Discrete Mathematics

Supervision 2

Marcelo Fiore Ohad Kammar Dima Szamozvancev

2. On numbers

2.1. Basic exercises

- 1. Let i, j be integers and let m, n be positive integers. Show that:
 - a) $i \equiv i \pmod{m}$
 - b) $i \equiv j \pmod{m} \Longrightarrow j \equiv i \pmod{m}$
 - c) $i \equiv j \pmod{m} \land j \equiv k \pmod{m} \Longrightarrow i \equiv k \pmod{m}$
- 2. Prove that for all integers i, j, k, l, m, n with m positive and n nonnegative,
 - a) $i \equiv j \pmod{m} \land k \equiv l \pmod{m} \Longrightarrow i + k \equiv j + l \pmod{m}$
 - b) $i \equiv j \pmod{m} \land k \equiv l \pmod{m} \Longrightarrow i \cdot k \equiv j \cdot l \pmod{m}$
 - c) $i \equiv j \pmod{m} \Longrightarrow i^n \equiv j^n \pmod{m}$
- 3. Prove that for all natural numbers k, l and positive integers m,
 - a) $\operatorname{rem}(k \cdot m + l, m) = \operatorname{rem}(l, m)$
 - b) $\operatorname{rem}(k+l,m) = \operatorname{rem}(\operatorname{rem}(k,m) + l,m)$
 - c) $\operatorname{rem}(k \cdot l, m) = \operatorname{rem}(k \cdot \operatorname{rem}(l, m), m)$
- 4. Let *m* be a positive integer.
 - a) Prove the associativity of the addition and multiplication operations in \mathbb{Z}_m ; that is:

$$\forall i, j, k \in \mathbb{Z}_m. \ (i +_m j) +_m k = i +_m (j +_m k) \quad \text{and} \quad (i \cdot_m j) \cdot_m k = i \cdot_m (j \cdot_m k)$$

b) Prove that the additive inverse of k in \mathbb{Z}_m is $[-k]_m$.

2.2. Core exercises

- 1. Find an integer i, natural numbers k, l and a positive integer m for which $k \equiv l \pmod m$ holds while $i^k \equiv i^l \pmod m$ does not.
- 2. Formalise and prove the following statement: A natural number is a multiple of 3 iff so is the number obtained by summing its digits. Do the same for the analogous criterion for multiples of 9 and a similar condition for multiples of 11.
- 3. Show that for every integer n, the remainder when n^2 is divided by 4 is either 0 or 1.
- 4. What are $rem(55^2, 79)$, $rem(23^2, 79)$, $rem(23 \cdot 55, 79)$ and $rem(55^{78}, 79)$?
- 5. Calculate that $2^{153} \equiv 53 \pmod{153}$. At first sight this seems to contradict Fermat's Little Theorem, why isn't this the case though? *Hint:* Simplify the problem by applying known congruences to subexpressions using the properties in §2.1.2.

DISCRETE MATHEMATICS SUPERVISION 2

6. Calculate the addition and multiplication tables, and the additive and multiplicative inverses tables for \mathbb{Z}_3 , \mathbb{Z}_6 and \mathbb{Z}_7 .

- 7. Let i and n be positive integers and let p be a prime. Show that if $n \equiv 1 \pmod{p-1}$ then $i^n \equiv i \pmod{p}$ for all i not multiple of p.
- 8. Prove that $n^3 \equiv n \pmod{6}$ for all integers n.
- 9. Prove that $n^7 \equiv n \pmod{42}$ for all integers n.

2.3. Optional exercises

- 1. Prove that for all integers n, there exist natural numbers i and j such that $n=i^2-j^2$ iff either $n\equiv 0\pmod 4$ or $n\equiv 1\pmod 4$ or $n\equiv 3\pmod 4$.
- 2. A decimal (respectively binary) repunit is a natural number whose decimal (respectively binary) representation consists solely of 1's.
 - a) What are the first three decimal repunits? And the first three binary ones?
 - b) Show that no decimal repunit strictly greater than 1 is a square, and that the same holds for binary repunits. Is this the case for every base? *Hint*: Use Lemma 26 of the notes.