Discrete Mathematics

Supervision 10

Marcelo Fiore Ohad Kammar Dima Szamozvancev

17. On regular languages

1. Why can't the automaton $\operatorname{Star}(M)$ used in step (iv) of the proof of part (a) of Kleene's Theorem be constructed by simply taking M, making its start state the only accepting state and adding new ε-transitions back from each old accepting state to its start state?
2. Construct an $\mathrm{NFA}^{\varepsilon} M$ satisfying $L(M)=L\left((\epsilon \mid b)^{*} a a b^{*}\right)$ using Kleene's construction.
3. Show that any finite set of strings is a regular language.
4. Use the construction given in the proof of part (b) of Kleene's Theorem to find a regular expression for the DFA M whose state set is $\{0,1,2\}$, whose start state is 0 , whose only accepting state is 2 , whose alphabet of input symbols is $\{a, b\}$, and whose next-state function is given by the following table.

δ	a	b
0	1	2
1	2	1
2	2	1

5. If $M=(Q, \Sigma, \Delta, s, F)$ is an NFA, let $\operatorname{Not}(M)$ be the NFA $(Q, \Sigma, \Delta, s, Q \backslash F)$ obtained from M by interchanging the role of accepting and nonaccepting states. Give an example of an alphabet Σ and an NFA M with set of input symbols Σ such that $\left\{u \in \Sigma^{*} \mid u \notin L(M)\right\}$ is not the same as $L(\operatorname{Not}(M))$.
6. Let $r=(a \mid b)^{*} a b(a \mid b)^{*}$. Find a regular expression that is equivalent to the complement for r over the alphabet $\{a, b\}$ with the property $L(\sim r)=\left\{u \in\{a, b\}^{*} \mid u \notin L(r)\right\}$.
7. Given DFAs $M_{i}=\left(Q_{i}, \Sigma, \delta_{i}, s_{i}, F_{i}\right)$ for $i=1,2$, let $\operatorname{And}\left(M_{1}, M_{2}\right)$ be the DFA

$$
\left(Q_{1} \times Q_{2}, \Sigma, \delta,\left(s_{1}, s_{2}\right), F_{1} \times F_{2}\right)
$$

where $\delta:\left(Q_{1} \times Q_{2}\right) \times \Sigma \rightarrow\left(Q_{1} \times Q_{2}\right)$ is given by

$$
\delta\left(\left(q_{1}, q_{2}\right), a\right)=\left(\delta_{1}\left(q_{1}, a\right), \delta_{2}\left(q_{2}, a\right)\right)
$$

for all $q_{1} \in Q_{1}, q_{2} \in Q_{2}$ and $a \in \Sigma$. Show that $L\left(\operatorname{And}\left(M_{1}, M_{2}\right)\right)=L\left(M_{1}\right) \cap L\left(M_{2}\right)$.

18. On the Pumping Lemma

1. Briefly summarise the proof of the Pumping Lemma in your own words.
2. Consider the language $L \triangleq\left\{c^{m} a^{n} b^{n} \mid m \geq 1 \wedge n \geq 0\right\} \cup\left\{a^{m} b^{n} \mid m, n \geq 0\right\}$. The notes show that L has the pumping lemma property. Show that there is no DFA M which accepts L.

Hint: argue by contradiction. If there were such an M, consider the DFA M^{\prime} with the same states
as M, with alphabet of input symbols just consisting of a and b, with transitions all those of M which are labelled by a or b, with start state $\delta_{M}\left(s_{M}, c\right)$ where s_{M} is the start state of M, and with the same accepting states as M. Show that the language accepted by M^{\prime} has to be $\left\{a^{n} b^{n} \mid n \geq 0\right\}$ and deduce that no such M can exist.

