
Complexity Theory
Supervision 3

6. NP, co-NP, and UP
1. It is often claimed that a proof of the proposition P = NP would have drastic consequences: it

would let us solve di�cult optimisation problems e�ciently, but would also break security and
e-commerce by making public-key cryptography impossible. What objections could be made
against such a claim?

2. The complexity class NP is closed under which of the following set-theoretic operations:
intersection, union, complement? Briefly justify your answers.

3. Prove or disprove the following claims, or show that it is an open problem:

a) If L, K ∈ co-NP then L ∪ K ∈ co-NP.

b) If L ∈ NP, K ⊂ L and K ∈ co-NP then L \ K ∈ NP.

c) If L is NP-complete, then D = { x x | x ∈ L } is NP-complete.

4. Show that a language L is in co-NP if, and only if, there is a nondeterministic Turing machine M
and a polynomial p such that M halts in time p(n) for all inputs x of length n, and L is exactly
the set of strings x such that all computations of M on input x end in an accepting state.

5. Define a strong nondeterministic Turing machine as one where each computation has three
possible outcomes: accept, reject or maybe. If M is such a machine, we say that it accepts L,
if for every x ∈ L, every computation path of M on x ends in either accept or maybe, with at
least one accept, and for x 6∈ L, every computation path of M on x ends in reject or maybe,
with at least one reject.

Show that if L is decided by a strong nondeterministic Turing machine running in polynomial
time, then L ∈ NP ∩ co-NP.

6. We saw in the lectures that if there is a one-way function, then there is a language L in UP that
is not in P. Suppose that the RSA function described in the lecture notes (page 38) is a one-way
function. What is the language L that can then be proved to be in UP \ P?

7. Space complexity
1. Show that, for every nondeterministic machine M which uses O(log n) work space, there is a

machine R with three tapes (input, work and output) which works as follows: on input x ,
R produces on its output tape a description of the configuration graph for M , x , and R uses
O(log |x |) space on its work tape.

Explain why this means that if Reachability is in L, then L= NL.

2. Consider the language L in the alphabet { a, b } given by L = { an bn | n ∈ N }. The language L
is not in SPACE(c) for any constant c. Why?

CO M P L E X I T Y T H E O RY S U P E R V I S I O N 3

3. Consider the algorithm presented in the lecture which establishes that Reachability is in
SPACE((log n)2). What is the time complexity of this algorithm?

Can you generalise the time bound to the entire complexity class? That is, give a class of
functions F such that

SPACE((log n)2) ⊆
⋃

f ∈F

TIME(f)

8. Hierarchy
1. On page 42 of the notes, a number of functions are listed as being constructible. Show that this

is the case by giving, for each one, a description of an appropriate Turing machine. Instead of
dlog ne, you may find it easier to try n · dlog ne.

Prove that if f and g are constructible functions and f (n)≥ n, then so are f ◦ g , f + g , f × g
and 2 f .

2. For any constructible function f , and any language L ∈ NTIME(f (n)), there is a nondetermin-
istic machine M that accepts L and all of whose computations terminate in time O(f (n)) for
all inputs of length n. Give a detailed argument for this statement, describing how M might be
obtained from a machine accepting L in time f (n).

Optional exercises
1. POLYLOGSPACE is the complexity class

⋃

k

SPACE((log n)k).

a) Show that, for any k, if A∈ SPACE((logn)k) and B ≤L A, then B ∈ SPACE((log n)k).

b) Show that there are no POLYLOGSPACE-complete problems with respect to ≤L . (/Hint/:
use a) and the Space Hierarchy Theorem).

c) Which of the following might be true: P ⊆ POLYLOGSPACE, P ⊇ POLYLOGSPACE, P =
POLYLOGSPACE?

d) What is the relationship between the class POLYLOGSPACE and the class Quasi-P (see
Exercise Sheet 1, Question 3.1)?

2. In the lecture, a proof of the Time Hierarchy Theorem was sketched. Give a similar argument for
the following Space Hierarchy Theorem:

For every constructible function f , there is a language in
SPACE(f (n)× log(f (n))) that is not in SPACE(f (n)).

Use this to show that if SPACE((log n)2) ⊆ P , then L 6= P.

https://www.cl.cam.ac.uk/teaching/current/Complexity/notes.pdf#page=46

	NP, co-NP, and UP
	Space complexity
	Hierarchy

