isomorphic sets are interchangeable. Some isomorphisms come from deep, nontrivial
results (such as Cantor’s proof that N ∼= Q, discussed later), others come from properties of set
operations (such as A× B ∼= B × A, the commutativity of Cartesian product). This question will
ask you to define the set isomorphisms from the Calculus of Bijections I, but instead of boring old
pen-and-paper maths, we will use fun hip trendy OCaml.

As it happens, sets and algebraic data types have quite a lot in common: elements of a set (e.g. 5 ∈ Z)
can be treated as value of some type (e.g. 5 : int). Certain set operations also have a direct analogue
in types: the Cartesian product of sets corresponds to the product type *, while the disjoint union
is the sum type (the | of type declarations). Algebraically, this gives us a semiring of types, just
like how (P(A),],×,;, [1]) is a semiring in the universe of sets.1 Functions between sets naturally
correspond to functions between types; while in the discussion of this course functions were just
special kinds of relations, they take a leading role in functional programming and other constructs
are defined in terms of them.

Consider the following OCaml definitions.

Sum type

type ('a, 'b) sum = L of 'a | R of 'b

The type ('a, 'b) sum is the sum type, a concrete type constructor representing the | of type
declarations. Sum types correspond to the disjoint union of sets: a value of type ('a, 'b) sum must
either be a left-tagged value L x of type 'a, or a right-tagged value R y of type 'b.

Empty type

type empty = |

The empty type corresponds to the empty set. The syntax is a bit unusual, but it is OCaml’s way of
defining a type without any constructors. Since there are no constructors, there are no values of type
empty. Empty types also come with an associated pattern-matching principle called a refutation
pattern: if we have a variable of type empty (which is entirely possible, e.g. for the argument of a
function of type empty -> 'a), we can use match to pattern-match on it. But since it is of empty type,
there are no associated constructors and nothing to pattern-match on. This is expressed in OCaml by
the pattern _ -> . (the wildcard pattern with a dot for the body), which is statically checked to verify
that the pattern really is not possible. For instance, we define a function of type empty -> 'a as

1More details on the algebraic treatment of data types are given in the solution notes for FoCS SV2 Exercise 5.

https://www.cl.cam.ac.uk/teaching/2122/DiscMath/DiscMathProofsNumbersSetsNotes.pdf#page=385
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fun (x : empty) -> match x with _ -> .

Set-theoretically this corresponds to the (unique) empty function from the empty set to any other set,
simply defined as {}: ; → A. If we tried using the refutation pattern with a non-empty type, OCaml
would complain, saying that the case we marked impossible with the dot is not unreachable after all:
fun (x : unit) -> match x with _ -> . will give a counterexample of such a case, specifically
the pattern ().

Powerset type

type 'a pows = Pows of ('a -> bool)

A very natural way to represent a subset S of elements of a set A is via its characteristic function
χS : A→ [2]: this is simply a predicate (a Boolean-valued function) on the elements of A answering
the question “am I a member of the subset”? Thus, the set of all subsets of a set, called its powerset,
is isomorphic to the set of predicates on the set: P(A) ∼= (A⇒ [2]). Since OCaml has no notion of a
“subtype”, we make use of this isomorphism to represent the powerset of a type 'a as the type of
functions from 'a to bool. To “hide” the implementation from view, we make this into a new data
type, rather than a type synonym.

Partial function type

type ('a, 'b) pfun = PFun of ('a -> 'b option)

In OCaml we can represent partial functions by functions that raise an exception for an unsuitable
input, or by returning an option type that gives a None for an unsuitable input. For the sake of purity,
we use the second option to implement the set of partial functions PFun(A,B).

Relation type

type ('a, 'b) rel = Rel of ('a * 'b) pows

The set/type of relations between two types is just the powerset of their Cartesian product.

Isomorphism type

type ('a, 'b) iso = Iso of ('a -> 'b) * ('b -> 'a)

The type ('a, 'b) iso represents an isomorphism between the types 'a and 'b. To create such an
isomorphism, we need to provide two functions converting between 'a and 'b. Formally this does
not define a bijection, as we don’t supply any proofs for the inverse properties (which we cannot
express in OCaml) – however, as we will be dealing with polymorphic types, we often expect the
correct functions and inverses to be the only definitions that typecheck.

Your task is to give definitions for the following OCaml values corresponding to some of the isomorph-
isms in the Calculus of Bijections I. Some notes:
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• Remember that OCaml’s function syntax is actually a combination of fun and match, a
pattern-matching anonymous function, so it can be written inline as one part of the isomorphism
(but it has to be in parentheses otherwise OCaml gets confused).

• The isomorphisms must have the fully polymorphic type as given in the question. If OCaml
infers, for example, val prod_comm : ('a * 'a, 'a * 'a) iso for the commutativity of
the product, you made a mistake (e.g. returning (b,b) in one of the functions).

• You are encouraged to use various higher-order functions introduced in the OCaml course. One
useful definition is that of function composition, written in infix form as g << f:

let (<<) g f x = g (f x)
> val (<<) : ('b -> 'c) -> ('a -> 'b) -> 'a -> 'c = <fun>

• You will often be in the middle of a definition (or later, an equational proof) and want to know
what is the type of the expression or goal that you need to provide. A simple trick to see what
OCaml expects is simply to trigger a type error! If you leave in a value of some type that should
not appear in the expression (such as an integer), OCaml will gladly complain that it found a
value of type int but expected an expression of type <type>. For instance, if you typecheck

let prod_comm : ('a * 'b, 'b * 'a) iso = Iso
( (fun (a, b) -> 1) , 2) )

OCaml will say that the type expected in the place of 1 should be 'b * 'a.

Properties of set operations

1. Cartesian product and disjoint union are commutative (example)

let prod_comm : ('a * 'b, 'b * 'a) iso = Iso
( (fun (a, b) -> (b, a))
, (fun (b, a) -> (a, b)) )

let sum_comm : (('a, 'b) sum, ('b, 'a) sum) iso = Iso
( (function L a -> R a | R b -> L b)
, (function L b -> R b | R a -> L a) )

2. Cartesian product and disjoint union are associative

let prod_assoc : ( ('a * 'b) * 'c
, 'a * ('b * 'c) ) iso = Iso ...

let sum_assoc : ( (('a, 'b) sum, 'c) sum
, ('a, ('b, 'c) sum) sum ) iso = Iso ...
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Straightforward reassociation of the nested tuples, and nested case analysis.

let prod_assoc : ( ('a * 'b) * 'c
, 'a * ('b * 'c) ) iso = Iso

( (fun ((a, b), c) -> (a, (b, c)))
, (fun (a, (b, c)) -> ((a, b), c)) )

let sum_assoc : ( (('a, 'b) sum, 'c) sum
, ('a, ('b, 'c) sum) sum ) iso = Iso

( (function L (L a) -> L a | L (R b) -> R (L b)
| R c -> R (R c))

, (function L a -> L (L a) | R (L b) -> L (R b)
| R (R c) -> R c) )

3. The units of products and disjoint unions are singleton sets and the empty set, respectively

let prod_unit : ('a * unit, 'a) iso = Iso ...
let sum_unit : (('a, empty) sum, 'a) iso = Iso ...

Note the use of the refutation pattern in the sum_unit case: if the input is a right injection,
it would need to be of type empty, but we know that is impossible so the case is vacuously
satisfied. The typechecker will be happy giving the impossible case any type, including 'a.

let prod_unit : ('a * unit, 'a) iso = Iso
( (fun (a, ()) -> a)
, (fun a -> (a, ())) )

let sum_unit : (('a, empty) sum, 'a) iso = Iso
( (function L a -> a | R _ -> .)
, (fun a -> L a) )

4. Products distribute over sums

let prod_sum_distr : ( (('a, 'b) sum) * 'c
, ('a * 'c, 'b * 'c) sum ) iso = Iso ...

let prod_sum_distr : ( (('a, 'b) sum) * 'c
, ('a * 'c, 'b * 'c) sum ) iso = Iso

( (function (L a, c) -> L (a, c) | (R b, c) -> R (b, c))
, (function L (a, c) -> (L a, c) | R (b, c) -> (R b, c)) )
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5. Functions and products

let fun_to_prod : ( 'a -> ('b * 'c)
, ('a -> 'b) * ('a -> 'c) ) iso = Iso ...

let fun_from_prod : ( ('a * 'b) -> 'c
, 'a -> ('b -> 'c) ) iso = Iso ...

Of course, fun_from_prod corresponds to currying and uncurrying!

let fun_to_prod : ( 'a -> ('b * 'c)
, ('a -> 'b) * ('a -> 'c) ) iso = Iso

( (fun f -> (fun a -> fst (f a)) , (fun b -> snd (f b)))
, (fun (f, g) -> fun a -> (f a , g a)) )

let fun_from_prod : ( ('a * 'b) -> 'c
, 'a -> ('b -> 'c) ) iso = Iso

( (fun f -> fun a -> fun b -> f (a, b))
, (fun f -> fun (a, b) -> f a b) )

6. Functions and sums

let fun_from_sum : ( ('a, 'b) sum -> 'c
, ('a -> 'c) * ('b -> 'c) ) iso = Iso ...

What about fun_to_sum : ('a -> ('b, 'c) sum, ('a -> 'b, 'a -> 'c) sum) iso?

We can define one direction of fun_to_sum, but not the other: the arguments of type 'a
are independent in the two components of the pair, so we would need to “commit” to a
side of the pair before we can call the function and pattern-match on its result. This is not
really an OCaml quirk, it does not work in set theory either!

On the other hand, fun_from_sub works as expected. Compare this transformation to
the universal property of disjunction, unions, least common divisors, etc.: to show that the
sum is “below” a type, one needs to show that both terms of the sum are “below” the type.
If the RHS of the isomorphism was ('a -> 'c, 'b -> 'c) sum (which is what you may
have expected to be the dual of fun_to_prod), you will not be able to handle either case
of the input since only one of the “handlers” is available at one time.

let fun_to_sum : ( 'a -> ('b, 'c) sum
, ('a -> 'b, 'a -> 'c) sum ) iso = Iso

( (fun f -> ?????)
, (function L f -> (fun a -> L (f a))

| R g -> (fun b -> R (g b))) )
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let fun_from_sum : ( ('a, 'b) sum -> 'c
, ('a -> 'c) * ('b -> 'c) ) iso = Iso

( (fun f -> ((fun a -> f (L a)), (fun b -> f (R b))))
, (fun (f, g) -> (function L a -> f a | R b -> g b)) )

7. Functions and neutral elements

let fun_from_unit : (unit -> 'a, 'a) iso = Iso ...
let fun_to_unit : ('a -> unit, unit) iso = Iso ...
let fun_from_empty : (empty -> 'a, unit) iso = Iso ...

What would be the di�culty in defining fun_to_empty : ('a -> empty, empty) iso for
an arbitrary type 'a? How about ('a option -> empty, empty) iso?

let fun_from_unit : (unit -> 'a, 'a) iso = Iso
( (function f -> f ())
, (function a -> fun () -> a) )

let fun_to_unit : ('a -> unit, unit) iso = Iso
( (function f -> ())
, (function () -> fun _ -> ()) )

let fun_from_empty : (empty -> 'a, unit) iso = Iso
( (function f -> ())
, (function () -> function _ -> .) )

let fun_to_empty : ('a -> empty, empty) iso = Iso
( (function f -> ?????)
, (function e -> fun _ -> e) )

The problem with defining a function of type ('a -> empty) -> empty is that we need to
produce a return value of type empty – since it’s the empty type, there is no distinguished
value we could use (like () for unit), but we can still construct a term of type empty
using variables in the scope (like returning the constant function of e : empty in the
inverse case). However, given f : 'a -> empty, the only way we could create a term of
type empty would be by applying f to an argument of type 'a. As we know, we cannot
produce polymorphic values, so this will be impossible – we cannot call f and can’t return
anything from the function.

However, there is a caveat: the isomorphism (A⇒ [0]) ∼= [0] only holds if A is nonempty.
More precisely, it says that there are no functions from a nonempty set to the empty
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set. This side-condition is needed because there is a function from the empty set to
the empty set: the identity id; = { }, which the same as the unique empty function. We
cannot implement the OCaml function above because 'a can always be instantiated to
be empty, in which case the isomorphism (empty -> empty, empty) iso doesn’t hold
(for the same reasons as above), but (empty -> empty, unit) iso does, as an instance
of fun_from_empty. OCaml doesn’t have a way of enforcing that 'a should not be the
empty type, but we can always ensure that it’s nonempty by adding a distinguished element,
which is exactly what the option constructor does. Now we can define

let fun_to_empty : ('a option -> empty, empty) iso = Iso
( (function f -> f None)
, (function e -> fun _ -> e) )

8. Set-theoretic representations of built-in types

let bool_to_sum : (bool, (unit, unit) sum) iso = Iso ...
let option_to_sum : ('a option, ('a, unit) sum) iso = Iso ...

The set of Boolean values only has two elements, and a simple way of generating it is as
the disjoint union of two singleton sets. The left injection of the singleton value (whatever
it is) corresponds to true, the right injection to false (or vice versa). Option types are
similar, except we replace one of the singleton sets with an arbitrary one, keeping the other
injection a distinguished value.

let bool_to_sum : (bool, (unit, unit) sum) iso = Iso
( (fun b -> if b then L () else R ())
, (function L () -> true | R () -> false) )

let option_to_sum : ('a option, ('a, unit) sum) iso = Iso
( (function Some a -> L a | None -> R ())
, (function L a -> Some a | R () -> None) )

9. Powersets and characteristic functions

let pows_to_chfun : ('a pows, 'a -> bool) iso = Iso ...

Remember that we define the pows type using this isomorphism, so this definition is
nothing but extracting the constructor argument.

let pows_to_chfun : ('a pows, 'a -> bool) iso = Iso
( (fun (Pows f) -> f)
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, (fun f -> Pows f) )

10. Partial functions and relations

let pfun_to_optfun : (('a, 'b) pfun, 'a -> 'b option) iso = Iso ...
let rel_to_pows_prod : (('a, 'b) rel, ('a * 'b) pows) iso = Iso ...

Again, these are trivial. We are defining them merely to have a consistent equational
calculation system of such isomorphisms – a calculus, if you will.

let pfun_to_optfun : (('a, 'b) pfun, 'a -> 'b option) iso = Iso
( (fun (PFun f) -> f)
, (fun f -> PFun f) )

let rel_to_pows_prod : (('a, 'b) rel, ('a * 'b) pows) iso = Iso
( (fun (Rel f) -> f)
, (fun f -> Rel f) )

Properties of isomorphisms
So far we have defined some fundamental isomorphisms between types and type operations, but
these are of not much use to us yet (other than as an educational exercise!). However, we can extend
our system and develop a full library for programming with conversions and type isomorphisms – or
alternatively, solve set theory exercises in OCaml!

The “calculus” part of the Calculus of Bijections refers not to di�erential or integral calculus, but a
formal system for calculation: a collection of terms and equalities between them that lets us establish
relationships between expressions via a sequence of syntactic manipulations. You’re very familiar
with this meaning of the word “calculus” from algebra: establishing algebraic equalities such as
a2x × (ax)y = ax ·(2+y) happens via repeated applications of standard algebraic identities on the
whole, or one part of the expression. We can provide a detailed equational proof of this equality:

a2x · (ax)y = a2x · ax y (power of power law in
�

a2
�x
· [−])

= a2x · a y x (commutativity of multiplication in
�

a2
�x
· a[−])

=
�

a2
�x
· (a y)x (power of power law in both [−] · [−])

=
�

a2 · a y
�x (power of product law)

=
�

a2+y
�x (sum in power law in [−]x )

= ax ·(2+y) (power of power law)

This is of course one possible proof, but not the shortest one. However, it demonstrates the level of
rigour we can achieve (if we wish), for example, by being explicit about the location in the expression
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where the algebraic law is applied. Above, we mark this with a [−], which can be read as “the power of
product law a2 ·a y = a2+y is substituted for the [−] in the expression [−]x to get the derived identity
(a2 · a y)x = (a2+y)x”. This is of course needlessly verbose and seemingly superfluous – however, our
ability to perform this substitution relies on a simple, but important property of equality, namely
that subexpressions of an expression can be replaced with equal subexpressions. If we think of
expressions as trees (recall the expr data type in FoCS), this states that any subtree of an expression
can be replaced with another, as long as they evaluate to the same thing (i.e. they are semantically
equivalent), even if syntactically they are completely di�erent. Stated like this, we can see that such a
strong property (confusingly called congruence) may not come for free, especially if we work with a
custom equivalence relation, rather than equality. Recall the proofs in §2.1.2 that modular congruence
can be applied on either side of addition or multiplication, or under an exponent:

i ≡ j (mod m) =⇒ in ≡ jn (mod m)

This is essentially an analogue of saying that i = j implies in = jn, except for the equivalence relation
of modular congruence – the proof is simple, but not trivial.

The equivalence and congruence properties of isomorphisms let us combine base isomorphisms
into increasingly complex equalities between sets – they are the basis for equational reasoning
within a formal system. Whenever you’re asked to show that two sets are isomorphic, you can define
the bijection and its inverse from scratch, prove the inverse laws or injectivity and surjectivity, etc.
Alternatively, you can reason by transforming one set to the other using the calculus of bijections, and
the isomorphism laws will be proved automatically, by construction. The latter approach of course
depends on some prior work of developing the calculus, but once that is done, a surprising number of
complex-looking isomorphisms can be established just by “algebraic” manipulation. This idea appears
in many places in mathematics and computer science, and it’s a good example of our philosophy of
compositionality, abstraction, reuse of prior work – all principles you should be familiar with from
programming.

In the rest of this exercise we raise the level of abstraction and deal with the isomorphism type itself,
writing combinators corresponding to the equivalence and congruence properties of ('a, 'b) iso.
Then, you will be asked to write some equational “proofs” of more complex type isomorphisms, where,
as much as possible, you should strive to construct the isomorphism by combining existing ones into
more complex bijections, without defining the explicit conversion functions. Don’t forget that we’re
not actually proving anything: all we’re doing is defining the components of the bijection, but proving
that the two functions are actually two-sided inverses of each other is not part of the OCaml code.

1. Bijection An isomorphism lets us convert between values of di�erent, but isomorphic types.

let to_ : ('a, 'b) iso -> ('a -> 'b) = function ...
let fro_ : ('a, 'b) iso -> ('b -> 'a) = function ...

We simply project out the relevant components of the pair of functions. This essentially
means that we will never have to pattern-match on isomorphisms – you can even imagine
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hiding the implementation behind an abstract data type.

let to_ : ('a, 'b) iso -> ('a -> 'b) = fun (Iso (t, _)) -> t
let fro_ : ('a, 'b) iso -> ('b -> 'a) = fun (Iso (_, f)) -> f

2. Equivalence relation Any type is isomorphic to itself (reflexivity), isomorphisms can be flipped
(symmetry), and they can be chained together (transitivity).

let iso_refl : ('a, 'a) iso = Iso ...
let iso_sym (i : ('a, 'b) iso) : ('b, 'a) iso = Iso ...
let iso_trans (i1 : ('a, 'b) iso)

(i2 : ('b, 'c) iso) : ('a, 'c) iso = Iso ...

Once defined, we can get convenient shorthands for these combinators, as they will be frequently
used in the isomorphism constructions later.

let same = iso_refl
let inv = iso_sym
let (>>>) = iso_trans

We make use of the to_ and fro_ operators right away, decomposing and recombining the
inputs to the desired form. Note the use of the composition operator << to chain together
the component OCaml functions.

let iso_refl : ('a, 'a) iso = Iso
(id, id)

let iso_sym (i : ('a, 'b) iso) : ('b, 'a) iso = Iso
(fro_ i, to_ i)

let iso_trans (i1 : ('a, 'b) iso)
(i2 : ('b, 'c) iso) : ('a, 'c) iso = Iso

(to_ i2 << to_ i1, fro_ i1 << fro_ i2)

3. Congruent relation Isomorphisms can be applied on operands of type constructors.

let prod_cong (i1 : ('a, 'x) iso)
(i2 : ('b, 'y) iso)

: ('a * 'b, 'x * 'y) iso = Iso ...
let sum_cong (i1 : ('a, 'x) iso)

(i2 : ('b, 'y) iso)
: (('a,'b) sum, ('x, 'y) sum) iso = Iso ...
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let fun_cong (i1 : ('a, 'x) iso)
(i2 : ('b, 'y) iso)

: ('a -> 'b, 'x -> 'y) iso = Iso ...

Again, we can define shorthands for the congruence combinators, including ones specialised
to altering only one of the two operands. While these can be written in pointfree style, we
eta-expand everything to avoid OCaml’s annoying weak polymorphic type inference.

let (=*=) = prod_cong and (=+=) = sum_cong and (=->=) = fun_cong
let in_fst i = prod_cong i same and in_snd i = prod_cong same i
let in_left i = sum_cong i same and in_right i = sum_cong same i
let in_dom i = fun_cong i same and in_cod i = fun_cong same i

You’ve seen many similar properties before, such as with products, disjoint unions, and
the subset relation in §5.2.4(a) and §5.2.5(a). The relation in this case is di�erent (namely,
an isomorphism), but the properties are similar: unwrap/case analyse, and apply the
respective isomorphisms to the components before wrapping them back. The story is
slightly more interesting with functions, as the isomorphism has to be applied “in reverse”
to the input: that is because given a function 'a -> 'b, the output can be transformed with
a 'b -> 'y (by post-composition), but the input requires the opposite direction 'x -> 'a
(by pre-composition). An isomorphism of course contains both directions, but we have to
be explicit about which one is applied first.

let prod_cong (i1 : ('a, 'x) iso)
(i2 : ('b, 'y) iso)

: ('a * 'b, 'x * 'y) iso = Iso
( (fun (a,b) -> (to_ i1 a, to_ i2 b))
, (fun (x,y) -> (fro_ i1 x, fro_ i2 y)) )

let sum_cong (i1 : ('a, 'x) iso)
(i2 : ('b, 'y) iso)

: (('a,'b) sum, ('x, 'y) sum) iso = Iso
( (function L a -> L (to_ i1 a) | R b -> R (to_ i2 b))
, (function L x -> L (fro_ i1 x) | R y -> R (fro_ i2 y)) )

let fun_cong (i1 : ('a, 'x) iso)
(i2 : ('b, 'y) iso)

: ('a -> 'b, 'x -> 'y) iso = Iso
( (fun f -> to_ i2 << f << fro_ i1)
, (fun g -> fro_ i2 << g << to_ i1) )
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Compound isomorphisms
The point of all this setup is that we can define isomorphisms between complex types with the help of
a few base isomorphisms and combinators. As an example, let’s look at the proof of the isomorphism
[2]⇒ A ∼= A× A, that is, a function from the Booleans to a set A is isomorphic to a pair of values
from A. Intuitively, we do an if-expression branching on the argument and the expressions of the
then and else branches can be combined in a pair. It wouldn’t be too bad writing this out explicitly:

let fun_from_bool_to_pair : (bool -> 'a, 'a * 'a) iso = Iso
( (fun f -> (f true, f false))
, (fun (t,e) -> fun b -> if b then t else e) )

However, let’s see if we can avoid the “low-level” details of the definition, and define the isomorphism
abstractly, using the calculus of bijections.

([2]⇒ A) ∼= ([1]] [1])⇒ A (Booleans are the sum of two units)
∼= ([1]⇒ A)× ([1]⇒ A) (function from a sum is product of functions)
∼= A× A (function from unit isomorphic to an element)

We can represent this proof almost exactly in our OCaml library: all of the proof steps correspond to
existing base combinators defined previously. There is some extra baggage coming from the need
to be explicit about symmetry, transitivity, congruence, etc. (which are clear from the context in the
written proof, but required in the code), but our combinators make this relatively unobtrusive.

let fun_from_bool_to_pair : (bool -> 'a, 'a * 'a) iso =
in_dom bool_to_sum >>> fun_from_sum

>>> (fun_from_unit =*= fun_from_unit)

You might well argue that this is not a lot better than the explicit definition, but the trade-o� becomes
greater once you have more complicated expressions. In addition, if we prove that all of our base
definitions are indeed isomorphisms, the inverse laws for compound isomorphisms all come for free
– we would need to redo them every time for explicit definitions.

A nice thing about implementing all this in a programming language is that we immediately get the
appropriate computational behaviour: for example,

to_ fun_from_bool_to_pair (fun b -> if b then 3 else 5)

evaluates to the pair (3,5), as expected. And of course the value fun_from_bool_to_pair is a
perfectly appropriate “proof” of (bool -> 'a, 'a * 'a) iso and can be used in other compound
isomorphisms where such a bijection is needed.

1. Some simple helper lemmas: commuted unit laws, swapping of function arguments, transitivity
which inverts its left or right argument (to avoid writing inv in chains of isomorphisms).
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let prod_unit_l : (unit * 'a, 'a) iso = ...
let sum_unit_l : ((empty, 'a) sum, 'a) iso = ...
let (>><) (i1 : ('a, 'b) iso)(i2 : ('c, 'b) iso) : ('a, 'c) iso = ...
let (<>>) (i1 : ('b, 'a) iso)(i2 : ('b, 'c) iso) : ('a, 'c) iso = ...
let swap_iso : 'a -> 'b -> 'c, 'b -> 'a -> 'c) iso = ...

Do we need all these? No, but they’re easy enough to define and make proofs less verbose
– so why not?

let prod_unit_l : (unit * 'a, 'a) iso =
prod_comm >>> prod_unit

let sum_unit_l : ((empty, 'a) sum, 'a) iso =
sum_comm >>> sum_unit

let (>><) (i1 : ('a, 'b) iso)(i2 : ('c, 'b) iso) : ('a, 'c) iso =
i1 >>> inv i2

let (<>>) (i1 : ('b, 'a) iso)(i2 : ('b, 'c) iso) : ('a, 'c) iso =
inv i1 >>> i2

let swap_iso : ('a -> 'b -> 'c, 'b -> 'a -> 'c) iso =
fun_from_prod <>> in_dom prod_comm >>> fun_from_prod

2. Lifting isomorphisms to isomorphisms between powersets, and dualising relations:

let pows_cong (i : ('a, 'b) iso) : ('a pows, 'b pows) iso = ...
let rel_op : (('a, 'b) rel, ('b, 'a) rel) iso = ...

Powersets are isomorphic to characteristic functions, and domains of functions can be
transformed. This, then, can be used to swap the order of sets in a relation.

let pows_cong (i : ('a, 'b) iso) : ('a pows, 'b pows) iso =
pows_to_chfun >>> in_dom i >>< pows_to_chfun

let rel_op : (('a, 'b) rel, ('b, 'a) rel) iso =
rel_to_pows_prod >>> pows_cong (prod_comm) >>< rel_to_pows_prod

3. Exam question 2015 Paper 2 Question 9(b):

P(A] B) ∼= P(A)×P(B)

let pows_sum_to_prod_pows
: (('a, 'b) sum pows, 'a pows * 'b pows) iso = ...

https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2015p2q9.pdf
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The crucial step is transforming the characteristic function from the disjoint union to a pair
of characteristic functions – the rest is interpreting powersets as characteristic functions.

let pows_sum_to_prod_pows
: (('a, 'b) sum pows, 'a pows * 'b pows) iso =

pows_to_chfun >>> fun_from_sum
>>< (pows_to_chfun =*= pows_to_chfun)

4. Relations can be transformed to functions with the powerset codomain:

Rel(A, B) ∼= A⇒ P(B)

let rel_to_pows_fun : (('a, 'b) rel, 'a -> 'b pows) iso = ...

An elegant chain of isomorphisms that transforms P(A× B) to A× B⇒ [2], then curries
this to a map from A to the characteristic function of B. Intuitively, this gives a functional
way of interpreting relations: given one half of the relation in A, we get the set of elements
that it is related to in B. In a total relation each such set has at least one element, while in
a partial function all of them have at most one element; thus, for a function, the subset in
B corresponding to an element in A has exactly one element – the value of the function.
We can also turn relations A→ B to functions B→ P(A) by swapping the inputs.

let rel_to_pows_fun : (('a, 'b) rel, 'a -> 'b pows) iso =
rel_to_pows_prod >>> pows_to_chfun

>>> fun_from_prod
>>> in_cod (inv pows_to_chfun)

5. Subsets are isomorphic to unit-valued partial functions

P(A) ∼= PFun(A, [1])

let pows_to_pfun : ('a pows, ('a, unit) pfun) iso = ...

Who said these necessarily have to be useful or enlightening? Note the chain of iso-
morphisms performed inside the in_cod congruence – this nesting avoids having to apply
in_cod twice in a linear chain.

let pows_to_pfun : ('a pows, ('a, unit) pfun) iso =
pows_to_chfun >>> in_cod (bool_to_sum >>< option_to_sum)

>>< pfun_to_optfun
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6. A bit of arithmetic: show the set-theoretic analogue of

2× 2= 2+ 2= 22

Why do functions represent exponentiation?

let times_to_plus : (bool * bool, (bool, bool) sum) iso = ...
let plus_to_exp : ((bool, bool) sum, bool -> bool) iso = ...

An intuitive argument is by looking at how the sizes of products, sums and functions relate
to the sizes of the individual sets. We have #(A× B) = #A ·#B and #(A] B) = #A+#B,
which corresponds to the idea of “multiplication” and “addition” of sets (which, as you
proved above, satisfy all the expected properties). Similarly, #(A⇒ B) = #B#A, since for
every input in A we have #B possible elements to map it to. This interpretation is also
supported by the laws proved above, and it’s worth seeing how they relate to standard
algebraic identities you learnt in school: for example, fun_from_sum is the sum-exponent
law ab+c = ab · ac , and fun_from_prod (a.k.a. currying) is ab·c =

�

ab
�c !

The proofs themselves are slightly clunky, but generally straightforward: for
times_to_plus we reiterpret Booleans as a disjoint union, apply the distributiv-
ity law, and multiplicative unit laws. The translation from the product to the function space
has already been shown as an instance of fun_from_bool_to_pair above! Then we
chain these two together to turn the sum into a function. This is perhaps not how you
would do the proof with numbers, but it works nevertheless!

let times_to_plus : (bool * bool, (bool, bool) sum) iso =
(bool_to_sum =*= bool_to_sum) >>> prod_sum_distr >>>

((prod_comm >>> prod_unit >>< bool_to_sum)
=+= (prod_comm >>> prod_unit >>< bool_to_sum))

let plus_to_exp : ((bool, bool) sum, bool -> bool) iso =
inv (fun_from_bool_to_pair >>> times_to_plus)

7. Prove the set-theoretic version of the algebraic identity above:

a2x × (ax)y = ax ·(2+y)

let example : ( ((bool * 'x) -> 'a) * ('y -> ('x -> 'a))
, ('x * (bool, 'y) sum) -> 'a) iso = ...

Translating from the example proof above – other proofs are available!

let example : ( ((bool * 'x) -> 'a) * ('y -> ('x -> 'a))
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, ('x * (bool, 'y) sum) -> 'a) iso =
fun_from_prod =*= swap_iso >>< fun_to_prod

>>> in_cod (inv fun_from_sum)
>>< fun_from_prod

8. Come up with some examples of your own!


