
Complexity Theory
Exercises

2021

Contents

1. Algorithms and problems . 1
2. Polynomial-time problems . 1
3. Reductions . 2
4. NP-completeness . 2
5. NP-complete problems . 3

1. Algorithms and problems
1. a) Explain the formal connections between the notions of characteristic function, predicate,

decision problem, subset and language.

b) What is the di�erence between a Turing machine accepting vs. deciding a language L?
How does this distinction relate to the di�erence between recursively enumerable and
decidable languages? (Note: instead of accepting, decidable and recursively enumerable,
you will also often see the terms recognising, recursive and semidecidable, respectively).

c) What set-theoretic object (what kind of function or relation) is implemented by a Turing
machine accepting vs. deciding a language?

2. Say we are given a set V = { v1, . . . , vn } of vertices and a cost matrix c : V ×V → N. For an index
i ∈ [1..n] and a subset S ⊆ V , let T (S, i) denote the cost of the shortest path that starts at v1,
and visits all vertices in S, with the last stop being vi ∈ S. Describe a dynamic programming
algorithm that computes T(S, i) for all sets S ⊆ V and all i ≤ |V |. Show that your algorithm
can be used to solve the Travelling Salesman Problem in time O(n22n).

3. The lectures define Turing machines to have a transition function of type δ : (Q × Σ) →
(Q ∪ {acc,rej }) × Σ × D, where D = { L, R, S } is the set of directions that the tape head
can move in (left, right, stationary). In other literature you might find definitions that have
D = { L, R }, allowing only two directions and requiring that the tape head move at each
transition. Can such a Turing machine simulate the one described in lectures? Is the complexity
class P a�ected by this distinction?

2. Polynomial-time problems
1. Consider the language Unary-Prime in the one-letter alphabet { a } defined by Unary-Prime =
{ an | n is prime }. Show that this language is in P.

2. Suppose S ⊆ N is a subset of natural numbers and consider the language Unary-S in the
one-letter alphabet { a } defined by Unary-S = { an | n ∈ S }, and the language Binary-S in the
two-letter alphabet {0,1 } consisting of those strings starting with a 1 which are the binary
representation of a number in S. Show that if Unary-S is in P, then Binary-S is in TIME(2cn)
for some constant c.

3. We say that a propositional formula ϕ is in 2CNF if it is a conjunction of clauses, each of which
contains exactly two literals. The point of this problem is to show that the satisfiability problem
for formulas in 2CNF can be solved by a polynomial time algorithm.

First note that any clause with two literals can be written as an implication in exactly two ways.
For instance (P ∨ ¬Q) is equivalent to (Q =⇒ P) and (¬P =⇒¬Q), and (P ∨ Q) is equivalent
to (¬P =⇒ Q) and (¬Q =⇒ P). For any formula ϕ, define the directed graph Gϕ to be the
graph whose set of vertices is the set of all literals that occur in ϕ, and in which there is an
edge from literal P to literal Q if, and only if, the implication P =⇒Q is equivalent to one of
the clauses in ϕ.

CO M P L E X I T Y T H E O RY E X E R C I S E S

a) If ϕ has n variables and m clauses, give an upper bound on the number of vertices and
edges in Gϕ .

b) Show that ϕ is unsatisfiable if, and only if, there is a literal P such that there is a path in
Gϕ from P to ¬P and a path from ¬P to P .

c) Give an algorithm for verifying that a graph Gϕ satisfies the property stated in (b) above.
What is the complexity of your algorithm?

d) From (c) deduce that 2CNF-SAT is in P.

e) Why does this idea not work if we have three literals per clause?

4. A clause (i.e. a disjunction of literals) is called a Horn clause if it contains at most one positive
literal. Such a clause can be written as an implication: X ∨ ¬Y ∨ ¬W ∨ ¬Z is equivalent to
(Y ∧W ∧ Z =⇒ X). HORNSAT is the problem of deciding whether a given Boolean expression
that is a conjunction of Horn clauses is satisfiable.

Show that there is a polynomial time algorithm for solving HORNSAT.

3. Reductions
1. We define the complexity class of quasi-polynomial-time problems Quasi-P by:

Quasi-P=
∞
⋃

k=1

Time
�

n(log n)k
�

Show that if L1 ≤P L2 and L2 ∈ Quasi-P, then L1 ∈ Quasi-P.

2. In general, k-colourability is the problem of deciding, given a graph G = (V, E), whether there
is a colouring χ : V → {1, . . . , k } of the vertices such that if (u, v) ∈ E, then χ(u) 6= χ(v). That
is, adjacent vertices do not have the same colour.

a) Show that there is a polynomial time algorithm for solving 2-colourability.

b) Show that, for each k, k-colourability is reducible to (k + 1)-colourability. Does this,
together with part (a), mean that 3-colourability is also in P?

4. NP-completeness
1. Show that the identity function is a poly-time reduction, and composition of poly-time reduc-

tions is a poly-time reduction.

2. A problem in NP is called NP-intermediate if it is neither in P nor NP-complete.

a) Are there any problems that are known to be NP-intermediate?

b) Research and briefly summarise Ladner’s theorem.

3. Suppose that a language L1 ⊆ Σ∗1 is polynomial-time reducible to a language L2 ⊆ Σ∗2 with the
underlying function f : L1 ≤P L2. Prove or disprove the following claims, or state if the answer
is unknown and explain why:

CO M P L E X I T Y T H E O RY E X E R C I S E S

a) If L2 ≤P L1, then f is a bijection.

b) If f is a bijection, then L2 ≤P L1.

c) If f is a bijection, then L2 is in NP.

d) If f is a bijection and L1 is in NP, then L2 is in NP.

e) If L1 is NP-complete, then L2 ≤P L1.

f) If L2 is NP-complete, then L2 ≤P L1.

5. NP-complete problems
1. Given a graph G = (V, E), a set C ⊆ V of vertices is called a vertex cover of G if, for each edge
(u, v) ∈ E, either u ∈ C or v ∈ C . That is, each edge has at least one end point in C . The decision
problem V-COVER is defined as:

Given a graph G = (V, E), and an integer K , does G
contain a vertex cover with K or fewer elements?

a) Show a polynomial time reduction from IND to V-COVER.

b) Use a) to argue that V-COVER is NP-complete.

2. The problem of four-dimensional matching, 4DM, is defined analogously with 3DM:

Given four sets, W , X , Y and Z , each with n elements, and a set of
quadruples M ⊆W × X × Y × X , is there a subset M ′ ⊆ M such that each

element of W , X , Y and Z appears in exactly one tuple in M ′?

Show that 4DM is NP-complete.

3. Given a graph G = (V, E), a source vertex s ∈ V and a target vertex t ∈ V , a Hamiltonian path
from s to t in G is a path that begins at s, ends at t , and visits every vertex in V exactly once.
We define the decision problem HamPath as:

Given a graph G = (V, E) does G contain a Hamiltonian path?

a) Give a poly-time reduction from the Hamiltonian cycle problem to HamPath.

b) Give a poly-time reduction from HamPath to the Hamiltonian cycle problem.

c) Consider the following, modified statement of the Hamiltonian path problem:

Given a graph G = (V, E) and vertices s, t ∈ V ,
does G contain a Hamiltonian path from s to t?

Explain how this di�ers from the problem above, and comment on whether your reductions
in parts a) and b) can be simplified for this version.

4. We know from the Cook–Levin Theorem that every problem in NP is reducible to SAT. The proof
worked for a general nondeterministic Turing-machine, but for some problems it is easy to give
an explicit reduction. Describe how to obtain, for any graph G = (V, E), a Boolean expression
ϕG such that ϕG is satisfiable if and only if:

CO M P L E X I T Y T H E O RY E X E R C I S E S

a) G is 3-colourable.

b) G contains a Hamiltonian cycle.

Hint: By analysing the search space of the problem, determine a collection of Boolean variables
that can encode the relevant properties of the graph (cf. Si,q, Ti, j,σ and Hi, j in the Cook–Levin
Theorem proof). Give the constraints on the variables which are required to make the encoded
graph an instance of the given problem (cf. expressions (1)-(7) in the CLT proof). Combine these
with the constraints that would decide whether a potential instance is a member of the problem
or not (cf. expression (8) in the CLT proof).

5. An instance of a linear programming problem consists of a set X = { x1, . . . , xn } of variables
and a set of constraints, each of the form

∑

1≤i≤n ci x i ≤ b,

where each ci and b is an integer.

The 0-1 Integer Linear Programming Feasibility problem 01-ILP is defined as follows:

Given an instance of a linear programming problem, determine whether
there is an assignment of values from the set {0,1 } to the variables in X so

that substituting these values in the constraints leads to all constraints
being simultaneously satisfied.

Prove that this problem is NP-complete.

6. Self-reducibility refers to the property of some problems in L ∈ NP, where the problem of
finding a witness for the membership of an input x in L can be reduced to the decision problem
for L. This question asks you to give such arguments in three specific instances.

a) Show that, given an oracle (i.e. a black box) for deciding whether a formula ϕ over a set
of variables V = { x1, x2, . . . , xn } is satisfiable, there is a polynomial-time algorithm that
gives a variable assignment which satisfies a formula over V .

b) Show that, given an oracle for deciding whether a given graph G = (V, E) is Hamiltonian,
there is a polynomial-time algorithm that, on input G, outputs a Hamiltonian cycle in G if
one exists.

c) (Harder) Show that, given an oracle for deciding whether a given graph G is 3-colourable,
there is a polynomial-type algorithm that, on input G, produces a valid 3-colouring of G if
one exists.

Optional exercises
1. The problem E3SAT is defined as follows:

Given a set of clauses, each clause being a disjunction of exactly three
distinct literals and containing exactly three distinct variables, determine

whether it is satisfiable.

CO M P L E X I T Y T H E O RY E X E R C I S E S

Prove that E3SAT is NP-complete. Hint: introduce new variables to the set by adding a tautolo-
gical clause.

2. We use x; 0n to denote the string that is obtained by concatenating the string x with a separator
; followed by n occurrences of 0. If [M] represents the string encoding of a non-deterministic
Turing machine M , show that the following language is NP-complete:

S = { [M]; x; 0n | M accepts x in n steps }

Hint: Rather than attempting a reduction from a particular NP-complete problem, it is easier
to show this from first principles, i.e. construct a reduction for any NDTM M and polynomial
bound p.

	Algorithms and problems
	Polynomial-time problems
	Reductions
	NP-completeness
	NP-complete problems

