Complexity Theory

Supervision 1

1. Algorithms and problems

1. a) Explain the formal connections between the notions of characteristic function, predicate,
decision problem, subset and language.

b) What is the difference between a Turing machine accepting vs. deciding a language L?
How does this distinction relate to the difference between recursively enumerable and
decidable languages? (Note: instead of accepting, decidable and recursively enumerable,
you will also often see the terms recognising, recursive and semidecidable, respectively).

c) What set-theoretic object (what kind of function or relation) is implemented by a Turing
machine accepting vs. deciding a language?

2. Saywe are givenasetV = {v,,...,v, } of vertices and a cost matrix c: V xV — N. For an index
ie€[1..n]and asubset S C V, let T(S, 1) denote the cost of the shortest path that starts at v,
and visits all vertices in S, with the last stop being v; € S. Describe a dynamic programming
algorithm that computes T(S,i) for all sets S C V and all i < |V/|. Show that your algorithm
can be used to solve the Travelling Salesman Problem in time O(n?2").

3. The lectures define Turing machines to have a transition function of type 6: (Q x) —
(Qu{acc,rej}) x X x D, where D = {L,R,S} is the set of directions that the tape head
can move in (left, right, stationary). In other literature you might find definitions that have
D = {L,R}, allowing only two directions and requiring that the tape head move at each
transition. Can such a Turing machine simulate the one described in lectures? Is the complexity
class P affected by this distinction?

2. Polynomial-time problems

1. Consider the language Unary-Prime in the one-letter alphabet { a } defined by Unary-Prime =
{a™ | nis prime }. Show that this language is in P.

2. Suppose S C N is a subset of natural numbers and consider the language Unary-S in the
one-letter alphabet { a } defined by Unary-S = {a" | n € S }, and the language Binary-S in the
two-letter alphabet {0, 1} consisting of those strings starting with a 1 which are the binary
representation of a number in S. Show that if Unary-S is in P, then Binary-S is in TIME(2")
for some constant c.

3. We say that a propositional formula ¢ is in 2CNF if it is a conjunction of clauses, each of which
contains exactly two literals. The point of this problem is to show that the satisfiability problem
for formulas in 2CNF can be solved by a polynomial time algorithm.

First note that any clause with two literals can be written as an implication in exactly two ways.
For instance (P V —Q) is equivalent to (Q = P) and (=P = —Q), and (P V Q) is equivalent

COMPLEXITY THEORY SUPERVISION 1

to (=P = Q) and (—Q = P). For any formula ¢, define the directed graph G, to be the
graph whose set of vertices is the set of all literals that occur in ¢, and in which there is an
edge from literal P to literal Q if, and only if, the implication P = Q is equivalent to one of
the clauses in .

a) If ¢ has n variables and m clauses, give an upper bound on the number of vertices and
edges in G,,.

b) Show that ¢ is unsatisfiable if, and only if, there is a literal P such that there is a path in
G, from P to =P and a path from =P to P.

c) Give an algorithm for verifying that a graph G,, satisfies the property stated in (b) above.
What is the complexity of your algorithm?

d) From (c) deduce that 2CNF-SAT is in P.
e) Why does this idea not work if we have three literals per clause?

4. A clause (i.e. a disjunction of literals) is called a Horn clause if it contains at most one positive
literal. Such a clause can be written as an implication: X V =Y vV =W V —Z is equivalent to
(Y AW A Z = X). HORNSAT is the problem of deciding whether a given Boolean expression
that is a conjunction of Horn clauses is satisfiable.

Show that there is a polynomial time algorithm for solving HORNSAT.

3. Reductions

1. We define the complexity class of quasi-polynomial-time problems Quasi-P by:
*° k
Quasi-P = U Time (n(k’g n))
k=1

Show that if L; <, L, and L, € Quasi-P, then L; € Quasi-P.

2. In general, k-colourability is the problem of deciding, given a graph G = (V, E), whether there
isa colouring y: V — {1,...,k} of the vertices such that if (u,v) € E, then y(u) # y(v). That
is, adjacent vertices do not have the same colour.

a) Show that there is a polynomial time algorithm for solving 2-colourability.

b) Show that, for each k, k-colourability is reducible to (k + 1)-colourability. Does this,
together with part (a), mean that 3-colourability is also in P?

	Algorithms and problems
	Polynomial-time problems
	Reductions

