
Complexity Theory
Supervision 3 – Solutions

6. NP, co-NP, and UP
1. It is often claimed that a proof of the proposition P = NP would have drastic consequences: it

would let us solve di�cult optimisation problems e�ciently, but would also break security and
e-commerce by making public-key cryptography impossible. What objections could be made
against such a claim?

A proof of P = NP would certainly be a breakthrough in the study of computer science
and mathematics and would be a great surprise to most of the research community. The
question P

?
= NP is of course quite a thorny one with constant heated debate from both

sides – but the fact remains that despite P = NP being a problem that should be very
“easy” to prove (just provide a single poly-time algorithm to an NP-complete problem),
many decades of intense study has not managed to accomplish this. More interestingly,
there are a lot of “close calls”: algorithms which are just about exponential and would
have slipped into P if only there was a slightly di�erent detail or parameter in the proof.
Sometimes these close calls get misinterpreted, which may be why the list of proposed
attempts at deciding P

?
= NP is currently in favour of P = NP. But, as Scott Aronson put it,

“like any other successful scientific hypothesis, the P 6= NP hypothesis has passed severe
tests that it had no good reason to pass were it false” – any other empirical, experiment-
or measurement-based science would have concluded that P 6= NP decades ago.

Still, the question remains open, so there is a chance that P might equal NP. Does that
lead to immediate societal collapse all of our security systems would be compromised? Or
do we finally get around to building the flying cars we were promised? The truth is, even if
P = NP, our lives may not be impacted significantly.

The most obvious issue is that the proposed poly-time algorithm for an NP-complete prob-
lem may still be impractical – P is a very broad class and includes asymptotic complexities
that a programmer would simply laugh at. While it is the case that most of our “standard”
poly-time algorithms rarely exceed O(n4), the constants and exponents can stack up if we
go through several reduction steps. For example, imagine we find a poly-time algorithm
for a very niche, obscure NP-complete problem – generalised Pokémon, for example? In
theory, this means we have conclusive proof that our cryptography systems are insecure,
but we can also reap the benefits of tractable algorithms for protein folding. How would we
go about actually getting there? We can either try to reduce protein folding to generalised
Pokémon (problematic), or reduce it to SAT using Cook’s theorem, then go through the chain
of reductions that established that generalised Pokémon was NP-complete, and compose
the algorithms. Yes, the algorithm will still be polynomial, but ridiculously ine�cient. In
addition, you don’t even need the algorithm to be O(n1000) to call it impractical – it may
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well be O(n), only with an enormous constant factor. It’s easy to forget about constant
factors: the time to render an animated film is linear in the number of frames, but if every
frame takes a day to render, you’re looking at either a very short film or a very long wait
(or lots of computers, as in the case of Toy Story – but the 117-machine render farm still
completed about three minutes of the film per week).

Another interesting issue is that the proof P = NP may be nonconstructive – that is, it may
not actually give a useful (even in the broad sense) algorithm for solving NP problems.
Notably, this is the view held by Donald Knuth (Question 17), who knows a thing or two
about computing. P = NP can be interpreted as an existence proof, saying that there exists
an algorithm that can solve some particular NP problem in polynomial time. However,
there may not be a witness of this statement, i.e. we may not be able to extract the actual
algorithm, despite knowing that somewhere it exists. Or, for example, imagine proving the
statement “there do not exist NP-intermediate problems”, but your proof proceeds by
contradiction: if there exists an NP-intermediate problem, we get a logical contradiction.
This establishes P = NP (by Ladner’s theorem), but brings us no closer to breaking RSA or
revolutionising medicine. Such a possibility would certainly encourage further research
into actually finding a poly-time algorithm for an NP-complete problem, but there is still
no guarantee that it can be found in reasonable time.

Still another possibility is that the decision problem “is P = NP?” may itself be proved to
be unprovable or undecidable (or more precisely, independent of the axioms of ZFC). This
would also be an unusual result, but at this point even getting a result would be unusual.

2. The complexity class NP is closed under which of the following set-theoretic operations:
intersection, union, complement? Briefly justify your answers.

Let L and K be two languages in NP which are verifiable in O(nl) and O(nk), respectively.

• The intersection of L and K is still in NP: the verifier for L ∩ K simply runs the verifier
for the two languages one after the other and accepts only if both accept. This can be
done in O(nmax(k,l)), which is still polynomial.

• Similarly L ∪ K is in NP: run both verifiers and accept if at least one of them accepts.
• It is unknown if NP is closed under complement – this is exactly the question NP

?
=

co-NP, still unresolved.

3. Prove or disprove the following claims, or show that it is an open problem:

a) If L, K ∈ co-NP then L ∪ K ∈ co-NP.

By definition, L, K ∈ co-NP if L, K ∈ NP. Now,

L ∪ K ∈ co-NP ⇔ L ∪ K ∈ NP ⇔ L ∩ K ∈ NP

and the last condition holds since NP is closed under intersection.

b) If L ∈ NP, K ⊂ L and K ∈ co-NP then L \ K ∈ NP.

https://en.wikipedia.org/wiki/Toy_Story#Animation
https://www.informit.com/articles/article.aspx?p=2213858
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Follows from L ∈ NP, K ∈ NP, L \ K = L ∩ K , and closure of NP under intersection.

c) If L is NP-complete, then D = { x x | x ∈ L } is NP-complete.

The language D is in NP: given any input we can split it into two halves, check that
the halves are equal, and check if a half is in L, all in polynomial time. To show that
D is NP-hard, we reduce an NP-complete language to it – L itself is a good choice,
with the reduction f (x) = x x . Note that, in general, NP-complete languages are not
closed under concatenation (or any other standard operation on languages).

4. Show that a language L is in co-NP if, and only if, there is a nondeterministic Turing machine M
and a polynomial p such that M halts in time p(n) for all inputs x of length n, and L is exactly
the set of strings x such that all computations of M on input x end in an accepting state.

This question nicely captures the duality between NP and co-NP. Consider a nondetermin-
istic Turing machine M which halts on all inputs in polynomial time. The main property of
M that we use is that the language of strings for which every computation is accepting is
the complement of

(⇒) Assume L is in co-NP, that is, L ∈ NP. By definition, there exists an NDTM ML which
accepts L time bounded by a polynomial p. We can construct a machine ML as follows: on
input x , simulate ML for at most p(|x |) steps, and end in state acc if ML rejects or runs
out of time, and rej otherwise. By construction, ML runs for at most p(|x |) steps for an
input x ∈ L. To show that L is the set of strings on which all computations of ML end in
an accepting state, it is su�cient to show that the complement L is the set of strings for
which there exists a computation of ML that ends in a rejecting state. A string x is in L if
and only if there exists an accepting computation of ML on x , which, by construction, is
equivalent to there existing a rejecting computation of ML , as required.

(⇐) Assume there exists a machine ML and polynomial p such that M halts in time p(|x |)
for all inputs x and L is the set of strings for which all computations of M end in an
accepting state. We need to prove that L ∈ co-NP, or equivalently, L ∈ NP. We define the
suitable nondeterministic TM ML that accepts L by swapping the rejecting and accepting
states of ML . ML halts in polynomial time p(|x |) since so does ML . Next, we take an x ∈ L
and prove that there exist an accepting computation of ML on x . By construction, it is
su�cient to show that there exists a rejecting computation of ML on x ; but we know that
this must be the case because the set of strings for which this is not the case is exactly L,
but x is an element of the complement L.

5. Define a strong nondeterministic Turing machine as one where each computation has three
possible outcomes: accept, reject or maybe. If M is such a machine, we say that it accepts L,
if for every x ∈ L, every computation path of M on x ends in either accept or maybe, with at
least one accept, and for x 6∈ L, every computation path of M on x ends in reject or maybe,
with at least one reject.

Show that if L is decided by a strong nondeterministic Turing machine running in polynomial
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time, then L ∈ NP ∩ co-NP.

Assume L is decided by a strong NTDM M in time bounded by a polynomial p. We need
to show that L is both in NP and co-NP by a simulation argument. Construct a (standard)
NDTM M1 that simulates M , but when M would halt in the maybe state, M1 goes into
an infinite loop. If M accepts L, there must be at least one accepting computation for
every string x ∈ L (and any number of maybes), so M1 will accept (again by the standard
definition of acceptance by an NDTM). Similarly, construct M2 from M1 by swapping accepts
and rejects, so if M ends in at least one reject for an x ∈ L (and any number of maybes),
M2 will end in at least one accept for strings in L.

6. We saw in the lectures that if there is a one-way function, then there is a language L in UP that
is not in P. Suppose that the RSA function described in the lecture notes (page 38) is a one-way
function. What is the language L that can then be proved to be in UP \ P?

Following the proof in the notes, fix positive integers e, p, q and define the language L as

L ¬ { (b, y) | ∃x . x ≤ b ∧ x e mod pq = y }

Alternatively, if we do not take e, p, q to be fixed, suppose we have two injections g : N3�N
and h: N4�N, and define L as

L ¬ { (b, y) | ∃x , e, p, q. h(x , e, p, q)≤ b ∧ g(x e mod pq, pq, e) = y }

The injections ensure that the input 4-tuples and output triples are mapped to (unique)
natural numbers that can be compared.

7. Space complexity
1. Show that, for every nondeterministic machine M which uses O(log n) work space, there is a

machine R with three tapes (input, work and output) which works as follows: on input x ,
R produces on its output tape a description of the configuration graph for M , x , and R uses
O(log |x |) space on its work tape.

Explain why this means that if Reachability is in L, then L= NL.

The configuration graph of a machine running in O(log n) space is nclog n, so constructing
it on the work tape will not work. However, the configuration graph is “static” in that its
nodes can be computed one-by-one, without having to modify previously computed values.
Thus, we can write the encoded graph directly on the output tape and only use the work
tape to keep track of individual transitions. Specifically, we go through all configurations of
M , determining the edges in the graph by writing two configurations on the work tape and
determining (by looking at the machine description on input) whether there is a transition
between them. The configurations only need to include the work tape contents, since the
input of M is the same as the input of R – and since M uses logarithmic work space, the
two configurations on R’s work space will also have length O(log |x |), as required.

https://www.cl.cam.ac.uk/teaching/current/Complexity/notes.pdf#page=43
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The above algorithm serves as a log-space reduction of a problem S in NL to Reachability,
since a nondeterministic machine M accepts a string x in logarithmic space if and only
if the configuration graph has a path from the start state to an accepting state, and R
produces this configuration graph in logarithmic space. By the property of reductions, if
Reachability is in L, the reduction S ≤L Reachability implies that S ∈ L as well (where
we must take care to compose log-space computations without producing intermediate
results). Thus, if Reachability ∈ L, every problem in NL is in L, proving that L= NL.

2. Consider the language L in the alphabet { a, b } given by L = { an bn | n ∈ N }. The language L
is not in SPACE(c) for any constant c. Why?

A Turing machine that uses constant work space is essentially a finite-state automaton:
it has a fixed number of cells it can write to, and therefore a fixed limit on the “memory”
usage. Indeed, any FA can be converted into a constant-space Turing machine, for example,
by turning the set of FA states into the set of TM states, FA transitions into TM transitions,
and using no work space (which is certainly in SPACE(c) for any constant c ∈ N). If this TM
accepted the language { an bn | n ∈ N }, so would the original finite automaton; but as you
may remember from IA Discrete Mathematics, { an bn | n ∈ N } is not a regular language
and thus can’t be accepted by any finite automaton, leading to a contradiction.

3. Consider the algorithm presented in the lecture which establishes that Reachability is in
SPACE((log n)2). What is the time complexity of this algorithm?

Can you generalise the time bound to the entire complexity class? That is, give a class of
functions F such that

SPACE((log n)2) ⊆
⋃

f ∈F

TIME( f )

Let n be the length of the path, v be the number of vertices and e be the number of edges.
The algorithm goes over, (a) two recursive calls (b) for each vertex (c) each time halving the
path-length and (d) a (worst-case) linear search for the edge (a, b).

T (n) = 2
︸︷︷︸

a

· v
︸︷︷︸

b

· T (n/2)
︸ ︷︷ ︸

c

+ e
︸︷︷︸

d

The relation can be solved using the usual substitution method:

T (n) = 2vT ( n
2) + e = 2vT ( n

2) + e
= 2v(2vT ( n

4) + e) + e = 4v2T ( n
4) + 2ve+ e

= 4v2(T ( n
8) + e) + 2ve+ e = 8v3T ( n

8) + 4v2e+ 2ve+ e
. . .

= (2v)kT ( n
2k ) + e ·
∑k−1

i=0 (2v)k = (2v)kT ( n
2k ) + e ·O((2v)k)

where the sum of the geometric series
∑k−1

i=0 (2v)k is of the order O((2v)k). After k = log2 n
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iterations we reach the base case with T (1) = 1, giving the sum

nvlog n + e ·O(nvlog n)

Since the length of the path must be at most v − 1 and the number of edges is at most v2,
this simplifies to

nlog n+1 +O(nlog n+3)≈ O(nlog n+3)

A loose bound for the whole complexity class would therefore be

SPACE((log n)2) ⊆
⋃

k∈N
TIME(nk log n)

8. Hierarchy
1. On page 42 of the notes, a number of functions are listed as being constructible. Show that this

is the case by giving, for each one, a description of an appropriate Turing machine. Instead of
dlog ne, you may find it easier to try n · dlog ne.

Prove that if f and g are constructible functions and f (n)≥ n, then so are f ◦ g , f + g , f × g
and 2 f .

n: On input of length n, replace every symbol with 0. This uses linear time and no work
space.

n · dlog ne: Read the input one-by-one, erasing the symbol and incrementing a binary
counter on the work tape for each cell. Then, write a 0 on the input tape for every symbol
on the work tape. The binary counter uses dlog ne work space (so, in fact, log n is easily
shown to be space-constructible), and incrementing it once may require dlog ne bit flips,
so the total time for n increments is n · dlog ne. By exploiting the fact that each successive
bit in the binary representation gets flipped exponentially less often, the time taken to
convert the input to binary may be lowered to O(n) = O(log n + n), which shows that
dlog ne is time-constructible as well.

n2: Copy the input to the work tape n times, then copy the work tape back to the input,
changing all the bits to 0. Space usage is O(n2), time usage is O(2n2) = O(n2).

2n: Write 0 on the work tape, then, for each symbol in the input, double the contents of the
work tape. Finally, copy the work tape on the input tape. Space and time usage are both
exponential.

f ◦ g : Assume f and g are constructible and f (n)> n. On input of length n, construct g by
writing g(n) 0s on the input tape. Construct f using the input 0g(n), producing the required
string 0 f (g(n)) on the input tape. The work tape can be reused after the construction of g ,
and since f (n)> n, the work space usage of f will dominate with O( f (g(n))). Since the
input only needs to be read once, the time usage is O(n+ g(n) + f (g(n))), which is also
O( f (g(n))).

https://www.cl.cam.ac.uk/teaching/current/Complexity/notes.pdf#page=46
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f + g : Make a copy of the input to a work tape and construct f , not altering the copy (e.g. by
writing on a separate work tape). Use the copied input to construct g , concatenating the
output to the 0 f (n) string on the input tape. The space and time used are O(n+ f (n)+ g(n)),
but since f (n)> n, this is O( f (n) + g(n)).

f · g : Make a copy of the input to a work tape and construct f , not altering the copy, then
use it to construct g , writing its output to a work tape. Finally, copy 0g(n) to the input tape
f (n)− 1 more times. Since f (n)> n, the space and time usage is O( f (n) · g(n)).

2 f : Construct f , then run the machine that constructs 2n on 0 f (n).

2. For any constructible function f , and any language L ∈ NTIME( f (n)), there is a nondetermin-
istic machine M that accepts L and all of whose computations terminate in time O( f (n)) for
all inputs of length n. Give a detailed argument for this statement, describing how M might be
obtained from a machine accepting L in time f (n).

Let L be a language in NTIME( f (n)) for a constructible function f . By definition, this
means that there is a nondeterministing TM M such that for every string u ∈ L there is
at least one accepting computation that uses O( f (n)) time, but there is no bound on the
runtime of other computations. This question asks us to show that there is a machine M ′

where the length of all computation paths are bounded by f . The construction is similar to
Ex. 6.4 in that the bound is explicitly used as a “timer” – the di�erence being that f is now
a constructible function, rather than a polynomial. Even though it’s a vastly more general
class of functions, the point of the definition of constructible functions is that computing
them does not exceed the bound they impose, so using them as a “timer” and/or “yardstick”
is appropriate.

The machine M ′ can be constructed from M by – for example – adding a new tape, and, given
an input string u, writing out f (|u|) in unary on the new tape. Then, for every computation
step of M , a 1 at the end of the second tape is erased and the tape head is moved one
to the left (i.e. the counter is decremented). If the beginning of the timer tape is reached,
the string is rejected; otherwise, the result is the same as that of M . By assumption, if
u is in L, there must be at least one accepting computation path of M before the timer
runs out, so u will be accepted by M ′ as well. Otherwise, either u is rejected by M before
the timer runs out (and so will M ′), or the length of the computation exceeds the limit
imposed by the timer, in which case the string is again rejected. Since the timer imposes
an upper bound on the runtime, no computation path will be longer than f (|u|), and since
f is a constructible function, computing the initial timer string on the new tape will take
O( f (|u|)) time (we can assume that f (n)≤ n for all n since we must at least take n steps
to read the input string of length n). Overall, all computations of M ′ terminate in O( f (|u|))
time and the machine accepts L, as required.
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Optional exercises
1. POLYLOGSPACE is the complexity class

⋃

k

SPACE((log n)k).

a) Show that, for any k, if A∈ SPACE((logn)k) and B ≤L A, then B ∈ SPACE((log n)k).

b) Show that there are no POLYLOGSPACE-complete problems with respect to ≤L . (/Hint/:
use a) and the Space Hierarchy Theorem).

c) Which of the following might be true: P ⊆ POLYLOGSPACE, P ⊇ POLYLOGSPACE, P =
POLYLOGSPACE?

d) What is the relationship between the class POLYLOGSPACE and the class Quasi-P (see
Exercise Sheet 1, Question 3.1)?

2. In the lecture, a proof of the Time Hierarchy Theorem was sketched. Give a similar argument for
the following Space Hierarchy Theorem:

For every constructible function f , there is a language in
SPACE( f (n)× log( f (n))) that is not in SPACE( f (n)).

Use this to show that if SPACE((log n)2) ⊆ P , then L 6= P.
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