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3. More on numbers
3.1. Basic exercises

1. Calculate the set CD(666,330) of common divisors of 666 and 330.

We have that 666 = 2·32 ·37 and 330 = 2·3·5·11. Hence, CD(666, 330) = {1, 2, 3, 2·3 } =
{1,2, 3,6 }.

� You may be familiar with this method of computing the common divisors of two numbers
using their prime factorisation – this of course relies on the Fundamental Theorem of
Arithmetic, introduced later in the course.

2. Find the gcd of 21212121 and 12121212.

We run Euclid’s Algorithm:

gcd(21212121,12121212) = gcd(12121212,9090909)

= gcd(9090909,3030303)

= 3030303

3. Prove that for all positive integers m and n, and integers k and l ,

gcd(m, n) | (k ·m+ l · n)

Let m, n be positive integers and k, l be integers. As gcd(m, n) | m and gcd(m, n) | n it
follows from §1.2.6(a) that gcd(m, n) | k · m and gcd(m, n) | l · n; from which it further
follows by §1.2.6(b) that gcd(m, n) | (k ·m+ l · n).

� Like rem, we can treat gcd(m, n) as a function of two positive integers m and n, or as a
symbol for the greatest common divisor of m and n defined using the universal property
of gcds. For example, we make use of the fact that gcd(m, n) is a common divisor of m and
n, so we “automatically” get gcd(m, n) | m and gcd(m, n) | n. We will see more examples
of this in the upcoming exercises.

4. Find integers x and y such that x · 30+ y · 22 = gcd(30, 22). Now find integers x ′ and y ′ with
0≤ y ′ < 30 such that x ′ · 30+ y ′ · 22= gcd(30,22).

Run the Extended Euclid’s Algorithm to find that gcd(30,22) = 2 and x · 30+ y · 22= 2
for x = 3 and y = −4. To get a y ′ between the range 0≤ y ′ < 30, we notice that

(x + 11 · l) · 30+ (y − 15 · l) · 22= 2
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for all integers l (Slide 219), and find a value l0 such that 0 ≤ y − 15 · l0 < 30 setting
x ′ = x +11 · l0 and y ′ = y −15 · l0. The two options are l0 = −1 for (−8) ·30+11 ·22 = 2,
and l0 = −2 for (−19) · x + 26 · 22= 2.

5. Prove that for all positive integers m and n, there exists integers k and l such that k ·m+ l ·n = 1
i� gcd(m, n) = 1.

(⇒) By Corollary 62 of the notes: if 1 can be expressed as a linear combination of m and n,
and gcd(m, n)must divide any linear combination of m and n, we must have gcd(m, n) = 1.

(⇐) By Theorem 70 of the notes: gcd(m, n) is a linear combination of m and n.

6. Prove that for all integers n and primes p, if n2 ≡ 1 (mod p) then either n ≡ 1 (mod p) or
n≡ −1 (mod p).

Assume n2 ≡ 1 (mod p). Then p divides n2 − 1 = (n− 1) · (n+ 1). By Euclid’s Theorem,
p | (n− 1) or p | (n+ 1); that is, either n≡ 1 (mod p) or n≡ −1 (mod p).

3.2. Core exercises
1. Prove that for all positive integers m and n, gcd(m, n) = m i� m | n.

Let m and n be arbitrary positive integers.

(⇒) Assume that gcd(m, n) = m. Then m is the greatest common divisor of both m and n,
and in particular a divisor of n.

(⇐) Assume m | n.

Here are two arguments.

a) We have that n= k ·m for some positive integer k, and hence that

gcd(m, n) = gcd(m, k ·m) = m · gcd(1, k) = m

where the second equality is a consequence of the linearity property (Lemma 63(3) of
the notes) of gcd.

b) By Theorem 61 of the notes, it su�ces to prove that

• m | m and m | n, and
• for all positive integers d such that d | m and d | n it necessarily follows that

d | m;

all of which hold trivially.

� It’s worth analysing the second approach, as it’s quite characteristic of proofs by
universal properties: the proof just “pops out” without us having to do a whole lot of work,
similar to our use of the Division Theorem in §2.1.3(a).

As mentioned in §3.1.3, there are several equivalent ways of thinking about gcds. One is
as a function of two positive integers m and n, computed via Euclid’s Algorithm; another
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is as a label for a unique number characterised by the universal property of being the
greatest common divisor of m and n. The di�erence may seem insignificant, but that
is precisely because of Theorem 61, which states that the value computed by Euclid’s
Algorithm coincides with the greatest common divisor. The universal property of gcds
(which we’ll get to shortly) is the specification of what it is to be a greatest common divisor;
Theorem 61 states that Euclid’s Algorithm satisfies the specification. We don’t define the
greatest common divisor of m and n as “the number returned by Euclid’s Algorithm”; just
as how we don’t define a sorted list as “the list returned by the quicksort algorithm” or
a lasagna as “the dish you get by following this specific recipe in this specific cookbook”.
We already know what a gcd/sorted list/lasagna is supposed to be, and we can then ask
whether some algorithm computes the gcd or some recipe makes a lasagna, or it doesn’t.
Of course, what makes a lasagna and what is the best lasagna is entirely subjective, while
mathematical concepts can be unambiguously characterised using universal properties.

Universal properties have two parts: the property and the universality. The former charac-
terises the set of candidates for the concept we are considering; the latter selects a specific
candidate which is “better” than all the other ones. In the case of the greatest common
divisor of m and n, the property is that of being a common divisor of m and n: the set of
candidates that satisfy this property is CD(m, n). The “best” such candidate that we are
looking for is the one which is greater than all the other ones, and since CD(m, n) is a finite
non-empty set of natural numbers, it must have a unique greatest element max(CD(m, n)).
We can denote this element (which depends entirely on m and n) as gcd(m, n) and call it
the greatest common divisor of m and n.

From this description (or, really, definition) of gcd(m, n) as the greatest element of the set of
common divisors, we can directly extract two “axioms”: gcd(m, n) ∈ CD(m, n) (since it is a
common divisor), and for all d ∈ CD(m, n), d ≤ gcd(m, n) (since it is the greatest common
divisor). In fact, we can state something stronger: not only are all other common divisors
numerically smaller than gcd(m, n), they also all divide it: ∀d ∈ CD(m, n). d | gcd(m, n).
Expanding these, we universally characterise gcd(m, n) as the unique natural number g
satisfying the properties of being a common divisor and a multiple of all common divisors:

1© g | m ∧ g | n 2© ∀d ∈ Z+. (d | m ∧ d | n) =⇒ d | g

Using the transitivity of divisibility (§1.2.4), we can combine these into the concise specific-
ation of the universal property of greatest common divisors:

3© ∀d ∈ Z+. (d | m ∧ d | n) ⇐⇒ d | gcd(m, n)

It’s easy to show that gcds are unique: if we had two gcds, both would have to satisfy 2©
and, in particular, they must divide each other; but divisibility (on positive integers) is
antisymmetric (§1.2.8), so the two gcds must be equal. Uniqueness in turn gives rise to the
following important proof principle:
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To prove that a number g ∈ Z+ is equal to gcd(m, n),
it is su�cient to show that g satisfies 1© and 2©.

This is similar to the approach we used with the Division Theorem: to prove that a number
r is equal to rem(m, n), it was su�cient to show that it is less than n and it can appear in
an expansion m= q · k+ r with q ∈ N. Adapting this technique to the combined form 3©,
we get a useful and particularly simple variation:

To prove that a number d divides gcd(m, n), it’s su�cient to show that d | m and d | n.

This, combined with the antisymmetry of divisibility (on positive integers), allows us to
prove equality of gcds, as shown in the example proofs of Lemma 63 in the notes. In
essence, the first step in proving something about gcd(m, n) or rem(n, m) is “forgetting”
about the gcd or rem and approach the proof via the universal property; it may seem like
a very roundabout technique (as opposed to, for example, a direct chain of equalities
ending in gcd(m, n)), but it often leads to short and straightforward proofs. However, it’s
definitely not the case that all proofs about gcds have to be done this way, and we’ll see
more examples later!

To conclude the discussion, let us expand on proof (b) of this exercise, which uses the UP
of gcds. To recap, in the (⇐) direction we need to show:

∀m, n ∈ Z+. m | n=⇒ gcd(m, n) = m

As always, assume m, n ∈ Z+ and m | n. The proof goal gcd(m, n) = m asks us to show
that m is equal to gcd(m, n); but, by the proof principle above, it is su�cient to show that
m satisfies 1© and 2©. That is,

1© m | m ∧ m | n 2© ∀d ∈ Z+. (d | m ∧ d | n) =⇒ d | m

1© holds by reflexivity of | and our assumption m | n; 2© is a direct implication. And that’s
it! The proof (a) wasn’t exactly complicated either, but (b) was rightly labelled as “trivial”.

The beautiful thing about this characterisation of gcds is that it is an instance of a much
more general mathematical notion called a greatest lower bound (with the dual least upper
bound being the least common multiple). These concepts appear all over mathematics and
computer science, and you will encounter many examples in this course as well; accordingly,
the proof technique described above can be (and will be, and has already been!) applied in
several seemingly di�erent contexts. As a teaser, see if you can spot the similarity between
statement 3© above, and the pattern for proving a conjunction of two statements P and Q
given any set A of assumptions:

∀A. (A⇒ P) ∧ (A⇒Q) ⇐⇒ A⇒ (P ∧ Q)

2. Let m and n be positive integers with gcd(m, n) = 1. Prove that for every natural number k,

m | k ∧ n | k ⇐⇒ m · n | k
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Let m and n be arbitrary positive integers, and assume that 1© gcd(m, n) = 1. Further, let
k be a natural number.

(⇒) Assume that 2© m | k and 3© n | k.

It follows from 1© that
m · i + n · j = 1 4©

for some integers i, j; and it follows from 2© and 3© that

k = a ·m= b · n 5©

for some natural numbers a, b.

Multiplying 4© by k on both sides and using 5©, we therefore have

k = b · n ·m · i + a ·m · n · j = (b · i + a · j) · (m · n)

showing that (m · n) | k.

(⇐) Assume that (m · n) | k. Then, since both m | (m · n) and n | (m · n), by the transitivity
of divisibility, we are done.

� The (⇒) direction of this proof used another characterisation of gcd(m, n) as the
least positive linear combination of m and n. (NB: “Least” here means “lowest”, not the
superlative of “less positive”.) Now that we are more familiar with universal properties, we
can decode this description as 1© gcd(m, n) is a linear combination of m and n, and 2©
gcd(m, n) divides all linear combinations of m and n:

1© ∃k0, l0 ∈ Z. k0 ·m+ l0 · n= gcd(m, n) 2© ∀k, l ∈ Z. gcd(m, n) | k ·m+ l · n

This characterisation is especially useful if we are able to express 1 as a linear combination
of m and n, since 2© means they must be coprime, i.e. gcd(m, n) = 1. Another common
use of an assumption of coprimality gcd(m, n) = 1 is that multiplication by gcd(m, n) is a
no-op, so we can freely introduce gcd(m, n) or k0 ·m+ l0 · n for some k0, l0 ∈ Z into any
expression. This is what we make use of in the question when multiplying 4© and 5©.

3. Prove that for all positive integers a, b, c, if gcd(a, c) = 1 then gcd(a · b, c) = gcd(b, c).

Below are three di�erent proofs of the property.

Proof by equational reasoning

For a, b, c positive integers such that gcd(a, c) = 1, we have

gcd(b, c) = gcd(gcd(a, c) · b, c) (since gcd(a, c) = 1)
= gcd(gcd(a · b, c · b), c) (by linearity)
= gcd(a · b, gcd(c · b, c)) (by associativity)
= gcd(a · b, c) (by §3.2.1)
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Proof by universality

Let a, b, c positive integers such that gcd(a, c) = 1. We need to prove that gcd(a · b, c) =
gcd(b, c), or equivalently, that gcd(a · b, c) | gcd(b, c) and gcd(b, c) | gcd(a · b, c). By the
universal property of gcds, it is su�cient to show the following two properties:

• gcd(a · b, c) | b and gcd(a · b, c) | c. The latter holds since gcd(a · b, c) is a divisor of c.
To establish the former, we note that b = gcd(a, c) · b (since a and c are coprime), and
by distributivity, gcd(a · b, c · b). Thus, we can show that gcd(a · b, c) | gcd(a · b, c · b),
or equivalently, gcd(a · b, c) | a · b and gcd(a · b, c) | c · b, both of which follow from
gcd(a · b, c) being a common divisor of a · b and c.

• gcd(b, c) | a · b and gcd(b, c) | c. Both follow from gcd(b, c) being a divisor of b and c.

Proof using the Fundamental Theorem of Arithmetic

The Fundamental Theorem of Arithmetic states that every positive integer is expressible
as the product of a unique finite sequence of ordered primes. If two integers are coprime,
their unique prime factorisations must be disjoint: that is, there is no prime p that appears
in the factorisation of both a and c. For any b ∈ Z+, the prime factorisation of a · b will
be the product of those of a and b. Therefore the common prime factors of a · b and c
must be the common factors of b and c, since there are no common factors of a and c
by assumption. Since the greatest common divisor is the product of the common prime
factors, we must have gcd(a · b, c) = gcd(b, c).

� These are three fairly di�erent proofs of the same (relatively simple) theorem: one uses
equational reasoning and some properties of gcds, the second makes use of universality,
while the third relies on a powerful and general theorem rather than gcd properties. The
first is probably the most concise form, but of course it relies on us having established all
the required properties of gcds already.

4. Prove that for all positive integers m and n, and integers i and j:

n · i ≡ n · j (mod m) ⇐⇒ i ≡ j
�

mod
m

gcd(m, n)

�

We have:

n · i ≡ n · j (mod m) ⇐⇒ k ·m= n(i − j)

⇐⇒ k ·
m

gcd(m, n)
=

n
gcd(m, n)

· (i − j)

⇐⇒
m

gcd(m, n)

�

�

�

�

n
gcd(m, n)

· (i − j)
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Now we show that

m
gcd(m, n)

�

�

�

�

n
gcd(m, n)

· (i − j) ⇐⇒ i ≡ j
�

mod
m

gcd(m, n)

�

(⇐)We have m
gcd(m,n)

�

� i − j by assumption, and from the multiplication property of divisib-
ility (§1.2.6(b)), we have m

gcd(m,n)

�

�

n
gcd(m,n) · (i − j).

(⇒)We first establish that m
gcd(m,n) and n

gcd(m,n) are coprime using linearity:

gcd(m, n) = gcd
�

m · gcd(m, n)
gcd(m, n)

,
n · gcd(m, n)

gcd(m, n)

�

= gcd(m, n)·gcd
�

m
gcd(m, n)

,
n

gcd(m, n)

�

Since gcd(m, n) is a positive integer, this equality can only hold if gcd
�

m
gcd(m,n) ,

n
gcd(m,n)

�

= 1.

This assumption of coprimality can then be used in Euclid’s Theorem to conclude

m
gcd(m, n)

�

�

�

�

n
gcd(m, n)

· (i − j) =⇒
m

gcd(m, n)

�

�

�

�

(i − j)

as required.

� The inspiration for the first “creative” step (dividing both sides by gcd(m, n)) comes
from seeing the term m

gcd(m,n) in the proof goal.

� A very useful corollary of this theorem is that we can always divide both sides of a
congruence by a positive integer that is coprime with the modulus. Similarly, we can divide
both sides of the congruence and the modulus with any positive integer that divides all
three. The general theorem handles the case “in between”, when a positive integer divides
both sides of the congruence, but not the modulus.

5. Prove that for all positive integers m, n, p, q such that gcd(m, n) = gcd(p, q) = 1, if q ·m = p ·n
then m= p and n= q.

Let m, n, p, q be positive integers. Assume that gcd(m, n) = gcd(p, q) = 1 and further that
1© q ·m= p · n.

Multiplying both sides of the identity 1= gcd(m, n) by p and using the linearity property
of gcd we have that

p = p · gcd(m, n) = gcd(p ·m, p · n) 2©

Now, from 1© and the linearity property of gcd, we also have that

gcd(p ·m, p · n) = gcd(p ·m, q ·m) = gcd(p, q) ·m 3©

Finally, since gcd(p, q) = 1, one has p = m from 2© and 3©.

We can show with an analogous argument that n= q as well.

6. Prove that for all positive integers a and b, gcd(13 · a+ 8 · b, 5 · a+ 3 · b) = gcd(a, b).
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Calculational proof

For all positive integers a and b, one has

gcd
�

13 · a+ 8 · b, 5 · a+ 3 · b
�

= gcd
�

(13 · a+ 8 · b)− (5 · a+ 3 · b), 5 · a+ 3 · b
�

= gcd
�

8 · a+ 5 · b, 5 · a+ 3 · b
�

= gcd
�

(8 · a+ 5 · b)− (5 · a+ 3 · b), 5 · a+ 3 · b
�

= gcd
�

3 · a+ 2 · b, 5 · a+ 3 · b
�

= gcd
�

3 · a+ 2 · b, (5 · a+ 3 · b)− (3 · a+ 2 · b)
�

= gcd
�

3 · a+ 2 · b, 2 · a+ b
�

= gcd
�

(3 · a+ 2 · b)− (2 · a+ b), 2 · a+ b
�

= gcd
�

a+ b, 2 · a+ b
�

= gcd
�

a+ b, (2 · a+ b)− (a+ b)
�

= gcd
�

a+ b, a
�

= gcd
�

(a+ b)− a, a
�

= gcd(b, a)

= gcd(a, b)

Conceptual proof (advanced)

We prove following general statement (see 2018/P8/Q9 exam question):

∀n ∈ N. gcd(a · Fn+3 + b · Fn+ 2, a · Fn+1 + b · Fn) = gcd(a, b)

where Fn is the nth Fibonacci number, defined recursively as

F0 = 0 F1 = 1 Fn+2 = Fn+1 + Fn

For n ∈ N, we prove the following two properties, which, by the universal property of gcds,
will imply the required equality.

• Both gcd(a, b) | (aFn+3 + bFn+2) and gcd(a, b) | (aFn+1 + bFn).

gcd(a, b) divides both a and b, so it divides every integer linear combination of them
(§1.2.6(c)).

• For all positive integers d ,

if d | (aFn+3 + bFn+2) and d | (aFn+1 + bFn) then d | gcd(a, b).

Let d be a positive integer such that d | (aFn+3+ bFn+2) and d | (aFn+1+ bFn); so that
di = aFn+3 + bFn+2 and d j = aFn+1 + bFn for (positive) integers i and j.
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It follows that

d · (iFn − jFn+2) = (Fn · Fn+3 − Fn+2 · Fn+1) · a

= (Fn · Fn+2 + Fn · Fn+1 − Fn · Fn+1 − Fn+1 · Fn+1) · a

=
�

Fn · Fn+2 − F2
n+1

�

· a

= (−1)n+1a (Cassini’s Identity)

so that d | a; and, analogously,

d · (iFn+1 − jFn+3) = (Fn+1 · Fn+2 − Fn+3 · Fn) · a

= (Fn+1 · Fn+1 + Fn · Fn+1 − Fn · Fn+1 − Fn · Fn+2) · b

=
�

F2
n+1 − Fn · Fn+2

�

· b

= (−1)n b (Cassini’s Identity)

so that d | b. Thus, d | gcd(a, b) as required.

� You will learn more about Fibonacci numbers in the next set of exercises.

7. Let n be an integer.

a) Prove that if n is not divisible by 3, then n2 ≡ 1 (mod 3).

This is an instance of Fermat’s Little Theorem.

b) Show that if n is odd, then n2 ≡ 1 (mod 8).

Let n be an odd integer, and thereby let k be an integer such that n= 2 · k+ 1.

We consider two cases.

• Case k is even.

Then, k = 2 · l for some integer l , and n2 = 8 · l · (2 · l + 1)≡ 1 (mod 8).

• Case k is odd.

Then, k = 2· l+1 for some integer l , and n2 = 8·(2· l+1)·(l+2)+1≡ 1 (mod 8).

Either way n2 ≡ 1 (mod 8), as required.

c) Conclude that if p is a prime number greater than 3, then p2 − 1 is divisible by 24.

Let p be a prime greater than 3. Then, p is an odd integer not divisible by 3 and it
follows from part (a) that: 1© 3 | (p2 − 1). Moreover, as p is odd, we have from part
(b) that: 2© 8 | (p2 − 1).

Finally, since gcd(3,8) = 1, by §3.2.2 one has that 1© and 2© imply 24 | (p2 − 1) as
required.

8. Prove that n13 ≡ n (mod 10) for all integers n.
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To show n13 ≡ n (mod 10), by the direct corollary of §3.2.2 it is su�cient to show n13 ≡
n (mod 2) and n13 ≡ n (mod 5). Both hold by successive applications of Fermat’s Little
Theorem, repeatedly reducing n2 or n5 to n until we reach n. For example:

n13 = n5 · n5 · n3 ≡ n · n · n3 = n5 ≡ n (mod 5)

9. Prove that for all positive integers l , m and n, if gcd(l, m · n) = 1 then gcd(l, m) = 1 and
gcd(l, n) = 1.

Let l , m, and n be arbitrary positive integers, and assume that gcd(l, m · n) = 1.

By §3.1.5(⇐) , there exist integers i and j such that i · l + j ·m · n= 1. Thus, we have that

there exist integers i and a such that i · l + a ·m= 1

and

there exist integers i and b such that i · l + b · n= 1.

Therefore, by §3.1.5(⇒) one has that gcd(l, m) = 1 and gcd(l, n) = 1.

10. Solve the following congruences:

a) 77 · x ≡ 11 (mod 40)

By §3.2.4, a solution will satisfy the congruence i� it satisfies †© 7 · x ≡ 1 (mod 40)
(gcd(40, 11) = 1 so the modulus does not change). As 7 and 40 are coprime, this
amounts to finding the multiplicative inverse of 7 in Z40 (Corollary 75), which is the
second coe�cient in the expression of 1 as a linear combination of 40 and 7. We run
the Extended Euclid’s Algorithm to find that 40 · 3+ 7 · (−17) = 1. Thus, x0 = −17 is
a solution to †©, and therefore to 77 · x0 ≡ 11 (mod 40). To find the general form of
solutions, we note that the linear combination of 40 and 7 is not unique (Slide 219),
so x can have the general form x = −17+ 40n≡ 23+ 40n for any integer n.

b) 12 · y ≡ 30 (mod 54)

By §3.2.4, a solution will satisfy the congruence i� it satisfies †© 2 · y ≡ 5 (mod 9),
that is, 2 · y+9 ·k = 5 for some k ∈ Z. Now, since 2 and 9 are coprime, we can express
1 as their linear combination, computing the coe�cients using the Extended Euclid’s
Algorithm: 2 · (−4)+9 ·1 = 1. Multiplying both sides by 5 gives us 2 · (−20)+9 ·5 = 5,
which is a solution to †© with y0 = −20. To generate all the solutions, we note that †©
is satisfied by y0+9n for any n, so y can have the general form y = −20+9n≡ 7+9n
for any integer n.

c)

(

13≡ z (mod 21)

3 · z ≡ 2 (mod 17)
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To solve a system of congruences, we find the general form of solutions for the
congruences individually, then find the ones that satisfy both.

All solutions to the first congruence are of the form z1 = 13+ 21k for k ∈ Z.

Solutions of the congruence 3·z ≡ 2 (mod 17) satisfy †© 3·z+17·n = 2. Since 3 and 17
are coprime, we can express 1 as their linear combination using EEA: 3·6+17·(−1) = 1.
Multiplying by 2 on both sides gives a solution to †©, and from there, we get the
general form of solutions as z2 = 12+ 17l for l ∈ Z.

The solutions for the congruence system will be those which are both of the form z1

and z2 simultaneously:
13+ 21 · k = 12+ 17 · l

Albeit this looks like one equation with two unknowns, we can rearrange it to the
form

21 · (−k) + 17 · l = 1 ‡©

which we can solve using EEA, since 21 and 17 are coprime:

21 · (−4) + 17 · 5= 1

Thus, ‡© has general solutions k = 4+ 17i and l = 5+ 21 j for i, j ∈ Z; at these
specific values of k, the general solution z1 = 13+21 · k for the first congruence also
satisfies the second congruence (and similarly for z2). Substituting k into z1 or l into
z2 gives

z = 97+ 357i ∀i ∈ Z.

which is the general form of solutions that satisfy the system of congruences.

� This question shows the usefulness of the characterisation of gcds via linear combin-
ations: it allows us to solve one equation with two unknowns, as long as the RHS is a
multiple of the gcd of the coe�cients (so if the coe�cients are coprime, the RHS can be
any positive integer). Solving a congruence ax ≡ b (mod m) amounts to characterising the
integer solutions of the equation ax −my = b (known as a linear Diophantine equation),
which exist only if gcd(a, m) | b.

If a congruence ax ≡ b (mod m) has one solution x0 (i.e. if gcd(a, m) | b), it has an infinite
number of solutions of the form x = x0+pk for k ∈ Z, all separated by a “period” p. In some
cases (such as part (a)), the period coincides with the modulus, so all possible solutions
can be derived from a single integer x0 ∈ Zm. In other cases (such as part (b)) the solutions
may be more “frequent” due to the period being a fraction of the modulus: m= dp. Then,
the solutions x0 + pk can be split into d classes, all with the period m, but di�erent initial
values x0, x1, . . . xd−1 ∈ Zm. One such class { . . . , x − 2m, x −m, x , x +m, x + 2m, . . . } is
often called the congruence class of x modulo m (denoted xm or sometimes [x]m, although
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this course uses the latter notation to refer to the least positive element of xm in Zm), so
in essence, an infinite number of integer solutions to a congruence can be characterised
by a finite number of congruence classes. With this interpretation, part (a) had only one
solution 2340, while part (b) had six:

754 1654 2554 3454 4354 5254

By considering a solution to be a congruence class modulo m, we can show that a congru-
ence ax ≡ b (mod m) has exactly gcd(a, m) solutions if gcd(a, m) | b, and 0 otherwise.
Of course, the d = gcd(a, m) congruence classes modulo m can be combined into one
congruence class modulo m/d – the two representations are equivalent, but one may be
more useful in some contexts than the other. As an example, compare the phrases “every 8
hours starting at 1am” and “every day at 1am, 9am, and 5pm”, and how we must use the
latter form to refer to events repeating regularly several times a week because 7 prime.

Since integer solutions of a congruence are not unique, we can ask which solutions of one
congruence also satisfy another – that is, solve a system of congruences. These are quite
di�erent from the systems of equations you are familiar with, which involve n unknowns
and n independent equations, and the solution is found by expressing one variable in
terms of the others and performing substitutions. Congruence systems involve only one
unknown, and the individual congruences are independent constraints on this one unknown.
Rather than trying to combine the congruences via substitution, we solve each of them
independently, getting sets of congruence classes for each individual congruence. Then, the
task is finding the common elements of the congruence classes (their intersection), which
therefore must satisfy the whole system of congruences simultaneously. If the individual
solutions have the form x + pk and y +ql , the congruence classes x p and y p will intersect
when x + pk = y + ql ; this now becomes another linear Diophantine equation of the form
pk− ql = y − x that can be solved if gcd(p, q) | y − x . The resulting integer values for k
and l tell us the number of periods one needs to o�set x and y by until they coincide, and
since all solutions are uniformly periodic, k and l will themselves be periodic congruence
classes. The general expressions can then be substituted back into either x + pk or y + ql
to find an initial value and a larger period for the solutions that satisfy both parts of the
congruence system.

As a simple example, consider the congruence classes 12, 23 and 24. The classes 12 and 23

will intersect whenever 1+ 2n = 2+ 3k, and the linear Diophantine equation 2n− 3k = 1
has solutions n = 3m+ 2 and k = 2m+ 1. What this means is that every 3rd  starting
from the second one (using 0-indexed counting) will coincide with every 2nd � starting
from the first one, as can be seen below at step 5 (when m= 0) and 11 (when m= 1). To
figure out what “every 3rd  starting from the second one” means on the resolution of the
integers, we substitute the solution for n back into 1+ 2n, which combines the periods of
“there is a solution at every 3rd circle” and “there is a circle every 2 steps” into “there is
a solution every 6 steps” and similarly for the o�set. Thus, the intersection of 12 and 23
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will be 56. We can do a similar procedure to find the intersection of 23 and 24 to be 212.
However, 12 and 24 will never intersect, since the Diophantine equation 2n− 4l = 1 has
no solutions – gcd(2,4) = 2 - 1. Congruence systems often arise from the interaction of
periodic events: examples are scheduling, polyrhythms, predator-prey life cycles, etc.

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1+ 2n        

2+ 3k � � � � �

2+ 4l Î Î Î Î

11. What is the multiplicative inverse of: (a) 2 in Z7, (b) 7 in Z40, and (c) 13 in Z23?

We apply Corollary 75 of the notes, which states that if gcd(m, n) = 1, the multiplicative
inverse of [n]m is [lc2(m, n)]m, where lc2(m, n) is the second coe�cient of the expression
of 1 as a linear combination of m and n using EEC. With this, we get that:

a) 1 · 7+ (−3) · 2= 1, so 2−1 ≡ 4 (mod 7)
b) 3 · 40+ (−17) · 7= 1, so 7−1 ≡ 23 (mod 40)
c) 4 · 23+ (−7) · 13= 1, so 13−1 ≡ 16 (mod 23)

12. Prove that
�

2212001
�

175
has a multiplicative inverse in Z175.

We first establish the following lemma:

For every pair of positive integers m and n, we have that
[n]m has a multiplicative inverse in Zm i� gcd(m, n) = 1.

(⇒) Let m and n be arbitrary positive integers, and assume that [n]m has a multiplicative
inverse in Zm, say l . Then,

n · l ≡ [n · l]m = [n]m ·m l = 1 (mod m)

and thus there exists an integer k such that n · l + m · k = 1. Thus, from §3.1.5(⇒) ,
gcd(m, n) = 1.

(⇐) By Corollary 75(2) of the notes.

Now, gcd(2212001, 175) = gcd(212001 · 1112001, 52 · 7), and since the two numbers have no
prime factors in common, they must be coprime. By the above lemma, gcd(2212001, 175) = 1
implies that

�

2212001
�

175
has a multiplicative inverse, as required.

3.3. Optional exercises
1. Let a and b be natural numbers such that a2 | b · (b+ a). Prove that a | b.

Hint: For positive a and b, consider a0 =
a

gcd(a,b) and b0 =
b

gcd(a,b) so that gcd(a0, b0) = 1, and
show that a2 | b(b+ a) implies a0 = 1.
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If either a or b are 0 the result is straightforward. Consider thus the case in which both a
and b are positive integers, and assume that a2 | b(b+ a).

Then, for a0 =
a

gcd(a,b) and b0 =
b

gcd(a,b) , we have that a0 | b0(b0+a0) and, since gcd(a0, b0) =
1, that a0 | (b0+a0) so that a0 | b0 and thus a0 = gcd(a0, b0) = 1. Therefore, gcd(a, b) = a
and we are done.

2. Prove the converse of §1.3.1(f): For all natural numbers n and s, if there exists a natural number
q such that (2n+ 1)2 · s+ tn = tq, then s is a triangular number. (49th Putnam, 1988)

Hint: Recall that if †© q = 2nk+ n+ k then (2n+ 1)2 tk + tn = tq. Solving for k in †©, we get
that k = q−n

2n+1 ; so it would be enough to show that the fraction q−n
2n+1 is a natural number.

Suggested by a 2014/15 student (who wished to remain anonymous).

Assume (2n + 1)2s + tn = tq. Then, tn ≡ tq

�

mod (2n+ 1)2
�

; so that n(n + 1) ≡
q(q+ 1)

�

mod (2n+ 1)2
�

and hence (q− n)(q− n+ 2n+ 1)≡ 0
�

mod (2n+ 1)2
�

.

Therefore (2n+ 1)2 | (q− n)(q− n+ 2n+ 1), and it follows from the previous item that
(2n+ 1) | (q− n).

As tq ≥ tn, we have that q ≥ n, and therefore that k = q−n
2n+1 is a natural number. By

assumption and the solution to §1.3.1(f), we then have:

(2n+ 1)2 s+ tn = tq = (2n+ 1)2 tk + tn

and so that s = tk, as required.

3. Informally justify the correctness of the following alternative algorithm for computing the gcd
of two positive integers:

let rec gcd0(m, n) = if m = n then m
else let p = min m n

and q = max m n
in gcd0(p, q - p)

The partial correctness of the algorithm follows from Corollary 58(2) of the notes. To
establish the termination of gcd0 on a pair of positive integers (m, n) we consider and
analyse the computations arising from the call gcd0(m, n). We consider two cases:

• Case m= n.

The computation of gcd0(m, n) reduces in one step to m, and therefore terminates.

• Case m 6= n.

The computation of gcd0(m, n) reduces in one step to that of gcd0(p, q− p), where
p = min(m, n) and q = max(m, n). Thus, the passage of computing gcd0(m, n) by
means of computing gcd0(p, q− p) maintains the invariant of having both compon-
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ents of the pair being positive integers; but, crucially, strictly decreases the sum of the
pairs in each recursive call (as m+ n>max(m, n) = p+ (q− p) because both m and
n are positive). As this process cannot go on forever (the sum is of two strictly positive
integers but decreases at every step, so the lowest it can go is 1+ 1 = 2, at which
point m= n), the recursive calls must eventually stop and the overall computation
terminate (in fact, in a number of steps necessarily less that or equal the sum of the
input pair).

� We can use induction to make this argument formal; see §4.3.1.
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