
Complexity Theory
Supervision 2 – Solutions

4. NP-completeness
1. Show that the identity function is a poly-time reduction, and composition of poly-time reduc-

tions is a poly-time reduction.

The Turing machine computing the identity function halts as soon as it is started, since the
output of the computation is the input itself. This of course takes constant time, which is
polynomial – thus, L ≤P L for all languages L.

Suppose f : L1 ≤P L2 and g : L2 ≤P L3 are two poly-time reductions. We want to show
that g ◦ f : L1 ≤P L3 is also a poly-time reduction. The Turing-machine computing g ◦ f on
input x first runs computes f (x) with the machine computing f , then runs the machine
computing g on f (x) to get g(f (x)). If x ∈ L1, then f (x) ∈ L2 (since f is a reduction), and
hence g(f (x)) ∈ L3 (since g is a reduction); similarly if x 6∈ L1. Thus, g ◦ f is a reduction,
but we also need to make sure that it is a polynomial-time reduction. Computing f (x)
takes time p1(x) for a polynomial p1, then continuing with g takes at most p2(p1(x))
time, since the length of f (x) can be at most polynomial in the length of x . However,
polynomials of polynomials are also polynomials (due to the distributivity of multiplication
over addition), so p2(p1(x)) = p3(x) for some polynomial p3. We can therefore conclude
that g ◦ f : L1 ≤P L3 is indeed a poly-time reduction.

It’s worth noting that this result is not so straightforward for other types of resource-
bounded reductions – it makes use of the fact that polynomial functions themselves
compose. As a trickier example, consider the composition of logarithmic space reductions
– what goes wrong with the “obvious” solution and can it be overcome?

2. A problem in NP is called NP-intermediate if it is neither in P nor NP-complete.

a) Are there any problems that are known to be NP-intermediate?

If there were, that would immediately imply that P and NP are distinct, which is not
known (though very much suspected).

b) Research and briefly summarise Ladner’s theorem.

Ladner’s theorem states that the converse of the above also holds: if P and NP are
distinct, then there exist NP-intermediate languages. This also implies that P = NP
if and only if there are no NP-intermediate languages. This is another avenue for
trying to tackle P

?
= NP: there are several problems that are suspected to be NP-

intermediate (such as integer factorisation), because intuitively they seem simpler
than other NP-complete problems.

CO M P L E X I T Y T H E O RY S U P E R V I S I O N 2 – S O LU T I O N S

3. Suppose that a language L1 ⊆ Σ∗1 is polynomial-time reducible to a language L2 ⊆ Σ∗2 with the
underlying function f : L1 ≤P L2. Prove or disprove the following claims, or state if the answer
is unknown and explain why:

a) If L2 ≤P L1, then f is a bijection.

False. As the notes state, the reduction function does not need to be a surjection
(i.e. cover its whole codomain): it may map every string in L1 to a single string in L2,
and all strings outside L1 to a string outside L2, and thus have a range of size 2. Taken
as a function on strings, f cannot have an inverse. If in addition there is a reduction
from L2 to L1, its underlying function must be di�erent from f , so L2 ≤P L1 does not
pose any extra constraints on f .

b) If f is a bijection, then L2 ≤P L1.

Unknown. If f is a poly-time reduction, asking whether the inverse f −1 is also a
poly-time reduction (giving us L2 ≤P L1) is asking whether one-way functions (see
later) exist, which is an unknown problem.

c) If f is a bijection, then L2 is in NP.

False. There are no constraints on L1 – it could be a language outside of NP. Then,
a trivial bijective reduction is the identity reduction id : L1 ≤P L1 (see Ex. 4.1), but
L2 = L1 is not in NP by assumption.

d) If f is a bijection and L1 is in NP, then L2 is in NP.

True. In fact, it’s enough if f is a surjection: that is, for every string y ∈ Σ∗2, there
exists a string x ∈ Σ∗1 such that f (x) = y . To show that L2 is in NP, we need to
describe a nondeterministic polynomial algorithm to decide whether a y ∈ Σ∗2 is in
L2. Given such an input y ∈ Σ∗2, by surjectivity, there must exist an x ∈ Σ∗1 such that
f (x) = y . We can find this by nondeterministically guessing an x and polynomially
computing f (x) to check whether f (x) = y . Once we found such an x , we can use
the decision procedure for L1 to check whether x ∈ L1, and by the reduction property
of f , f (x) = y must be in L2.

e) If L1 is NP-complete, then L2 ≤P L1.

False. Every NP-problem is reducible to L1, and L1 is reducible to L2, so by composition
of reductions, every NP-problem is reducible to L2, making it NP-hard. However,
there’s no reason for L2 to be in NP, so it’s not necessarily NP-complete – for example,
it could be the Halting Problem, which is NP-hard but not in NP.

f) If L2 is NP-complete, then L2 ≤P L1.

Unknown. By the standard result of reductions, if L2 is in NP then L1 must also be
in NP. To show that L2 ≤P L1, we would need to prove that L1 is NP-complete –
however, we don’t know that L1 is NP-hard. But this problem is di�erent from the

CO M P L E X I T Y T H E O RY S U P E R V I S I O N 2 – S O LU T I O N S

previous one, since we cannot conclude anything definitively. It may be true if P = NP
because every language in P is poly-time reducible to any other language in P (the
reduction can simply decide the second language). It may also be false if P 6= NP and
L1 is in P or is NP-intermediate.

5. NP-complete problems
1. Given a graph G = (V, E), a set C ⊆ V of vertices is called a vertex cover of G if, for each edge
(u, v) ∈ E, either u ∈ C or v ∈ C . That is, each edge has at least one end point in C . The decision
problem V-COVER is defined as:

Given a graph G = (V, E), and an integer K , does G
contain a vertex cover with K or fewer elements?

a) Show a polynomial time reduction from IND to V-COVER.

Given a graph G = (V, E), C ⊆ V is a vertex cover of G if V \ C is an independent
set: there are no edges which have either of their endpoints in V \ C , because at
least one endpoint of every edge is in C . Thus, the input (G = (V, E), K) of IND
can be transformed to ((V, E), |V | − K) as the input to V-COVER, and this poly-time
transformation will be a reduction due to the opposite nature of the problems.

b) Use a) to argue that V-COVER is NP-complete.

V-COVER is in NP, since we can verify a candidate vertex cover by analysing the
graph and the budget. We also showed that IND ≤P V-COVER, and since IND is
NP-complete, V-COVER is NP-hard. Put together, we get that V-COVER is also NP-
complete.

2. The problem of four-dimensional matching, 4DM, is defined analogously with 3DM:

Given four sets, W , X , Y and Z , each with n elements, and a set of
quadruples M ⊆W × X × Y × Z , is there a subset M ′ ⊆ M such that each

element of W , X , Y and Z appears in exactly one tuple in M ′?

Show that 4DM is NP-complete.

4DM is in NP since any proposed solution can be checked in polynomial time by seeing
if any node in any set appears more than once. To show that 4DM is also NP-hard, we
present a reduction from 3DM (a known NP-complete problem) to 4DM.

If we can find a matching given four sets W , X , Y and Z , any three of those sets (e.g. X ,
Y , Z) will necessarily have a 3D matching. Hence to transform the input to 3DM into the
input to 4DM, we simply add a new set W with the same number of elements as X , and
modify every triple (x i, y j, zk) to a 4-tuple (wi, x i, y j, zk) – that is, we add a one-to-one
edge between every pair in W and X , giving us a trivial bipartite matching. These edges
cannot a�ect whether there is a 3D matching for X , Y , and Z , so the original three sets have
a 3D matching if and only if W , X , Y , and Z have a 4D matching. (Note that the matching

CO M P L E X I T Y T H E O RY S U P E R V I S I O N 2 – S O LU T I O N S

problem can be generalised to sets of di�erent size, as in the diagram below.)

3. Given a graph G = (V, E), a source vertex s ∈ V and a target vertex t ∈ V , a Hamiltonian path
from s to t in G is a path that begins at s, ends at t , and visits every vertex in V exactly once.
We define the decision problem HamPath as:

Given a graph G = (V, E) does G contain a Hamiltonian path?

a) Give a poly-time reduction from the Hamiltonian cycle problem to HamPath.

The reduction is not as simple as saying “run the Hamiltonian path algorithm with
the same starting point and endpoint”, since the endpoints are not inputs to the
HamPath problem, and a path with the same endpoints can’t be Hamiltonian (since
the endpoints would appear twice.). Given that we have no explicit control over the
endpoints of the path, we must modify the graph in a way that forces a particular pair
of vertices to be the endpoints. We also can’t look for a path between any node s and
an adjacent node t , because that may not result in a Hamiltonian path even if the
original graph has a cycle (and, as always, the reduction property is a bi-implication).

Take any vertex v of G and make a copy v′ which has the exact same connections
as v. Then, add the nodes s and t , with s connected to v only, and t connected to
v′ only – call this new graph G′. If G has a Hamiltonian cycle, it must go through
v; if we “reroute” the cycle to start from v, then move to v′ at the last step instead
of returning to v, we can extend this to a path from s to t . If v � u � . . . � u′ � v
is a Hamiltonian cycle in G, the path (s � v � u � . . . � u′ � v′ � t will not
include any duplicate nodes (as s, t and v′ are newly added vertices), so it will also
be Hamiltonian. Conversely, if s � v � u � . . . � u′ � v′ � t is a Hamiltonian path

CO M P L E X I T Y T H E O RY S U P E R V I S I O N 2 – S O LU T I O N S

(and any Hamiltonian path must start at s and end at t , otherwise they would never
be reached), by the construction of G′ there must be an edge from u′ to v (as v′ is
just a copy of v), and the resulting cycle v � u � . . . � u′ � v will not contain any
duplicate nodes (other than v).

v

u

u′

v

u

u′

 v′

 t

s

≤p

If the graph is directed, this reduction can be simplified to splitting a vertex v into two
vertices s and t , with s only containing the outgoing edges of v, and t containing the
incoming edges of v. A Hamiltonian cycle in the original graph becomes a Hamiltonian
path from s to t , and since the only possible Hamiltonian path in G′ must be from s
to t (as they can’t be intermediate nodes), we can turn one into a cycle by rejoining s
and t into v.

b) Give a poly-time reduction from HamPath to the Hamiltonian cycle problem.

Again, we can’t just “connect the two ends” of the existing Hamiltonian path, since
we don’t know what the endpoints are. However, we can do something quite dramatic
which will definitely connect the endpoints of a path, if it exists: add a new node x
to the graph, and connect it to every other node with a single edge. Now, if G has a
Hamiltonian path s � v � . . . � v′ � t between s and t , this can be extended in G′

to s � v � . . . � v′ � t � x � s into a cycle – and as the only new node we added
to the cycle is x , it must be Hamiltonian. Conversely, if we can find a Hamiltonian
cycle in G′, it must go through x preceded by some node t ′ and succeeded by some
node s′; if we remove x and all its connections, we will be left with a Hamiltonian
path from s′ to t ′, as it will be a subpath of the original cycle.

s

t

s

t

 x≤P

c) Consider the following, modified statement of the Hamiltonian path problem:

CO M P L E X I T Y T H E O RY S U P E R V I S I O N 2 – S O LU T I O N S

Given a graph G = (V, E) and vertices s, t ∈ V ,
does G contain a Hamiltonian path from s to t?

Explain how this di�ers from the problem above, and comment on whether your reductions
in parts a) and b) can be simplified for this version.

The di�erence is that the endpoints s and t are now inputs to the problem: we are
asking whether there exists a Hamiltonian path between a specific pair of vertices.
This of course means that even if a graph has a Hamiltonian path, there might not be
one between two particular points.

Knowing the endpoints lets us simplify the more general algorithms above. In the
reduction of HamPath to HAM, we needed to add a new node connect it to every
other node because we didn’t know where the Hamiltonian path started. In this case,
s and t are part of the input, so it is enough to connect the new node to s and t only.
Why can’t we just add an edge between s and t directly? While one direction of the
reduction proof would work (if there is a path between s and t , it can be closed into a
cycle with one edge), there is no guarantee that a Hamiltonian cycle in the modified
graph would go through our new edge – there’s no reason s and t would need to be
adjacent. By explicitly adding a new node we force the cycle to have s and t next to
each other (separated by x), which can be turned into a path by removing x .

To reduce HAM to HamPath, we still can’t “call” the path algorithm with the same start
and endpoint (since one node can’t appear twice in the path), or with an arbitrary
node and one of its neighbours (the edge connecting them may not be part of a
Hamiltonian cycle, of which there may only be one in the graph). We have to create a
copy v′ of one of the nodes v, but we need not add explicit source and target vertices
s and t , since v and v′ can be made the inputs of the modified path problem.

4. We know from the Cook–Levin Theorem that every problem in NP is reducible to SAT. The proof
worked for a general nondeterministic Turing-machine, but for some problems it is easy to give
an explicit reduction. Describe how to obtain, for any graph G = (V, E), a Boolean expression
ϕG such that ϕG is satisfiable if and only if:

a) G is 3-colourable.

The search space for possible solutions to graph-colourability is colour assignments
for every vertex of a graph. If the problem was 2-colourability, a Boolean variable
could correspond to one colour. This is not the case for three colours, so we need a
way to encode colour as two or more Boolean variables. For simplicity, we can use
“one-hot” encoding, with three Boolean variables R, G and B of which only one can
be true at a time. We have three such variables Ri , Gi and Bi for every graph node
vi ∈ V , for a total of 3|V | variables. To encode a potential instance to the problem,
i.e. a specific assignment of colours to vertices, we need to ensure that every vertex

CO M P L E X I T Y T H E O RY S U P E R V I S I O N 2 – S O LU T I O N S

has at most one colour:
∧

vi∈V

(Ri ∧ ¬Gi ∧ ¬Bi) ∨ (¬Ri ∧ Gi ∧ ¬Bi) ∨ (¬Ri ∧ ¬Gi ∧ Bi) 1©

Finally, to determine whether an assignment of colours is a valid 3-colouring, we
require that no two adjacent nodes have the same colour:

∧

(vi ,v j)∈E

¬(Ri ∧ R j) ∧ ¬(Gi ∧ G j) ∧ ¬(Bi ∧ B j) 2©

Conjoining these two expressions will result in a Boolean formula which is satisfiable
if and only if the graph is 3-colourable: on the one hand, 1© every node has a unique
colouring and 2© no adjacent nodes have the same colour; on the other, if the graph
has a 3-colouring, the three colour variables corresponding to the vertex colours can
be uniquely set to satisfy the formula.

b) G contains a Hamiltonian cycle.

The search space is the set of possible vertex orderings. A simple way to encode this
is with |V |2 variables Hp,v which indicate whether the vertex v is in position p along
the Hamiltonian cycle. The collection of variables represents a path of length n = |V |
in the graph if:

• every slot in the path is occupied, i.e. for every position p, one of the Hp,v must
be true:

n
∧

p=1

∨

v∈V

Hp,v

• two adjacent vertices in the path must correspond to adjacent vertices in the
graph, i.e. for every pair of consecutive positions there must exist a corresponding
edge in the graph:

n−1
∧

p=1

∨

(v,u)∈E

Hp,v ∧ Hp+1,u

A path is Hamiltonian if:

• every vertex appears in the path, i.e. for every vertex v, one of the Hp,v must be
true:

∧

v∈V

n
∨

p

Hp,v

• a vertex appears only once in the path, i.e. if a vertex is at two positions, the
positions must be equal:

∧

v∈V

n
∧

p=1

n
∧

q=1

(Hp,v ∧ Hq,v) =⇒ p = q

Finally, a Hamiltonian path can be closed in a cycle if there is an edge from the last

CO M P L E X I T Y T H E O RY S U P E R V I S I O N 2 – S O LU T I O N S

node in the path to the first:
∨

(v,u)∈E

Hn,v ∧ H1,u

Taking the conjunction of these five conditions, we ensure that any satisfying variable
assignment can be directly mapped into a Hamiltonian cycle (just reading o� the
position and vertex for every variable set to true), and any Hamiltonian cycle in the
graph will give a satisfying interpretation by setting the relevant variables to true.

An alternative collection of constraints is as follows, where P = [1, |V |) be the set of
position:

• every vertex is in at least one position
∧

v∈V

∨

p∈P

Hp,v

• if a vertex v is at position p, then it cannot be at any other position q 6= p and no
other vertex u 6= v can be at that position; i.e. every vertex must be in at most
one position:

∧

v∈V

∧

p∈P

Hp,v =⇒
∧

q∈P\{ p }
¬Hq,v ∧
∧

u∈V\{ v }
¬Hp,u

• every adjacent pair of nodes must have an edge connecting them (note the
modular arithmetic to complete the cycle):

∧

p∈P

∨

(u,v)∈E

Hp,u ∧Hp+1 (mod |V |),v

Hint: By analysing the search space of the problem, determine a collection of Boolean variables
that can encode the relevant properties of the graph (cf. Si,q, Ti, j,σ and Hi, j in the Cook–Levin
Theorem proof). Give the constraints on the variables which are required to make the encoded
graph an instance of the given problem (cf. expressions (1)-(7) in the CLT proof). Combine these
with the constraints that would decide whether a potential instance is a member of the problem
or not (cf. expression (8) in the CLT proof).

5. An instance of a linear programming problem consists of a set X = { x1, . . . , xn } of variables
and a set of constraints, each of the form

∑

1≤i≤n ci x i ≤ b,

where each ci and b is an integer.

The 0-1 Integer Linear Programming Feasibility problem 01-ILP is defined as follows:

Given an instance of a linear programming problem, determine whether there
is an assignment of values from the set {0, 1 } to the variables in X so that
substituting these values in the constraints leads to all constraints being

simultaneously satisfied.

Prove that this problem is NP-complete.

CO M P L E X I T Y T H E O RY S U P E R V I S I O N 2 – S O LU T I O N S

As usual, there are two things to prove: that the problem is in NP, and that it is NP-
hard. The first part is easy: given a proposed assignment of the variables, we can check
whether all constraints are satisfied in O(cn) time, where n is the number of variables
and c is the number of constraints. NP-hardness is established by reducing another NP-
complete problem to 01-ILP. Many NPC-problems can be naturally expressed using integer
constraints, so there are many possible reductions – three examples are below. Note that a
greater-than constraint ci x i ≥ b can be expressed in the appropriate form as −ci x i ≤ −b.

CNF≤P 01-ILP. For each propositional variable P in the clauses we create a 01-ILP variable
xP which equals 1 or 0 depending on whether P is true or false, respectively. Each clause is
mapped to a constraint on its variables, expressing that at least one of them must be 1. This
is achieved by adding together xP for a literal P , and (1− xP) for a literal ¬P . For example,
the clause { P,¬Q, R } becomes the constraint xP + (1− xQ) + xR ≥ 1. By construction,
any satisfying assignment of the clauses will satisfy the constraints, since at least one
of the terms in the sum will be 1. Conversely, an assignment to the variables will give an
interpretation as the constraints force at least one literal to be true in every clause. Put
together, the explicit reduction mapping is

V-COVER ≤P 01-ILP. Recall the vertex cover problem: given a graph G = (V, E), and a
budget K , is there a set C ⊆ V of vertices with K or fewer elements such that at least one
endpoint of every edge of G is in C? The reduction of an instance (G, K) to 01-ILP is as
follows. For every vertex v ∈ V , we have a variable xv whose truth value encodes whether
the v is in the vertex cover or not. The main property of a vertex cover is that includes
at least one endpoint for every edge; we can capture this as a numeric constraint of the
variables by requiring that for every edge (u, v) ∈ E, the constraint xu + xv ≥ 1 holds.
Now, any assignment satisfying these constraints will be a vertex cover, and to express the
budget constraint, we also add

∑

v∈V xv ≤ K to make the number of variables set to true
su�ciently small. If G has a vertex cover smaller than K , the constraints will be satisfied by
construction, and from satisfying assignment to the variables we can read o� the variables
which should be included in the vertex cover.

SUBSET-SUM≤P 01-ILP. Recall the subset sum problem: given a set S of numbers and a
target t , is there a subset of the numbers which adds up exactly to t? Given an instance
(S, t) of SUBSET-SUM, we associate every n ∈ S with a variable xn. The subset sum
condition is satisfied if the sum

∑

n∈S n · xn is equal to t ; as less-than-or-equal constraints,
this is simply expressible as the conjunction of

∑

n∈S n · xn ≤ t and
∑

n∈S−n · xn ≤ −t .

6. Self-reducibility refers to the property of some problems in L ∈ NP, where the problem of
finding a witness for the membership of an input x in L can be reduced to the decision problem
for L. This question asks you to give such arguments in three specific instances.

a) Show that, given an oracle (i.e. a black box) for deciding whether a formula ϕ over a set
of variables V = { x1, x2, . . . , xn } is satisfiable, there is a polynomial-time algorithm that
gives a variable assignment which satisfies a formula over V .

CO M P L E X I T Y T H E O RY S U P E R V I S I O N 2 – S O LU T I O N S

The idea behind self-reducibility is that we perform repeated calls to the decision
procedure which restrict the space of possible solutions after each call. In the case
of SAT, each call to the oracle reduces the search space (all possible assignments)
by half, so we can get a satisfying assignment to all n variables in n+ 1 steps. In the
first step, we check if ϕ is satisfiable – if it isn’t, we can’t find a satisfying assignment
anyway. Once we know that there is a suitable assignment, we call the oracle with a
derived formula [>/x1]ϕ, in which the variable x1 is assigned to be >. If the oracle
says that the formula is still satisfiable, we know that there must be an interpretation
with x1 set to true, but if it isn’t, x1 must be set to false. Based on the answer, we
can get a partially assigned satisfiable ϕ1, which is ϕ with its variable x1 set to the
appropriate value. We now do the same with [>/x2]ϕ1 to get ϕ2 and so on, with
ϕk+1 defined as [>/xk]ϕk or [⊥/xk]ϕk depending on which one is satisfiable. In the
end, we will end up with a satisfying assignment to all n variables of the formula.

Note that the partial assignments need to be accumulated, and it is not enough to
“sample” [>/xk]ϕ for all k independently. This is because the interpretations that the
oracle discovers may be di�erent: if [>/x1]ϕ and [>/x2]ϕ are both satisfiable, the
two assignments may set di�erent values to the other variable so [>/x1,>/x2]ϕmay
become unsatisfiable. As an example of this, consider the formula x1 ∨ (¬x1 ∧ x2).

b) Show that, given an oracle for deciding whether a given graph G = (V, E) is Hamiltonian,
there is a polynomial-time algorithm that, on input G, outputs a Hamiltonian cycle in G if
one exists.

A graph is Hamiltonian if it contains a Hamiltonian cycle. As with SAT, a graph may
have several Hamiltonian cycles, but we can perform repeated calls to the oracle to
zero in on a particular one. The process is easy: if the initial graph is Hamiltonian,
we repeatedly remove edges of the graph and call the oracle until the graph is no
longer Hamiltonian; at that point, the last edge we removed must be part of a cycle.
We return and fix this edge, and continue with the rest of the graph until the cycle is
found. The most number of calls made to the polynomial oracle is O(|E|)≤ O(n2),
so the whole process is still polynomial.

c) (Harder) Show that, given an oracle for deciding whether a given graph G is 3-colourable,
there is a polynomial-type algorithm that, on input G, produces a valid 3-colouring of G if
one exists.

The di�culty with graph colourability is that our previous trick of partially assigning
or modifying the input does not work: we can’t call the oracle with a partial colouring,
as that is not part of the input and not an inherent property of the graph (like the
edges were in the Hamiltonian graph problem). In addition, “knowing” that a particular
vertex is red doesn’t tell us anything, since the colours themselves do not matter.

One approach is figuring out which nodes have the same colour. Given a graph G, we

CO M P L E X I T Y T H E O RY S U P E R V I S I O N 2 – S O LU T I O N S

of course first make sure that it’s 3-colourable. If G has more than three vertices, there
must be at least two unconnected nodes of the same colour. Pick two unconnected
vertices u and v and construct the graph G′ in which u and v are merged: that is, u
and v are replaced with a new node w, and every edge connected to either u or v
now connects to w. If there is a 3-colouring of G in which u and v have the same
colour (e.g. red), all of their neighbours must be green or blue. In that case, there
is a colouring of G′ in which w is red and all of its neighbours are either green or
blue. That is, G′ must still be 3-colourable, so there is a colouring of G which assigns
the same colour to u and v. If G′ is not 3-colourable anymore, there is no solution
that assigns the same colour to u and v; we backtrack and pick two di�erent nodes.
This process of merging unconnected nodes and checking whether the graph stays
3-colourable is repeated until we end up with a complete 3-vertex graph (a triangle).
In the end, we can partition the nodes of G based on which of the final three triangle
nodes they “contributed to”, which will determine a valid 3-colouring of the graph.

Another approach is introducing a triangle to the graph, initially unconnected to
G. If G is 3-colourable, G′ constructed by adding the triangle to G must also be
3-colourable, since the three new nodes can have the three di�erent colours. For
concreteness, we can even label the new nodes with the colours they are intended to
represent (but remember, colourability is really a vertex partitioning problem, the
colours are just an intuitive abstraction). We then use the triangle to “sample” the
colours of vertices from G as follows: if G has a colouring which assigns a vertex
v the colour red, connecting it to the green and blue vertices of the triangle will
maintain the 3-colourability of G′. We repeat this, guessing a colour for each vertex
by connecting it to the two di�erent-coloured nodes of the triangle and checking
if the new graph is 3-colourable. If it isn’t, we backtrack and guess another colour.
Eventually we end up with G′ with extra edges connecting the original vertices of G
to exactly two vertices in the triangle. The output colour for each vertex is the colour
of the triangle node it is not connected to.

Optional exercises
1. The problem E3SAT is defined as follows:

Given a set of clauses, each clause being a disjunction of exactly three
distinct literals and containing exactly three distinct variables, determine

CO M P L E X I T Y T H E O RY S U P E R V I S I O N 2 – S O LU T I O N S

whether it is satisfiable.

Prove that E3SAT is NP-complete. Hint: introduce new variables to the set by adding a tautolo-
gical clause.

A simple initial attempt could be a reduction from 3SAT that duplicates one or more literals
in one or two-literal clauses. However, the distinctness requirement makes this unsuitable
– we need to introduce new variables into the set. It’s not enough to arbitrarily “pad” short
clauses with new variables since we may end up satisfying an initially unsatisfiable set of
clauses: for instance { P } {¬P } is not satisfiable, but { P, A, B } {¬P, C , D } is.

The trick is to add the new variables in a new tautological clause that does not a�ect
the satisfiability of the clause set, namely {A,¬A}. Then, we can observe that any literal
L can be combined with the new clause using L ∧ (A ∨ ¬A) ' (L ∨ A) ∧ (L ∨ ¬A),
giving two new clauses { L, A}, { L,¬A} which are logically equivalent to L. If the literal L
is satisfiable, the same interpretation will satisfy the extended clauses (with A set to an
arbitrary truth value). If the new pair of clauses is satisfiable, it must assign a truth value
to A. Whatever the assignment, we end up with the clauses { L,>}, { L,⊥}, of which the
first one is automatically true, while the second one is equivalent to L itself.

This technique can be used to soundly increase the size of any clause with an extra literal,
which is precisely what we need to do with the 1- and 2-literal clauses in the set. In fact,
this even works with empty clauses – while they obviously imply a contradiction right away,
the reduction has to handle them uniformly. If the original 3SAT instance is satisfiable,
the same assignment will satisfy the reduced E3SAT instance, since the old clauses are
subclauses of the extended ones. Conversely, if the extended clause set is satisfiable, it
must assign truth values for the newly introduced variables which will simplify the problem
to the original clause set.

2. We use x; 0n to denote the string that is obtained by concatenating the string x with a separator
; followed by n occurrences of 0. If [M] represents the string encoding of a non-deterministic
Turing machine M , show that the following language is NP-complete:

S = { [M]; x; 0n | M accepts x in n steps }

Hint: Rather than attempting a reduction from a particular NP-complete problem, it is easier
to show this from first principles, i.e. construct a reduction for any NDTM M and polynomial
bound p.

S is in NP: given a string c; x; 0n, we split it up along the semicolons, decode c into a TM
M , simulate M on the input x , and count the number of steps it takes and checking if that
equals n. Every step of this process – while complicated – can be done in polynomial time,
so this is a poly-time verifier, as required.

We can show that S is NP-hard from first principles, by exhibiting a poly-time reduction for
any language L in NP to S. If L ∈ NP, there exists a NDTM M that accepts it in polynomial

CO M P L E X I T Y T H E O RY S U P E R V I S I O N 2 – S O LU T I O N S

time. The reduction L ≤P S maps an input string x to f (x) = [M]; x; 0n as follows:

1. Encode M to get [M], then write [M]; x; onto the tape. Both steps can be done in
polynomial time, since the machine M has a finite number of states and symbols, as
well as a finite transition table.

2. Simulate M on the input x , appending a 0 to the output at every computation step.
Since M is assumed to operate in polynomial time, the number of 0-s appended – and
hence the number of steps this stage of the reduction takes – will also be polynomial.

We end up with the string [M]; x; 0n, and by the definition of S, this is in S exactly when
M accepts x in n steps, which is how the string was constructed to begin with.

	NP-completeness
	NP-complete problems

