Concepts in Programming Languages
Exercises

2021

Contents

1. Meetthe ancestors it it e e e e e e e e
2. Typesin programming languUages v ittt it e e e e e e
3. FUrther ConCepts . . v v it e e e e e e e e e e e e e e e

This course briefly covers some old and new languages, and discusses their history, innovations and
influence. It is very instructive to extend this analysis to other languages you are familiar with, be
they ones you studied as part of the Tripos or ones you have learnt independently. Therefore, when
answering the questions below, you are very much encouraged to think about and refer to languages
not discussed in this course, and consider how they fit in the timeline of PL research and design, where
their features originate and what new concepts they introduced.

1. Meet the ancestors

1. The notes mention that in the 1950s the utility of high-level programming languages was open
to question, so there was some reluctance to the adoption of FORTRAN. This skepticism might
seem surprising to us in hindsight. What objections could an Assembly programmer at the
time have against high-level languages, and how would you try convincing them to switch to
FORTRAN?

2. An author writes:
Most successful language design efforts share three important characteristics:

 Motivating application: the language was designed so that a specific kind of program
could be written more easily.

« Abstract machine: there is a simple and unambiguous program execution model.

« Theoretical foundations: theoretical understanding was the basis for including certain
capabilities and omitting others.

Briefly discuss the merits and/or shortcomings of the above three statements, giving examples
and/or counterexamples from procedural, functional, logic, and/or object-oriented program-
ming languages.

3. Consider the following two program fragments.

let x = 1 ; (defvar x 1)
let g(z) = x + z ; (defun g(z) (+ x z))
let f(y) = (defun f(y)
g(1) + (+ (g 1)
(let x =y + 3 (let ((x (+vy 3)))
in g (y+x)) ; (g(+yx)))))
f(2) ; (f2)

What are their respective output values when run in their corresponding interpreters? Justify
your answer, explaining it in a conceptual manner.

4. Give a brief overview of the following parameter passing mechanisms, demonstrating their
similarities and differences with (pseudo)code examples: call by value, call by reference, call by

Some questions by Andy Rice (acr31) and Andrej lvaskovic (ai294).

CONCEPTS IN PROGRAMMING LANGUAGES EXERCISES

value/result, call by name, call by text. Make sure you use the terms aliasing, formal parameter
and actual parameter in your explanations.

5. A commonly used practice in object-oriented programming is encapsulation. You have already
informally defined it in Object-Oriented Programming as ‘a class should expose a clean interface
that allows full interaction with it, but should expose nothing about its internal state or how it
manipulates it’. SIMULA 67 had no facilities to achieve encapsulation. How did Smalltalk improve
on this? Comment on why encapsulation might be desirable, and how it fits in with the other
distinguishing characteristics of object-oriented languages.

2. Types in programming languages

1. Alice: ‘Urgh, I'm so sick of these ML type errors... Why can’t | just test my code without all these
types getting in my way?’

Bob: ‘At least you are getting type errors! I've been writing a Javascript web app and it's like I'm
walking around in a dark forest filled with traps...’

Continue the debate above about the merits and drawbacks of type systems. If you want, bring
in a third person into the conversation, representing a different viewpoint or typing discipline.’

2. For the programming languages FORTRAN, LISP, Algol, Pascal, C, ML and Java, briefly discuss and
evaluate their typing disciplines. Further compare the advantages and disadvantages that their
designs impose on the programmer.

3. We observe three different meanings of the word polymorphism in this course. Show how they
are exemplified in Java and give their alternative names when they exist.

4. Use the type inference algorithm described in the notes to find the type of the following OCaml
expression: fun x -> funy -> funz ->z (xvy) vy

5. Explain the meaning and the context of the terms covariance, contravariance and invariance.
Give examples in ML and Java to demonstrate why this distinction is needed. # Scripting and
modularity

6. What is a scripting language? What kinds of applications should scripting languages be used
for? In contrast, what kinds of applications are they used for today?

7. Compare and contrast duck typing and dynamic typing. Why do they tend to be features of
scripting languages?

8. Compare and contrast module systems with principles of object-oriented programming such as
abstraction and inheritance. How do ML structures and signatures differ from OOP classes and
interfaces? Compare these with Haskell's type classes, if you are familiar with them.

9. a) Write a signature for a Queue abstract data type in Standard ML.
b) Write two structures implementing this signature: one using a single list, and one using a
pair of lists (with amortised constant time for its operations, as covered in Foundations

' Or you can make a boring old table as well. It's exam term. I'll understand.

CONCEPTS IN PROGRAMMING LANGUAGES EXERCISES

of Computer Science). You should use the same kind of signature constraint for both of
them.
c) Did you use an opaque or transparent signature constraint? What difference does it make?

3. Further concepts

1. You manage two junior programmers and overhear the following conversation:

Alice: “I don’t know why anyone needs a language other than Java, it provides clean thread-based
parallel programming.”

Bob: “Maybe, but | write my parallel programs in a functional programming language because
they are embarrassingly parallel.”

Discuss the correctness of these statements and the extent to which they cover the range of
languages for parallel programming. Note: this was an exam question in 2014, after the release
of Java 8 - make sure to consider this in your answer to the first part of the question.

2. Describe the expression problem and how it relates to data types in functional and object-
oriented languages, with the help of code examples. How can both of the “competing” ap-
proaches be implemented in Scala? Can you think of a time when you encountered the expres-
sion problem in your own projects?

3. Reason for and/or against the following statement:

Functional programming is the future.

CONCEPTS IN PROGRAMMING LANGUAGES EXERCISES

4. a) Whatis a monad? What are its operations?

b) Distinguish between a side-effecting function, a pure function, and a “computation” value
in @ monad.

5. Assume the existence of an 10 monad in a functional language.

a) Give the types of expressions which:
(i) read aline from stdin;
(ii) read a line from a file specified by parameter f;
(iii) write a line to stdout;
(iv) write a line to a file specified by parameter f.

b) Givenvaluesc : unit IOandn : int, give a program which performs c
(i) twice;
(ii) n times.

6. Suppose you want to define a datatype for lists containing alternating integers and Booleans,

eg. [5, true, 2, false, 9, true].How can you statically enforce this alternation property
using GADTs?

7. Briefly explain the intuition behind using CPS to represent a function of type a -> bas (b ->
unit) -> (a -> unit). How and why does contravariance come into play?

	Meet the ancestors
	Types in programming languages
	Further concepts

