Discrete Mathematics

Supervision 3
Marcelo Fiore Ohad Kammar Dima Szamozvancev

3. More on numbers

3.1. Basic exercises

1. Calculate the set $\operatorname{CD}(666,330)$ of common divisors of 666 and 330 .
2. Find the gcd of 21212121 and 12121212.
3. Prove that for all positive integers m and n, and integers k and l,

$$
\operatorname{gcd}(m, n) \mid(k \cdot m+l \cdot n)
$$

4. Find integers x and y such that $x \cdot 30+y \cdot 22=\operatorname{gcd}(30,22)$. Now find integers x^{\prime} and y^{\prime} with $0 \leq y^{\prime}<30$ such that $x^{\prime} \cdot 30+y^{\prime} \cdot 22=\operatorname{gcd}(30,22)$.
5. Prove that for all positive integers m and n, there exists integers k and l such that $k \cdot m+l \cdot n=1$ iff $\operatorname{gcd}(m, n)=1$.
6. Prove that for all integers n and primes p, if $n^{2} \equiv 1(\bmod p)$ then either $n \equiv 1(\bmod p)$ or $n \equiv-1(\bmod p)$.

3.2. Core exercises

1. Prove that for all positive integers m and $n, \operatorname{gcd}(m, n)=m$ iff $m \mid n$.
2. Let m and n be positive integers with $\operatorname{gcd}(m, n)=1$. Prove that for every natural number k,

$$
m|k \wedge n| k \Longleftrightarrow m \cdot n \mid k
$$

3. Prove that for all positive integers a, b, c, if $\operatorname{gcd}(a, c)=1$ then $\operatorname{gcd}(a \cdot b, c)=\operatorname{gcd}(b, c)$.
4. Prove that for all positive integers m and n, and integers i and j :

$$
n \cdot i \equiv n \cdot j(\bmod m) \Longleftrightarrow i \equiv j\left(\bmod \frac{m}{\operatorname{gcd}(m, n)}\right)
$$

5. Prove that for all positive integers m, n, p, q such that $\operatorname{gcd}(m, n)=\operatorname{gcd}(p, q)=1$, if $q \cdot m=p \cdot n$ then $m=p$ and $n=q$.
6. Prove that for all positive integers a and $b, \operatorname{gcd}(13 \cdot a+8 \cdot b, 5 \cdot a+3 \cdot b)=\operatorname{gcd}(a, b)$.
7. Let n be an integer.
a) Prove that if n is not divisible by 3 , then $n^{2} \equiv 1(\bmod 3)$.
b) Show that if n is odd, then $n^{2} \equiv 1(\bmod 8)$.
c) Conclude that if p is a prime number greater than 3 , then $p^{2}-1$ is divisible by 24 .
8. Prove that $n^{13} \equiv n(\bmod 10)$ for all integers n.
9. Prove that for all positive integers l, m and n, if $\operatorname{gcd}(l, m \cdot n)=1$ then $\operatorname{gcd}(l, m)=1$ and $\operatorname{gcd}(l, n)=1$.
10. Solve the following congruences:
a) $77 \cdot x \equiv 11(\bmod 40)$
b) $12 \cdot y \equiv 30(\bmod 54)$
c) $\left\{\begin{array}{l}13 \equiv z(\bmod 21) \\ 3 \cdot z \equiv 2(\bmod 17)\end{array}\right.$
11. What is the multiplicative inverse of: (a) 2 in \mathbb{Z}_{7}, (b) 7 in \mathbb{Z}_{40}, and (c) 13 in \mathbb{Z}_{23} ?
12. Prove that $\left[22^{12001}\right]_{175}$ has a multiplicative inverse in \mathbb{Z}_{175}.

3.3. Optional exercises

1. Let a and b be natural numbers such that $a^{2} \mid b \cdot(b+a)$. Prove that $a \mid b$.

Hint: For positive a and b, consider $a_{0}=\frac{a}{\operatorname{gcd}(a, b)}$ and $b_{0}=\frac{b}{\operatorname{gcd}(a, b)}$ so that $\operatorname{gcd}\left(a_{0}, b_{0}\right)=1$, and show that $a^{2} \mid b(b+a)$ implies $a_{0}=1$.
2. Prove the converse of $\S 1.3 .1(\mathrm{f})$: For all natural numbers n and s, if there exists a natural number q such that $(2 n+1)^{2} \cdot s+t_{n}=t_{q}$, then s is a triangular number. ($49^{\text {th }}$ Putnam, 1988)

Hint: Recall that if $\oplus q=2 n k+n+k$ then $(2 n+1)^{2} t_{k}+t_{n}=t_{q}$. Solving for k in \oplus, we get that $k=\frac{q-n}{2 n+1}$; so it would be enough to show that the fraction $\frac{q-n}{2 n+1}$ is a natural number.
3. Informally justify the correctness of the following alternative algorithm for computing the gad of two positive integers:

```
let rec gcd0(m, n) = if m = n then m
    else let p = min m n
    and q = max m n
    in gcd0(p, q - p)
```

