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17. On regular languages
1. Why can’t the automaton Star(M) used in step (iv) of the proof of part (a) of Kleene’s Theorem

be constructed by simply taking M , making its start state the only accepting state and adding
new ε-transitions back from each old accepting state to its start state?

2. Construct an NFAε M satisfying L(M) = L((ε|b)∗aab∗) using Kleene’s construction.

3. Show that any finite set of strings is a regular language.

4. Use the construction given in the proof of part (b) of Kleene’s Theorem to find a regular
expression for the DFA M whose state set is {0,1,2 }, whose start state is 0, whose only
accepting state is 2, whose alphabet of input symbols is { a, b }, and whose next-state function
is given by the following table.

δ a b
0 1 2
1 2 1
2 2 1

5. If M = (Q,Σ,∆, s, F) is an NFA, let Not(M) be the NFA (Q,Σ,∆, s,Q \ F) obtained from M by
interchanging the role of accepting and nonaccepting states. Give an example of an alphabet Σ
and an NFA M with set of input symbols Σ such that {u ∈ Σ∗ | u 6∈ L(M) } is not the same as
L(Not(M)).

6. Let r = (a|b)∗ab(a|b)∗. Find a regular expression that is equivalent to the complement for r
over the alphabet { a, b } with the property L(∼ r) = {u ∈ { a, b }∗ | u 6∈ L(r) }.

7. Given DFAs Mi = (Q i,Σ,δi, si, Fi) for i = 1, 2, let And(M1, M2) be the DFA

(Q1 ×Q2,Σ,δ, (s1, s2), F1 × F2)

where δ : (Q1 ×Q2)×Σ→ (Q1 ×Q2) is given by

δ((q1, q2), a) = (δ1(q1, a),δ2(q2, a))

for all q1 ∈Q1, q2 ∈Q2 and a ∈ Σ. Show that L(And(M1, M2)) = L(M1)∩ L(M2).

18. On the Pumping Lemma
1. Briefly summarise the proof of the Pumping Lemma in your own words.

2. Consider the language L ¬ { cman bn | m≥ 1 ∧ n≥ 0 } ∪ { am bn | m, n≥ 0 }. The notes show
that L has the pumping lemma property. Show that there is no DFA M which accepts L.

Hint: argue by contradiction. If there were such an M , consider the DFA M ′ with the same states
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as M , with alphabet of input symbols just consisting of a and b, with transitions all those of
M which are labelled by a or b, with start state δM(sM , c) where sM is the start state of M ,
and with the same accepting states as M . Show that the language accepted by M ′ has to be
{ an bn | n≥ 0 } and deduce that no such M can exist.
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