
Discrete Mathematics
Supervision 7 – Optional Exercise

Marcelo Fiore Ohad Kammar Dima Szamozvancev

Set isomorphisms establish a type of equivalence between two sets: we can always translate between
elements of isomorphic sets with the bijection exhibiting the isomorphism, so “for all intents and
purposes” two isomorphic sets are interchangeable. Some isomorphisms come from deep, nontrivial
results (such as Cantor’s proof that N ∼= Q, discussed later), others come from properties of set
operations (such as A× B ∼= B × A, the commutativity of Cartesian product). This question will
ask you to define the set isomorphisms from the Calculus of Bijections I, but instead of boring old
pen-and-paper maths, we will use fun hip trendy OCaml.

As it happens, sets and algebraic data types have quite a lot in common: elements of a set (e.g. 5 ∈ Z)
can be treated as value of some type (e.g. 5 : int). Certain set operations also have a direct analogue
in types: the Cartesian product of sets corresponds to the product type *, while the disjoint union
is the sum type (the | of type declarations). Algebraically, this gives us a semiring of types, just
like how (P(A),],×,;, [1]) is a semiring in the universe of sets.1 Functions between sets naturally
correspond to functions between types; while in the discussion of this course functions were just
special kinds of relations, they take a leading role in functional programming and other constructs
are defined in terms of them.

Consider the following OCaml definitions.

Sum type

type ('a, 'b) sum = L of 'a | R of 'b

The type ('a, 'b) sum is the sum type, a concrete type constructor representing the | of type
declarations. Sum types correspond to the disjoint union of sets: a value of type ('a, 'b) sum must
either be a left-tagged value L x of type 'a, or a right-tagged value R y of type 'b.

Empty type

type empty = |

The empty type corresponds to the empty set. The syntax is a bit unusual, but it is OCaml’s way of
defining a type without any constructors. Since there are no constructors, there are no values of type
empty. Empty types also come with an associated pattern-matching principle called a refutation
pattern: if we have a variable of type empty (which is entirely possible, e.g. for the argument of a
function of type empty -> 'a), we can use match to pattern-match on it. But since it is of empty type,
there are no associated constructors and nothing to pattern-match on. This is expressed in OCaml by
the pattern _ -> . (the wildcard pattern with a dot for the body), which is statically checked to verify
that the pattern really is not possible. For instance, we define a function of type empty -> 'a as

1More details on the algebraic treatment of data types are given in the solution notes for FoCS SV2 Exercise 5.

https://www.cl.cam.ac.uk/teaching/2122/DiscMath/DiscMathProofsNumbersSetsNotes.pdf#page=385

D I S C R E T E M AT H E M AT I C S S U P E R V I S I O N 7 – O PT I O N A L E X E R C I S E

fun (x : empty) -> match x with _ -> .

Set-theoretically this corresponds to the (unique) empty function from the empty set to any other set,
simply defined as {}: ; → A. If we tried using the refutation pattern with a non-empty type, OCaml
would complain, saying that the case we marked impossible with the dot is not unreachable after all:
fun (x : unit) -> match x with _ -> . will give a counterexample of such a case, specifically
the pattern ().

Powerset type

type 'a pows = Pows of ('a -> bool)

A very natural way to represent a subset S of elements of a set A is via its characteristic function
χS : A→ [2]: this is simply a predicate (a Boolean-valued function) on the elements of A answering
the question “am I a member of the subset”? Thus, the set of all subsets of a set, called its powerset,
is isomorphic to the set of predicates on the set: P(A) ∼= (A⇒ [2]). Since OCaml has no notion of a
“subtype”, we make use of this isomorphism to represent the powerset of a type 'a as the type of
functions from 'a to bool. To “hide” the implementation from view, we make this into a new data
type, rather than a type synonym.

Partial function type

type ('a, 'b) pfun = PFun of ('a -> 'b option)

In OCaml we can represent partial functions by functions that raise an exception for an unsuitable
input, or by returning an option type that gives a None for an unsuitable input. For the sake of purity,
we use the second option to implement the set of partial functions PFun(A,B).

Relation type

type ('a, 'b) rel = Rel of ('a * 'b) pows

The set/type of relations between two types is just the powerset of their Cartesian product.

Isomorphism type

type ('a, 'b) iso = Iso of ('a -> 'b) * ('b -> 'a)

The type ('a, 'b) iso represents an isomorphism between the types 'a and 'b. To create such an
isomorphism, we need to provide two functions converting between 'a and 'b. Formally this does
not define a bijection, as we don’t supply any proofs for the inverse properties (which we cannot
express in OCaml) – however, as we will be dealing with polymorphic types, we often expect the
correct functions and inverses to be the only definitions that typecheck.

Your task is to give definitions for the following OCaml values corresponding to some of the isomorph-
isms in the Calculus of Bijections I. Some notes:

D I S C R E T E M AT H E M AT I C S S U P E R V I S I O N 7 – O PT I O N A L E X E R C I S E

• Remember that OCaml’s function syntax is actually a combination of fun and match, a
pattern-matching anonymous function, so it can be written inline as one part of the isomorphism
(but it has to be in parentheses otherwise OCaml gets confused).

• The isomorphisms must have the fully polymorphic type as given in the question. If OCaml
infers, for example, val prod_comm : ('a * 'a, 'a * 'a) iso for the commutativity of
the product, you made a mistake (e.g. returning (b,b) in one of the functions).

• You are encouraged to use various higher-order functions introduced in the OCaml course. One
useful definition is that of function composition, written in infix form as g << f:

let (<<) g f x = g (f x)
> val (<<) : ('b -> 'c) -> ('a -> 'b) -> 'a -> 'c = <fun>

• You will often be in the middle of a definition (or later, an equational proof) and want to know
what is the type of the expression or goal that you need to provide. A simple trick to see what
OCaml expects is simply to trigger a type error! If you leave in a value of some type that should
not appear in the expression (such as an integer), OCaml will gladly complain that it found a
value of type int but expected an expression of type <type>. For instance, if you typecheck

let prod_comm : ('a * 'b, 'b * 'a) iso = Iso
((fun (a, b) -> 1) , 2))

OCaml will say that the type expected in the place of 1 should be 'b * 'a.

Properties of set operations

1. Cartesian product and disjoint union are commutative (example)

let prod_comm : ('a * 'b, 'b * 'a) iso = Iso
((fun (a, b) -> (b, a))
, (fun (b, a) -> (a, b)))

let sum_comm : (('a, 'b) sum, ('b, 'a) sum) iso = Iso
((function L a -> R a | R b -> L b)
, (function L b -> R b | R a -> L a))

2. Cartesian product and disjoint union are associative

let prod_assoc : (('a * 'b) * 'c
, 'a * ('b * 'c)) iso = Iso ...

let sum_assoc : ((('a, 'b) sum, 'c) sum
, ('a, ('b, 'c) sum) sum) iso = Iso ...

3. The units of products and disjoint unions are singleton sets and the empty set, respectively

D I S C R E T E M AT H E M AT I C S S U P E R V I S I O N 7 – O PT I O N A L E X E R C I S E

let prod_unit : ('a * unit, 'a) iso = Iso ...
let sum_unit : (('a, empty) sum, 'a) iso = Iso ...

4. Products distribute over sums

let prod_sum_distr : ((('a, 'b) sum) * 'c
, ('a * 'c, 'b * 'c) sum) iso = Iso ...

5. Functions and products

let fun_to_prod : ('a -> ('b * 'c)
, ('a -> 'b) * ('a -> 'c)) iso = Iso ...

let fun_from_prod : (('a * 'b) -> 'c
, 'a -> ('b -> 'c)) iso = Iso ...

6. Functions and sums

let fun_from_sum : (('a, 'b) sum -> 'c
, ('a -> 'c) * ('b -> 'c)) iso = Iso ...

What about fun_to_sum : ('a -> ('b, 'c) sum, ('a -> 'b, 'a -> 'c) sum) iso?

7. Functions and neutral elements

let fun_from_unit : (unit -> 'a, 'a) iso = Iso ...
let fun_to_unit : ('a -> unit, unit) iso = Iso ...
let fun_from_empty : (empty -> 'a, unit) iso = Iso ...

What would be the di�culty in defining fun_to_empty : ('a -> empty, empty) iso for
an arbitrary type 'a? How about ('a option -> empty, empty) iso?

8. Set-theoretic representations of built-in types

let bool_to_sum : (bool, (unit, unit) sum) iso = Iso ...
let option_to_sum : ('a option, ('a, unit) sum) iso = Iso ...

9. Powersets and characteristic functions

let pows_to_chfun : ('a pows, 'a -> bool) iso = Iso ...

10. Partial functions and relations

let pfun_to_optfun : (('a, 'b) pfun, 'a -> 'b option) iso = Iso ...
let rel_to_pows_prod : (('a, 'b) rel, ('a * 'b) pows) iso = Iso ...

D I S C R E T E M AT H E M AT I C S S U P E R V I S I O N 7 – O PT I O N A L E X E R C I S E

Properties of isomorphisms
So far we have defined some fundamental isomorphisms between types and type operations, but
these are of not much use to us yet (other than as an educational exercise!). However, we can extend
our system and develop a full library for programming with conversions and type isomorphisms – or
alternatively, solve set theory exercises in OCaml!

The “calculus” part of the Calculus of Bijections refers not to di�erential or integral calculus, but a
formal system for calculation: a collection of terms and equalities between them that lets us establish
relationships between expressions via a sequence of syntactic manipulations. You’re very familiar
with this meaning of the word “calculus” from algebra: establishing algebraic equalities such as
a2x × (ax)y = ax ·(2+y) happens via repeated applications of standard algebraic identities on the
whole, or one part of the expression. We can provide a detailed equational proof of this equality:

a2x · (ax)y = a2x · ax y (power of power law in
�

a2
�x
· [−])

= a2x · a y x (commutativity of multiplication in
�

a2
�x
· a[−])

=
�

a2
�x
· (a y)x (power of power law in both [−] · [−])

=
�

a2 · a y
�x (power of product law)

=
�

a2+y
�x (sum in power law in [−]x)

= ax ·(2+y) (power of power law)

This is of course one possible proof, but not the shortest one. However, it demonstrates the level of
rigour we can achieve (if we wish), for example, by being explicit about the location in the expression
where the algebraic law is applied. Above, we mark this with a [−], which can be read as “the power of
product law a2 ·a y = a2+y is substituted for the [−] in the expression [−]x to get the derived identity
(a2 · a y)x = (a2+y)x”. This is of course needlessly verbose and seemingly superfluous – however, our
ability to perform this substitution relies on a simple, but important property of equality, namely
that subexpressions of an expression can be replaced with equal subexpressions. If we think of
expressions as trees (recall the expr data type in FoCS), this states that any subtree of an expression
can be replaced with another, as long as they evaluate to the same thing (i.e. they are semantically
equivalent), even if syntactically they are completely di�erent. Stated like this, we can see that such a
strong property (confusingly called congruence) may not come for free, especially if we work with a
custom equivalence relation, rather than equality. Recall the proofs in §2.1.2 that modular congruence
can be applied on either side of addition or multiplication, or under an exponent:

i ≡ j (mod m) =⇒ in ≡ jn (mod m)

This is essentially an analogue of saying that i = j implies in = jn, except for the equivalence relation
of modular congruence – the proof is simple, but not trivial.

The equivalence and congruence properties of isomorphisms let us combine base isomorphisms
into increasingly complex equalities between sets – they are the basis for equational reasoning
within a formal system. Whenever you’re asked to show that two sets are isomorphic, you can define

D I S C R E T E M AT H E M AT I C S S U P E R V I S I O N 7 – O PT I O N A L E X E R C I S E

the bijection and its inverse from scratch, prove the inverse laws or injectivity and surjectivity, etc.
Alternatively, you can reason by transforming one set to the other using the calculus of bijections, and
the isomorphism laws will be proved automatically, by construction. The latter approach of course
depends on some prior work of developing the calculus, but once that is done, a surprising number of
complex-looking isomorphisms can be established just by “algebraic” manipulation. This idea appears
in many places in mathematics and computer science, and it’s a good example of our philosophy of
compositionality, abstraction, reuse of prior work – all principles you should be familiar with from
programming.

In the rest of this exercise we raise the level of abstraction and deal with the isomorphism type itself,
writing combinators corresponding to the equivalence and congruence properties of ('a, 'b) iso.
Then, you will be asked to write some equational “proofs” of more complex type isomorphisms, where,
as much as possible, you should strive to construct the isomorphism by combining existing ones into
more complex bijections, without defining the explicit conversion functions. Don’t forget that we’re
not actually proving anything: all we’re doing is defining the components of the bijection, but proving
that the two functions are actually two-sided inverses of each other is not part of the OCaml code.

1. Bijection An isomorphism lets us convert between values of di�erent, but isomorphic types.

let to_ : ('a, 'b) iso -> ('a -> 'b) = function ...
let fro_ : ('a, 'b) iso -> ('b -> 'a) = function ...

2. Equivalence relation Any type is isomorphic to itself (reflexivity), isomorphisms can be flipped
(symmetry), and they can be chained together (transitivity).

let iso_refl : ('a, 'a) iso = Iso ...
let iso_sym (i : ('a, 'b) iso) : ('b, 'a) iso = Iso ...
let iso_trans (i1 : ('a, 'b) iso)

(i2 : ('b, 'c) iso) : ('a, 'c) iso = Iso ...

Once defined, we can get convenient shorthands for these combinators, as they will be frequently
used in the isomorphism constructions later.

let same = iso_refl
let inv = iso_sym
let (>>>) = iso_trans

3. Congruent relation Isomorphisms can be applied on operands of type constructors.

let prod_cong (i1 : ('a, 'x) iso)
(i2 : ('b, 'y) iso)

: ('a * 'b, 'x * 'y) iso = Iso ...
let sum_cong (i1 : ('a, 'x) iso)

(i2 : ('b, 'y) iso)

D I S C R E T E M AT H E M AT I C S S U P E R V I S I O N 7 – O PT I O N A L E X E R C I S E

: (('a,'b) sum, ('x, 'y) sum) iso = Iso ...
let fun_cong (i1 : ('a, 'x) iso)

(i2 : ('b, 'y) iso)
: ('a -> 'b, 'x -> 'y) iso = Iso ...

Again, we can define shorthands for the congruence combinators, including ones specialised
to altering only one of the two operands. While these can be written in pointfree style, we
eta-expand everything to avoid OCaml’s annoying weak polymorphic type inference.

let (=*=) = prod_cong and (=+=) = sum_cong and (=->=) = fun_cong
let in_fst i = prod_cong i same and in_snd i = prod_cong same i
let in_left i = sum_cong i same and in_right i = sum_cong same i
let in_dom i = fun_cong i same and in_cod i = fun_cong same i

Compound isomorphisms
The point of all this setup is that we can define isomorphisms between complex types with the help of
a few base isomorphisms and combinators. As an example, let’s look at the proof of the isomorphism
[2]⇒ A ∼= A× A, that is, a function from the Booleans to a set A is isomorphic to a pair of values
from A. Intuitively, we do an if-expression branching on the argument and the expressions of the
then and else branches can be combined in a pair. It wouldn’t be too bad writing this out explicitly:

let fun_from_bool_to_pair : (bool -> 'a, 'a * 'a) iso = Iso
((fun f -> (f true, f false))
, (fun (t,e) -> fun b -> if b then t else e))

However, let’s see if we can avoid the “low-level” details of the definition, and define the isomorphism
abstractly, using the calculus of bijections.

([2]⇒ A) ∼= ([1]] [1])⇒ A (Booleans are the sum of two units)
∼= ([1]⇒ A)× ([1]⇒ A) (function from a sum is product of functions)
∼= A× A (function from unit isomorphic to an element)

We can represent this proof almost exactly in our OCaml library: all of the proof steps correspond to
existing base combinators defined previously. There is some extra baggage coming from the need
to be explicit about symmetry, transitivity, congruence, etc. (which are clear from the context in the
written proof, but required in the code), but our combinators make this relatively unobtrusive.

let fun_from_bool_to_pair : (bool -> 'a, 'a * 'a) iso =
in_dom bool_to_sum >>> fun_from_sum

>>> (fun_from_unit =*= fun_from_unit)

D I S C R E T E M AT H E M AT I C S S U P E R V I S I O N 7 – O PT I O N A L E X E R C I S E

You might well argue that this is not a lot better than the explicit definition, but the trade-o� becomes
greater once you have more complicated expressions. In addition, if we prove that all of our base
definitions are indeed isomorphisms, the inverse laws for compound isomorphisms all come for free
– we would need to redo them every time for explicit definitions.

A nice thing about implementing all this in a programming language is that we immediately get the
appropriate computational behaviour: for example,

to_ fun_from_bool_to_pair (fun b -> if b then 3 else 5)

evaluates to the pair (3,5), as expected. And of course the value fun_from_bool_to_pair is a
perfectly appropriate “proof” of (bool -> 'a, 'a * 'a) iso and can be used in other compound
isomorphisms where such a bijection is needed.

1. Some simple helper lemmas: commuted unit laws, swapping of function arguments, transitivity
which inverts its left or right argument (to avoid writing inv in chains of isomorphisms).

let prod_unit_l : (unit * 'a, 'a) iso = ...
let sum_unit_l : ((empty, 'a) sum, 'a) iso = ...
let (>><) (i1 : ('a, 'b) iso)(i2 : ('c, 'b) iso) : ('a, 'c) iso = ...
let (<>>) (i1 : ('b, 'a) iso)(i2 : ('b, 'c) iso) : ('a, 'c) iso = ...
let swap_iso : 'a -> 'b -> 'c, 'b -> 'a -> 'c) iso = ...

2. Lifting isomorphisms to isomorphisms between powersets, and dualising relations:

let pows_cong (i : ('a, 'b) iso) : ('a pows, 'b pows) iso = ...
let rel_op : (('a, 'b) rel, ('b, 'a) rel) iso = ...

3. Exam question 2015 Paper 2 Question 9(b):

P(A] B) ∼= P(A)×P(B)

let pows_sum_to_prod_pows
: (('a, 'b) sum pows, 'a pows * 'b pows) iso = ...

4. Relations can be transformed to functions with the powerset codomain:

Rel(A, B) ∼= A⇒ P(B)

let rel_to_pows_fun : (('a, 'b) rel, 'a -> 'b pows) iso = ...

5. Subsets are isomorphic to unit-valued partial functions

P(A) ∼= PFun(A, [1])

https://www.cl.cam.ac.uk/teaching/exams/pastpapers/y2015p2q9.pdf

D I S C R E T E M AT H E M AT I C S S U P E R V I S I O N 7 – O PT I O N A L E X E R C I S E

let pows_to_pfun : ('a pows, ('a, unit) pfun) iso = ...

6. A bit of arithmetic: show the set-theoretic analogue of

2× 2= 2+ 2= 22

Why do functions represent exponentiation?

let times_to_plus : (bool * bool, (bool, bool) sum) iso = ...
let plus_to_exp : ((bool, bool) sum, bool -> bool) iso = ...

7. Prove the set-theoretic version of the algebraic identity above:

a2x × (ax)y = ax ·(2+y)

let example : (((bool * 'x) -> 'a) * ('y -> ('x -> 'a))
, ('x * (bool, 'y) sum) -> 'a) iso = ...

8. Come up with some examples of your own!

