Discrete Mathematics

Supervision 7

Marcelo Fiore Ohad Kammar Dima Szamozvancev

9. On bijections

9.1. Basic exercises

1. a) Define a function that has (i) none, (ii) exactly one, and (iii) more than one retraction.
b) Define a function that has (i) none, (ii) exactly one, and (iii) more than one section.
2. Let n be an integer.
a) How many sections are there for the absolute-value map $x \mapsto|x|:[-n . . n] \rightarrow[0 . . n]$?
b) How many retractions are there for the exponential map $x \mapsto 2^{x}:[0 . . n] \rightarrow\left[0.2^{n}\right]$?
3. Give an example of two sets A and B and a function $f: A \rightarrow B$ such that f has a retraction but no section. Explain how you know that f has these properties.
4. Prove that the identity function is a bijection and that the composition of bijections is a bijection.
5. For $f: A \rightarrow B$, prove that if there are $g, h: B \rightarrow A$ such that $g \circ f=\operatorname{id}_{A}$ and $f \circ h=\mathrm{id}_{B}$ then $g=h$. Conclude as a corollary that, whenever it exists, the inverse of a function is unique.

9.2. Core exercises

1. We say that two functions $s: A \rightarrow B$ and $r: B \rightarrow A$ are a section-retraction pair whenever $r \circ s=\operatorname{id}_{A}$; and that a function $e: B \rightarrow B$ is an idempotent whenever $e \circ e=e$. This question demonstrates that section-retraction pairs and idempotents are closely connected: any sectionretraction pair gives rise to an idempotent function, and any idempotent function can be split into a section-retraction pair.
a) Let $f: C \rightarrow D$ and $g: D \rightarrow C$ be functions such that $f \circ g \circ f=f$.
(i) Can you conclude that $f \circ g$ is idempotent? What about $g \circ f$? Justify your answers.
(ii) Define a map g^{\prime} using f and g that satisfies both

$$
f \circ g^{\prime} \circ f=f \quad \text { and } \quad g^{\prime} \circ f \circ g^{\prime}=g^{\prime}
$$

b) Show that if $s: A \rightarrow B$ and $r: B \rightarrow A$ are a section-retraction pair then the composite $s \circ r: B \rightarrow B$ is idempotent.
c) Show that for every idempotent $e: B \rightarrow B$ there exists a set A (called a retract of B) and a section-rectraction pair $s: A \rightarrow B$ and $r: B \rightarrow A$ such that $s \circ r=e$.

10. On equivalence relations

10.1. Basic exercises

1. Prove that the isomorphism relation \cong between sets is an equivalence relation.
2. Prove that the identity relation id_{A} on a set A is an equivalence relation, and that $A / \mathrm{id}_{A} \cong A$.
3. Show that, for a positive integer m, the relation \equiv_{m} on \mathbb{Z} given by

$$
x \equiv_{m} y \Longleftrightarrow x \equiv y(\bmod m)
$$

is an equivalence relation. What are the equivalence classes of this relation?
4. Show that the relation \equiv on $\mathbb{Z} \times \mathbb{Z}^{+}$given by

$$
(a, b) \equiv(x, y) \Longleftrightarrow a \cdot y=x \cdot b
$$

is an equivalence relation. What are the equivalence classes of this relation?

10.2. Core exercises

1. Let E_{1} and E_{2} be two equivalence relations on a set A. Either prove or disprove the following statements.
a) $E_{1} \cup E_{2}$ is an equivalence relation on A.
b) $E_{1} \cap E_{2}$ is an equivalence relation on A.
2. For an equivalence relation E on a set A, show that $\left[a_{1}\right]_{E}=\left[a_{2}\right]_{E}$ iff $a_{1} E a_{2}$, where

$$
[a]_{E}=\{x \in A \mid x E a\}
$$

3. For a function $f: A \rightarrow B$ define a relation \equiv_{f} on A by the rule: for all $a, a^{\prime} \in A$,

$$
a \equiv_{f} a^{\prime} \Longleftrightarrow f(a)=f\left(a^{\prime}\right)
$$

a) Show that for every function $f: A \rightarrow B$, the relation \equiv_{f} is an equivalence relation on A.
b) Prove that every equivalence relation E in a set A is equal to \equiv_{q}, where $q: A \rightarrow A / E$ is the quotient function $q(a)=[a]_{E}$.
c) Prove that for every surjection $f: A \rightarrow B$,

$$
B \cong\left(A / \equiv_{f}\right)
$$

