
Complexity Theory
Supervision 1

1. Algorithms and problems
1. a) Explain the formal connections between the notions of characteristic function, predicate,

decision problem, subset and language.

b) What is the di�erence between a Turing machine accepting vs. deciding a language L?
How does this distinction relate to the di�erence between recursively enumerable and
decidable languages? (Note: instead of accepting, decidable and recursively enumerable,
you will also often see the terms recognising, recursive and semidecidable, respectively).

c) What set-theoretic object (what kind of function or relation) is implemented by a Turing
machine accepting vs. deciding a language?

2. Say we are given a set V = { v1, . . . , vn } of vertices and a cost matrix c : V ×V → N. For an index
i ∈ [1..n] and a subset S ⊆ V , let T (S, i) denote the cost of the shortest path that starts at v1,
and visits all vertices in S, with the last stop being vi ∈ S. Describe a dynamic programming
algorithm that computes T(S, i) for all sets S ⊆ V and all i ≤ |V |. Show that your algorithm
can be used to solve the Travelling Salesman Problem in time O(n22n).

3. The lectures define Turing machines to have a transition function of type δ : (Q × Σ) →
(Q ∪ {acc,rej }) × Σ × D, where D = { L, R, S } is the set of directions that the tape head
can move in (left, right, stationary). In other literature you might find definitions that have
D = { L, R }, allowing only two directions and requiring that the tape head move at each
transition. Can such a Turing machine simulate the one described in lectures? Is the complexity
class P a�ected by this distinction?

2. Polynomial-time problems
1. Consider the language Unary-Prime in the one-letter alphabet { a } defined by Unary-Prime =
{ an | n is prime }. Show that this language is in P.

2. Suppose S ⊆ N is a subset of natural numbers and consider the language Unary-S in the
one-letter alphabet { a } defined by Unary-S = { an | n ∈ S }, and the language Binary-S in the
two-letter alphabet {0,1 } consisting of those strings starting with a 1 which are the binary
representation of a number in S. Show that if Unary-S is in P, then Binary-S is in TIME(2cn)
for some constant c.

3. We say that a propositional formula ϕ is in 2CNF if it is a conjunction of clauses, each of which
contains exactly two literals. The point of this problem is to show that the satisfiability problem
for formulas in 2CNF can be solved by a polynomial time algorithm.

First note that any clause with two literals can be written as an implication in exactly two ways.
For instance (P ∨ ¬Q) is equivalent to (Q =⇒ P) and (¬P =⇒¬Q), and (P ∨ Q) is equivalent

CO M P L E X I T Y T H E O RY S U P E R V I S I O N 1

to (¬P =⇒ Q) and (¬Q =⇒ P). For any formula ϕ, define the directed graph Gϕ to be the
graph whose set of vertices is the set of all literals that occur in ϕ, and in which there is an
edge from literal P to literal Q if, and only if, the implication P =⇒Q is equivalent to one of
the clauses in ϕ.

a) If ϕ has n variables and m clauses, give an upper bound on the number of vertices and
edges in Gϕ .

b) Show that ϕ is unsatisfiable if, and only if, there is a literal P such that there is a path in
Gϕ from P to ¬P and a path from ¬P to P .

c) Give an algorithm for verifying that a graph Gϕ satisfies the property stated in (b) above.
What is the complexity of your algorithm?

d) From (c) deduce that 2CNF-SAT is in P.

e) Why does this idea not work if we have three literals per clause?

4. A clause (i.e. a disjunction of literals) is called a Horn clause if it contains at most one positive
literal. Such a clause can be written as an implication: X ∨ ¬Y ∨ ¬W ∨ ¬Z is equivalent to
(Y ∧W ∧ Z =⇒ X). HORNSAT is the problem of deciding whether a given Boolean expression
that is a conjunction of Horn clauses is satisfiable.

Show that there is a polynomial time algorithm for solving HORNSAT.

3. Reductions
1. We define the complexity class of quasi-polynomial-time problems Quasi-P by:

Quasi-P=
∞
⋃

k=1

Time
�

n(log n)k
�

Show that if L1 ≤P L2 and L2 ∈ Quasi-P, then L1 ∈ Quasi-P.

2. In general, k-colourability is the problem of deciding, given a graph G = (V, E), whether there
is a colouring χ : V → {1, . . . , k } of the vertices such that if (u, v) ∈ E, then χ(u) 6= χ(v). That
is, adjacent vertices do not have the same colour.

a) Show that there is a polynomial time algorithm for solving 2-colourability.

b) Show that, for each k, k-colourability is reducible to (k + 1)-colourability. Does this,
together with part (a), mean that 3-colourability is also in P?

	Algorithms and problems
	Polynomial-time problems
	Reductions

