
Concepts in Programming Languages
Supervision 1

This course briefly covers some old and new languages, and discusses their history, innovations and
influence. It is very instructive to extend this analysis to other languages you are familiar with, be
they ones you studied as part of the Tripos or ones you have learnt independently. Therefore, when
answering the questions below, you are very much encouraged to think about and refer to languages
not discussed in this course, and consider how they fit in the timeline of PL research and design, where
their features originate and what new concepts they introduced.

1. Meet the ancestors
1. The notes mention that in the 1950s the utility of high-level programming languages was open

to question, so there was some reluctance to the adoption of FORTRAN. This skepticism might
seem surprising to us in hindsight. What objections could an Assembly programmer at the
time have against high-level languages, and how would you try convincing them to switch to
FORTRAN?

2. An author writes:

Most successful language design e�orts share three important characteristics:

• Motivating application: the language was designed so that a specific kind of program
could be written more easily.

• Abstract machine: there is a simple and unambiguous program execution model.
• Theoretical foundations: theoretical understanding was the basis for including certain

capabilities and omitting others.

Briefly discuss the merits and/or shortcomings of the above three statements, giving examples
and/or counterexamples from procedural, functional, logic, and/or object-oriented program-
ming languages.

3. Consider the following two program fragments.

let x = 1 ;
let g(z) = x + z ;
let f(y) =

g(1) +
(let x = y + 3
in g (y+x)) ;

f(2) ;

(defvar x 1)
(defun g(z) (+ x z))
(defun f(y)
(+ (g 1)

(let ((x (+ y 3)))
(g (+ y x)))))

(f 2)

Some questions by Andy Rice (acr31) and Andrej Ivašković (ai294).

CO N C E PTS I N P R O G R A M M I N G L A N G U A G E S S U P E R V I S I O N 1

What are their respective output values when run in their corresponding interpreters? Justify
your answer, explaining it in a conceptual manner.

4. Give a brief overview of the following parameter passing mechanisms, demonstrating their
similarities and di�erences with (pseudo)code examples: call by value, call by reference, call by
value/result, call by name, call by text. Make sure you use the terms aliasing, formal parameter
and actual parameter in your explanations.

5. A commonly used practice in object-oriented programming is encapsulation. You have already
informally defined it in Object-Oriented Programming as ‘a class should expose a clean interface
that allows full interaction with it, but should expose nothing about its internal state or how it
manipulates it’. SIMULA 67 had no facilities to achieve encapsulation. How did Smalltalk improve
on this? Comment on why encapsulation might be desirable, and how it fits in with the other
distinguishing characteristics of object-oriented languages.

2. Types in programming languages
1. Alice: ‘Urgh, I’m so sick of these ML type errors. . . Why can’t I just test my code without all these

types getting in my way?’

Bob: ‘At least you are getting type errors! I’ve been writing a Javascript web app and it’s like I’m
walking around in a dark forest filled with traps. . . ’

Continue the debate above about the merits and drawbacks of type systems. If you want, bring
in a third person into the conversation, representing a di�erent viewpoint or typing discipline.1

2. For the programming languages FORTRAN, LISP, Algol, Pascal, C, ML and Java, briefly discuss and
evaluate their typing disciplines. Further compare the advantages and disadvantages that their
designs impose on the programmer.

3. We observe three di�erent meanings of the word polymorphism in this course. Show how they
are exemplified in Java and give their alternative names when they exist.

4. Use the type inference algorithm described in the notes to find the type of the following OCaml
expression: fun x -> fun y -> fun z -> z (x y) y

5. Explain the meaning and the context of the terms covariance, contravariance and invariance.
Give examples in ML and Java to demonstrate why this distinction is needed.

1 Or you can make a boring old table as well. It’s exam term. I’ll understand.

	Meet the ancestors
	Types in programming languages

