Discrete Mathematics

Supervision 5
Marcelo Fiore
Ohad Kammar Dima Szamozvancev

5. On sets

5.1. Basic exercises

1. Prove that \subseteq is a partial order, that is, it is:
a) reflexive: \forall sets A. $A \subseteq A$
b) transitive: \forall sets $A, B, C .(A \subseteq B \wedge B \subseteq C) \Longrightarrow A \subseteq C$
c) antisymmetric: \forall sets $A, B .(A \subseteq B \wedge B \subseteq A) \Longleftrightarrow A=B$
2. Prove the following statements:
a) $\forall \operatorname{sets} A$. $\emptyset \subseteq A$
b) \forall sets $A .(\forall x, x \notin A) \Longleftrightarrow A=\emptyset$
3. Find the union, and intersection of:
a) $\{1,2,3,4,5\}$ and $\{-1,1,3,5,7\}$
b) $\{x \in \mathbb{R} \mid x>7\}$ and $\{x \in \mathbb{N} \mid x>5\}$
4. Find the Cartesian product and disjoint union of $\{1,2,3,4,5\}$ and $\{-1,1,3,5,7\}$.
5. Let $I=\{2,3,4,5\}$ and for each $i \in I$, let $A_{i}=\{i, i+1, i-1,2 \cdot i\}$.
a) List the elements of all sets A_{i} for $i \in I$.
b) Let $\left\{A_{i} \mid i \in I\right\}$ stand for $\left\{A_{2}, A_{3}, A_{4}, A_{5}\right\}$. Find $\bigcup\left\{A_{i} \mid i \in I\right\}$ and $\bigcap\left\{A_{i} \mid i \in I\right\}$.
6. Let U be a set. For all $A, B \in \mathcal{P}(U)$, prove that:
a) $A^{\mathrm{c}}=B \Longleftrightarrow(A \cup B=U \wedge A \cap B=\emptyset)$
b) Double complement elimination: $\left(A^{c}\right)^{c}=A$
c) The de Morgan laws: $(A \cup B)^{\mathrm{c}}=A^{\mathrm{c}} \cap B^{\mathrm{c}}$ and $(A \cap B)^{\mathrm{c}}=A^{\mathrm{c}} \cup B^{\mathrm{c}}$

5.2. Core exercises

1. Prove that for all for all sets U and subsets $A, B \subseteq U$:
a) $\forall X . A \subseteq X \wedge B \subseteq X \Longleftrightarrow(A \cup B) \subseteq X$
b) $\forall Y . Y \subseteq A \wedge Y \subseteq B \Longleftrightarrow Y \subseteq(A \cap B)$
2. Either prove or disprove that, for all sets A and B,
a) $A \subseteq B \Longrightarrow \mathcal{P}(A) \subseteq \mathcal{P}(B)$
b) $\mathcal{P}(A \cup B) \subseteq \mathcal{P}(A) \cup \mathcal{P}(B)$
c) $\mathcal{P}(A) \cup \mathcal{P}(B) \subseteq \mathcal{P}(A \cup B)$
d) $\mathcal{P}(A \cap B) \subseteq \mathcal{P}(A) \cap \mathcal{P}(B)$
e) $\mathcal{P}(A) \cap \mathcal{P}(B) \subseteq \mathcal{P}(A \cap B)$
3. Let U be a set. For all $A, B \in \mathcal{P}(U)$ prove that the following statements are equivalent.
a) $A \cup B=B$
b) $A \subseteq B$
c) $A \cap B=A$
d) $B^{c} \subseteq A^{c}$
4. For sets A, B, C, D, prove or disprove at least three of the following statements:
a) $(A \subseteq C \wedge B \subseteq D) \Longrightarrow A \times B \subseteq C \times D$
b) $(A \cup C) \times(B \cup D) \subseteq(A \times B) \cup(C \times D)$
c) $(A \times C) \cup(B \times D) \subseteq(A \cup B) \times(C \cup D)$
d) $A \times(B \cup C) \subseteq(A \times B) \cup(A \times C)$
e) $(A \times B) \cup(A \times D) \subseteq A \times(B \cup D)$
5. For sets A, B, C, D, prove or disprove at least three of the following statements:
a) $(A \subseteq C \wedge B \subseteq D) \Longrightarrow A \uplus B \subseteq C \uplus D$
b) $(A \cup B) \uplus C \subseteq(A \uplus C) \cup(B \uplus C)$
c) $(A \uplus C) \cup(B \uplus C) \subseteq(A \cup B) \uplus C$
d) $(A \cap B) \uplus C \subseteq(A \uplus C) \cap(B \uplus C)$
e) $(A \uplus C) \cap(B \uplus C) \subseteq(A \cap B) \uplus C$
6. Prove the following properties of the big unions and intersections of a family of sets $\mathcal{F} \subseteq \mathcal{P}(A)$:
a) $\forall U \subseteq A .(\forall X \in \mathcal{F} . X \subseteq U) \Longleftrightarrow \bigcup \mathcal{F} \subseteq U$
b) $\forall L \subseteq$ A. $(\forall X \in \mathcal{F} . L \subseteq X) \Longleftrightarrow L \subseteq \bigcap \mathcal{F}$
7. Let A be a set.
a) For a family $\mathcal{F} \subseteq \mathcal{P}(A)$, let $\mathcal{U} \triangleq\{U \subseteq A \mid \forall S \in \mathcal{F}$. $S \subseteq U\}$. Prove that $\bigcup \mathcal{F}=\bigcap \mathcal{U}$.
b) Analogously, define the family $\mathcal{L} \subseteq \mathcal{P}(A)$ such that $\bigcap \mathcal{F}=\bigcup \mathcal{L}$. Also prove this statement.

5.3. Optional advanced exercises

1. Prove that for all families of sets \mathcal{F}_{1} and \mathcal{F}_{2},

$$
\left(\bigcup \mathcal{F}_{1}\right) \cup\left(\bigcup \mathcal{F}_{2}\right)=\bigcup\left(\mathcal{F}_{1} \cup \mathcal{F}_{2}\right)
$$

State and prove the analogous property for intersections of non-empty families of sets.
2. For a set U, prove that $\left(\mathcal{P}(U), \subseteq, \cup, \cap, U, \emptyset,(\cdot)^{c}\right)$ is a Boolean algebra.

