Discrete Mathematics

Supervision 6

Marcelo Fiore Ohad Kammar Dima Szamozvancev

6. On relations

6.1. Basic exercises

1. Let $A=\{1,2,3,4\}, B=\{a, b, c, d\}$ and $C=\{x, y, z\}$.

Let $R=\{(1, a),(2, d),(3, a),(3, b),(3, d)\}: A \rightarrow B$
and $S=\{(b, x),(b, y),(c, y),(d, z)\}: B \rightarrow C$.
Draw the internal diagrams of the relations. What is the composition $S \circ R: A \rightarrow C$?
2. Prove that relational composition is associative and has the identity relation as the neutral element.
3. For a relation $R: A \rightarrow B$, let its opposite, or dual relation, $R^{\mathrm{op}}: B \rightarrow A$ be defined by:

$$
b R^{\mathrm{op}} a \Longleftrightarrow a R b
$$

For $R, S: A \rightarrow B$ and $T: B \rightarrow C$, prove that:
a) $R \subseteq S \Longrightarrow R^{\mathrm{op}} \subseteq S^{\mathrm{op}}$
b) $(R \cap S)^{\mathrm{op}}=R^{\mathrm{op}} \cap S^{\mathrm{op}}$
c) $(R \cup S)^{\mathrm{op}}=R^{\mathrm{op}} \cup S^{\mathrm{op}}$
d) $(T \circ S)^{\mathrm{op}}=S^{\mathrm{op}} \circ T^{\mathrm{op}}$

6.2. Core exercises

1. Let $R, R^{\prime} \subseteq A \times B$ and $S, S^{\prime} \subseteq B \times C$ be two pairs of relations and assume $R \subseteq R^{\prime}$ and $S \subseteq S^{\prime}$. Prove that $S \circ R \subseteq S^{\prime} \circ R^{\prime}$.
2. Let $\mathcal{F} \subseteq \mathcal{P}(A \times B)$ and $\mathcal{G} \subseteq \mathcal{P}(B \times C)$ be two collections of relations from A to B and from B to C, respectively. Prove that

$$
(\bigcup \mathcal{G}) \circ(\bigcup \mathcal{F})=\bigcup\{S \circ R \mid R \in \mathcal{F}, S \in \mathcal{G}\}: A \rightarrow C
$$

Recall that the notation $\{S \circ R: A \rightarrow C \mid R \in \mathcal{F}, S \in \mathcal{G}\}$ is common syntactic sugar for the formal definition $\{T \in \mathcal{P}(A \times C) \mid \exists R \in \mathcal{F} . \exists S \in \mathcal{G} . T=S \circ R\}$. Hence,

$$
T \in\{S \circ R \in A \rightarrow C \mid R \in \mathcal{F}, S \in \mathcal{G}\} \Longleftrightarrow \exists R \in \mathcal{F} . \exists S \in \mathcal{G} . T=S \circ R
$$

What happens in the case of big intersections?
3. Suppose R is a relation on a set A. Prove that
a) R is reflexive iff $\mathrm{id}_{A} \subseteq R$
b) R is symmetric iff $R=R^{\mathrm{op}}$
c) R is transitive iff $R \circ R \subseteq R$
d) R is antisymmetric iff $R \cap R^{\text {op }} \subseteq \operatorname{id}_{A}$
4. Let R be an arbitrary relation on a set A, for example, representing an undirected graph. We are interested in constructing the smallest transitive relation (graph) containing R, called the transitive closure of R : a relation $\mathrm{Cl}_{\mathrm{t}}[R]$ that satisfies (1) $R \subseteq \mathrm{Cl}_{\mathrm{t}}[R]$; (2) $\mathrm{Cl}_{\mathrm{t}}[R]$ is transitive; and (3) $\mathrm{Cl}_{\mathrm{t}}[R]$ is the smallest such relation.
a) We define the family of relations which are transitive supersets of R :

$$
\mathcal{T}_{R} \triangleq\{Q: A \rightarrow A \mid R \subseteq Q \text { and } Q \text { is transitive }\}
$$

R is not necessarily going to be an element of this family, as it might not be transitive. However, R is a lower bound for \mathcal{T}_{R}, as it is a subset of every element of the family. Prove that the set $\bigcap \mathcal{T}_{R}$ is the transitive closure for R.
b) $\bigcap \mathcal{T}_{R}$ is the intersection of an infinite number of relations so it's difficult to compute the transitive closure this way. A better approach is to start with R, and keep adding the missing connections until we get a transitive graph. This can be done by repeatedly composing R with itself: after n compositions, all paths of length n in the graph represented by R will have a transitive connection between their endpoints.

Prove that the (at least once) iterated composition $R^{\circ+} \triangleq R \circ R^{\circ *}$ is the transitive closure for R, i.e. it coincides with the greatest lower bound of $\mathcal{T}_{R}: R^{\circ+}=\bigcap \mathcal{T}_{R}$. Hint: show that $R^{\circ+}$ is both an element and a lower bound of \mathcal{T}_{R}.

7. On partial functions

7.1. Basic exercises

1. Let $A_{2}=\{1,2\}$ and $A_{3}=\{a, b, c\}$. List the elements of the sets $\operatorname{PFun}\left(A_{i}, A_{j}\right)$ for $i, j \in\{2,3\}$. Hint: there may be quite a few, so you can think of ways of characterising all of them without giving an explicit listing.
2. Prove that a relation $R: A \rightarrow B$ is a partial function iff $R \circ R^{\circ \mathrm{p}} \subseteq \mathrm{id}_{B}$.
3. Prove that the identity relation is a partial function, and that the composition of partial functions is a partial function.

7.2. Core exercises

1. Show that $(\operatorname{PFun}(A, B), \subseteq)$ is a partial order. What is its least element, if it exists?
2. Let $\mathcal{F} \subseteq \operatorname{PFun}(A, B)$ be a non-empty collection of partial functions from A to B.
a) Show that $\bigcap \mathcal{F}$ is a partial function.
b) Show that $\bigcup \mathcal{F}$ need not be a partial function by defining two partial functions $f, g: A \rightharpoonup B$ such that $f \cup g: A \rightarrow B$ is a non-functional relation.
c) Let $h: A \rightharpoonup B$ be a partial function. Show that if every element of \mathcal{F} is below h then $\bigcup \mathcal{F}$ is a partial function.

8. On functions

8.1. Basic exercises

1. Let $A_{2}=\{1,2\}$ and $A_{3}=\{a, b, c\}$. List the elements of the sets Fun $\left(A_{i}, A_{j}\right)$ for $i, j \in\{2,3\}$.
2. Prove that the identity partial function is a function, and the composition of functions yields a function.
3. Prove or disprove that $(\operatorname{Fun}(A, B), \subseteq)$ is a partial order.
4. Find endofunctions $f, g: A \rightarrow A$ such that $f \circ g \neq g \circ f$.

8.2. Core exercises

1. A relation $R: A \rightarrow B$ is said to be total if $\forall a \in A . \exists b \in B . a R b$. Prove that this is equivalent to $\mathrm{id}_{A} \subseteq R^{\mathrm{op}} \circ R$. Conclude that a relation $R: A \rightarrow B$ is a function iff $R \circ R^{\mathrm{op}} \subseteq \mathrm{id}_{B}$ and $\mathrm{id}_{A} \subseteq R^{\mathrm{op}} \circ R$.
2. Let $\chi: \mathcal{P}(U) \rightarrow(U \Rightarrow[2])$ be the function mapping subsets $S \subseteq U$ to their characteristic functions $\chi_{S}: U \rightarrow[2]$.
a) Prove that for all $x \in U$,

- $\chi_{A \cup B}(x)=\left(\chi_{A}(x) \vee \chi_{B}(x)\right)=\max \left(\chi_{A}(x), \chi_{B}(x)\right)$
- $\chi_{A \cap B}(x)=\left(\chi_{A}(x) \wedge \chi_{B}(x)\right)=\min \left(\chi_{A}(x), \chi_{B}(x)\right)$
- $\chi_{A^{c}}(x)=\neg\left(\chi_{A}(x)\right)=\left(1-\chi_{A}(x)\right)$
b) For what construction A ? B on sets A and B does it hold that

$$
\chi_{A ? B}(x)=\left(\chi_{A}(x) \oplus \chi_{B}(x)\right)=\left(\chi_{A}(x)+{ }_{2} \chi_{B}(x)\right)
$$

for all $x \in U$, where \oplus is the exclusive or operator? Prove your claim.

8.3. Optional advanced exercise

Consider a set A together with an element $a \in A$ and an endofunction $f: A \rightarrow A$.
Say that a relation $R: \mathbb{N} \rightarrow A$ is (a, f)-closed whenever

$$
R(0, a) \text { and } \forall n \in \mathbb{N}, x \in A . R(n, x) \Longrightarrow R(n+1, f(x))
$$

Define the relation $F: \mathbb{N} \rightarrow A$ as

$$
F \triangleq \bigcap\{R: \mathbb{N} \rightarrow A \mid R \text { is }(a, f) \text {-closed }\}
$$

a) Prove that F is (a, f)-closed.
b) Prove that F is total, that is: $\forall n \in \mathbb{N} . \exists y \in A . F(n, y)$.
c) Prove that F is a function $\mathbb{N} \rightarrow A$, that is: $\forall n \in \mathbb{N}$. \exists ! $y \in A . F(n, y)$.

Hint: Proceed by induction. Observe that, in view of the previous item, to show that $\exists!y \in$ A. $F(k, y)$ it suffices to exhibit an (a, f)-closed relation R_{k} such that $\exists!y \in A . R_{k}(k, y)$. (Why?) For instance, as the relation $R_{0}=\{(m, y) \in \mathbb{N} \times A \mid m=0 \Longrightarrow y=a\}$ is (a, f)-closed one has that $F(0, y) \Longrightarrow R_{0}(0, y) \Longrightarrow y=a$.
d) Show that if h is a function $\mathbb{N} \rightarrow A$ with $h(0)=a$ and $\forall n \in \mathbb{N}$. $h(n+1)=f(h(n))$ then $h=F$. Thus, for every set A together with an element $a \in A$ and an endofunction $f: A \rightarrow A$ there exists a unique function $F: \mathbb{N} \rightarrow A$, typically said to be inductively defined, satisfying the recurrence relation

$$
F(n)= \begin{cases}a & \text { for } n=0 \\ f(F(n-1)) & \text { for } n \geq 1\end{cases}
$$

