
Computation Theory
Solutions

2021

Contents

1. Algorithmically undecidable problems . 1
2. Register machines . 4
3. Coding programs as numbers . 7
4. Universal register machine . 8
5. The Halting Problem and undecidability . 9
6. Turing machines . 12
7. Notions of computability . 13
8. Partial recursive functions . 15
9. Lambda calculus . 18
10. Lambda-definable functions . 22

1. Algorithmically undecidable problems
1. Two important concepts in the theory of computability are enumerations and diagonalisation.

Intuitively, an enumeration of a set S is an ordered, “exhaustive” listing of all elements. While
this intuition works for finite sets, we need to be more formal to handle infinite sets. Thus, an
enumeration of a finite or infinite set S is a surjective function from the natural numbers N to
S, if it exists. If it does, the set S is called countable; if it doesn’t, it is uncountable.

Prove or disprove the following statements:

a) The set of natural numbers is countable.

Yes, enumerated by the identity function idN : N�N.

b) The set of integers is countable.

Yes, the enumeration alternates between positive and negative numbers:
0, 1,−1,2,−2,3,−3, Explicitly,

ϕ(n)¬

(

n+1
2 if n is odd

− n
2 if n is even

c) The Cartesian product of two countable sets is countable.

Perhaps surprisingly, yes: the enumeration traverses the “multiplication table” from
one corner diagonally. Given two countable sets S and T , they can be enumerated
to create two coordinate axes, with the points representing elements of S × T . The
systematic, exhaustive enumeration of the table starts at the upper left corner with
(s0, t0), moving to the right to (s0, t1), then diagonally down and to the left to (s1, t0),
down to (s2, t0), diagonally up and to the right to (s1, t1), further to (s0, t2), and so
on. Despite both dimensions being infinite, this method will cover every pair in S× T .

(s0, t0) (s0, t1) (s0, t2) (s0, t3) · · ·

(s1, t0) (s1, t1) (s1, t2) (s1, t3) · · ·

(s2, t0) (s2, t1) (s2, t2) (s2, t3) · · ·

(s3, t0) (s3, t1) (s3, t2) (s3, t3) · · ·
...

...
...

... . . .

d) The set of rational numbers is countable.

Yes, since any rational number can be represented by an ordered pair of the integer
numerator and integer denominator, integers are countable, and the Cartesian product
Z×Z is therefore also countable. Note that the enumeration will include every fraction
an infinite number of times (since 2

3 , 4
6 , 8

12 all denote the same fractions but correspond
to di�erent pairs), but since we only ask for a surjection N� Z×Z, not a bijection,

CO M P U TAT I O N T H E O RY S O LU T I O N S

this will not be an issue.

e) The finite n-ary product of countable sets is countable.

Any n-ary product S0× S1× S2× · · · × Sn is isomorphic/equivalent to a nested binary
product (· · · ((S0 × S1)× S2)× · · ·)× Sn. S0 and S1 are countable, so S0 × S1 will be
countable, and in turn, (S0 × S1)× S2 will be countable, and so on. As long as the
number of sets is finite, the product will be countable.

f) The set of polynomials with coe�cients from a countable set is countable.

Polynomials are finite sums of terms consisting of a natural power of the variable and a
countable (e.g. rational) coe�cient. A polynomial an xn+an−1 xn−1+· · ·+a2 x2+a1 x+a0

of degree n (meaning that the highest exponent of the variable is n) can therefore
be represented as an n-tuple of the coe�cients (an, an−1, . . . , a1, a0), with ak = 0 if a
term of degree k does not appear in the polynomial. Thus, the set of all polynomials
of degree n is isomorphic to the n-ary Cartesian product of the set of coe�cients. If
this set is countable, the product will also be countable from part (e) above.

g) The powerset of a countable set is countable.

This is false: there is no surjection from N to P(S) for a countable S, i.e. there are
infinite sets that are “more infinite”, than the countably infinite set of natural numbers.
This deep result was established by Georg Cantor in 1891 using his famous diagonal
argument, which has since been applied to many other nonexistence proofs. A more
general version of the statement is known as Cantor’s Theorem:

There is no surjection f : A→ P(A) from a set A to its powerset.

The proof proceeds by contradiction. Assume f is a surjection, i.e. for every subset
S ⊆ A there is an a ∈ A such that f (a) = S. In particular, consider the subset
D ¬ { x ∈ A | x 6∈ f (x) } of elements x ∈ A which are not in f (x). Since f is
surjective, there exists an associated a ∈ A such that f (a) = D. But then a ∈ D would
imply that a 6∈ f (a), and a 6∈ D would imply that a ∈ D – a ∈ D ⇐⇒ a 6∈ D is a
contradiction, so the assumption that f is surjective was wrong.

As a corollary of Cantor’s theorem we get that there is no surjection N→ P(N), so
there are indeed countable sets whose powerset is not countable.

The intuition behind the construction of the diagonal set D for the case of N is the
following. The contradictive assumption f : N� P(N) states that P(N) is countable,
so we have an exhaustive listing of all subsets of the natural numbers. However, for
any such listing we can construct a set of naturals that cannot be in the listing, so it
couldn’t have been exhaustive. To construct this set, we look at whether n ∈ N occurs
in the nth set of the enumeration. If n 6∈ f (n), we include n in D, otherwise we don’t.
Thus, by construction, every set in the enumeration will di�er from D in at least one
element: there may be a k ∈ N such that f (k) is nearly identical to D, but they will

CO M P U TAT I O N T H E O RY S O LU T I O N S

certainly di�er in their inclusion of k. This D can be constructed for any listing, so no
listing can be exhaustive – P(N) is not countable.

h) The set of real numbers is countable.

Real numbers have a countably infinite decimal expansion, so every real number
corresponds to a subset of the natural numbers. Since subsets of naturals are not
enumerable (Cantor’s Theorem), the set of real numbers will not be enumerable either.
Another similar diagonal construction creates a real number that cannot be part of
any listing by setting the nth digit of its decimal expansion to be di�erent from the
nth digit of the nth real number in the listing. By the same reasoning as above, this
new real number will not be in the listing by construction, so it cannot be exhaustive.

Feel free to do some research if you are not familiar with these results.

2. Rephrase the proof of the undecidability of the Halting Problem (with an abstract definition of
an algorithm) as a diagonal argument.

Any algorithm (implemented as a register machine, Turing machine, etc.) can be encoded as
a natural number, so algorithms are enumerable – they can be exhaustively listed. Consider
therefore the following table, where the vertical axis is the nth algorithm An in the listing,
and the horizontal axis is the code for the nth algorithm ðAnñ. We can populate the (n, k)th

cell of the table with the behaviour of An on ðAkñ: whether it halts (with value 0 or 1), or it
doesn’t (denoted by ×):

CO M P U TAT I O N T H E O RY S O LU T I O N S

ðA0ñ ðA1ñ ðA2ñ ðA3ñ · · ·

A0 1 0 × 1 · · ·

A1 × × 1 × · · ·

A2 1 × 0 1 · · ·

A3 0 1 × × · · ·
...

...
...

... . . .

The Halting Problem amounts to constructing an algorithm H such that H(A, D) = 1 if
A(D) halts, and H(A, D) = 0 otherwise. That is, the computation table of H for the inputs
An and ðAkñ would be the table above, with 0 and 1 replaced with 1 and × replaced with 0.

ðA0ñ ðA1ñ ðA2ñ ðA3ñ · · ·

A0 1 1 0 1 · · ·

A1 0 0 1 0 · · ·

A2 1 0 1 1 · · ·

A3 1 1 0 0 · · ·
...

...
...

... . . .

The undecidability of the Halting Problem means that such a H does not exist. Assume, for
contradiction, that we do have such a decider H . Then we can construct a new algorithm D
that takes descriptions of algorithms ðAkñ and operates the following way:

D(ðAkñ)¬

(

0 if H(Ak,ðAkñ) = 0

↑ otherwise

The graph of D is precisely the diagonal of the computation table for H above, with 0
changed to 1 and 1 changed to ↑. D di�ers from every line of H in at least one position:
if it didn’t, there would be a k ∈ N such that Ak = D, and Ak(ðAkñ) = D(ðDñ) would halt
if and only if H(D,ðDñ) = 0, i.e. D(ðDñ) didn’t halt. Thus D cannot be in the listing of
computable algorithms, so it’s not computable; but since it was computably constructed
from H , this implies that the computable halting function H cannot exist.

Note the subtle di�erence between this proof and Cantor’s Theorem: we’re not trying to
prove that there is no exhaustive listing of algorithms as we can always construct a new
one which is not in the list, since we already know that algorithms are computable (due to
a possibly bijective encoding scheme with natural numbers). Instead, we’re proving that a
specific machine cannot be computable because it cannot be in the exhaustive listing of
computable functions.

2. Register machines
1. Show that the following arithmetic functions are all register machine computable.

CO M P U TAT I O N T H E O RY S O LU T I O N S

a) First projection function p ∈ N→ N, where p(x , y)¬ x
b) Constant function with value n ∈ N, cn ∈ N→ N where c(x)¬ n
c) Truncated subtraction function, _ .− _ ∈ N2→ N, where

x .− y ¬

(

x − y if y ≤ x

0 if y > x

d) Integer division function, _div_ ∈ N2→ N where

x div y ¬

(

integer part of x/y if y > 0

0 if y = 0

e) Integer remainder function, _mod_ ∈ N2→ N with x mod y ¬ x .− y · (x div y)
f) Exponentiation base 2, e ∈ N→ N, where e(x) = 2x

g) Logarithm base 2, log2 ∈ N→ N, where

log2(x)¬

(

greatest y such that 2y ≤ x if x > 0

0 if x = 0

Hint: instead of defining everything from scratch, try implementing these machines with the
help of general control flow components.

As hinted in the question, we can save some e�ort by working at a higher level of abstrac-
tion rather than individual register operations. Specifically, we can create RM “combinators”
corresponding to the three fundamental building blocks of programming: sequential com-
position, conditional branching and iteration. Any register machine is equivalent to one
with a single halt state, so abstractly an RM program looks like

START M HALT

Then, we have ways of combining RMs with sequential composition

START M1 M2 HALT

conditional branching with if R= 0 then M1 else M2

START R− M1 HALT

R+ M2

and iteration with while R 6= 0 do M

START R− HALT

R+ M

CO M P U TAT I O N T H E O RY S O LU T I O N S

a) First projection: copy over R1 to R0.

START R−1 HALT

R+0

b) Constant function: the constant value is not an argument, it has to be “baked into” the
register machine. We can illustrate this schematically – in principle this machine can
be constructed for any finite n.

START R+0 · · · R+0 HALT
(n− 2 times)

c) Truncated subtraction: subtract R2 from R1, then move R1 to R0. Alternatively, copy R1

to R0, and then subtract R2 from R0.

START R−2 R−1 R+0

R−1 HALT

START R−1 R−2 HALT

R+0 R−0

d) Integer division: repeated truncated subtraction. Abstractly, we can write this as:

START while R1 6= 0 do R1
.− R2

HALT R+0

e) Integer remainder: compose previously defined computation blocks together accord-
ing to the definition. Assignment and multiplication is defined in the notes; doing
computation and assignment in the same expression is just a matter of using an
auxiliary register to store the intermediate value.

START R3 := R1 div R2 R4 := R3 × R2

R0 := R1
.− R4 HALT

One might well argue that such programs can be written in a more e�cient way from
scratch, without using any higher-level abstractions. This might indeed be the case,
but remember that for the purposes of computability we only care about whether
performing the computation is possible at all, not necessarily if there is an e�cient
implementation. And given that our blocks are just shorthands for low-level register

CO M P U TAT I O N T H E O RY S O LU T I O N S

machines, all of these high-level definitions can be expanded into individual register
operations, just like in a real computer.

f) Exponentiation base 2: initialise R0 to 1, then repeatedly multiply R0 R1 times.

START R+0 while R1 6= 0 do R2 := R0 × 2

HALT R0 := R2

As an example of the above remark, this program can also be written in a fairly terse
and elegant form without using any high-level combinators. However, readability
su�ers somewhat, and as explained above, we do not get any conceptual benefits: if
something is computable in a high-level, perhaps ine�cient way, it is computable.

START R+0 R−1 R−0 R−2 R+0

HALT R+2 R+2

g) Logarithm base 2: repeated division by 2. Since the while loop tests for 0 instead of
1, we end up overshooting the result by one, so we decrement R0 after the loop.

START while R1 6= 0 do R−0 HALT

R1 := R1 div 2 R+0

3. Coding programs as numbers
1. Gödel numbering is a general technique for assigning a natural number to some mathematical

object (such as a well-formed formula in some formal language). The numbering is often
computed by translating every symbol of a formula Φ to a natural number, then combining
the codes to create a unique Gödel number G(Φ). For example, with the assignments t(‘∀’) =
1, t(‘x ’) = 2, t(‘.’) = 3, and t(‘= ’) = 4, the Gödel number of the formula ∀x . x = x with a
particular combination function could be G(‘∀x . x = x ’) = 272794772250.

a) Is the Gödel numbering of register machines described in the notes a bijection, an injection,
a surjection, a total function, a partial function, or a relation? Justify your answer.

The encoding of register machines is a bijection: every machine is associated with a
unique natural number, and vice versa. Every encoding (e.g. pairs, lists and instruc-
tions) is a bijection by construction.

b) In the example of first-order logic above, is a particular Gödel numbering a bijection, an

CO M P U TAT I O N T H E O RY S O LU T I O N S

injection, a surjection, a total function, a partial function, or a relation? Justify your answer.

Every formula can be encoded as a unique number, but not every number will be
decoded as a well-formed logical formula – this is because we treat formulae as
strings of symbols, rather than expression trees. Thus the encoding is not a bijection,
but only an injection.

c) Suggest one or more ways of combining the symbol codes of a formula Φ to generate a
unique Gödel number for Φ. Demonstrate your methods on the formula Φ= ‘∀x . x = x ’
used above.

(i) We can convert the list of symbols into a list of the individual symbol codes (such
as [1,2,3,2,4,2]), then use the list encoding from the lecture notes to convert
it into a number.

G([1,2,3,2,4,2]) = 〈〈1, G([2,3,2,4,2])〉〉= · · ·= 592146

(ii) Another common way to ensure a unique encoding is to make use of the Fun-
damental Theorem of Arithmetic, which states that every number has a unique
prime decomposition. Thus, if the encoding is based on a prime decomposition,
it can always be recovered from the code. In particular, we can encode a string
of symbol codes c0 c1 c2 c3 . . . as the natural number 2c0 · 3c1 · 5c2 · 7c3 · · · ·. To get
back the original formula from a natural, we find its prime factorisation and read
o� the exponents of the (ordered) primes.

G([1,2,3,2,4,2]) = 21 · 32 · 53 · 72 · 114 · 132 = 272794772250

2. Let ϕe ∈ N * N denote the unary partial function from numbers to numbers computed by
the register machine with code e. Show that for any given register machine computable unary
partial function f ∈ N* N, there are infinitely many numbers e such that ϕe = f . Two partial
functions are equal if they are equal as sets of ordered pairs; equivalently, for all numbers
x ∈ N, ϕe(n) is defined if and only if f (x) is, and in that case they are equal numbers.

This question shows that two functions with di�erent codes can have the same behaviour,
so while there is a bijection between the machine implementing the function and its code,
there are infinitely many register machines implementing the same function. In practice,
we can decode f ∈ N * N as a register machine program, then simply extend it with
instructions that never get reached, such as any number of HALT instructions. This will
change the code of the program without modifying its behaviour.

4. Universal register machine
1. What is the aim of the universal register machine U? How does it work? Annotate the diagram

of the register machine with its major components, explaining what they accomplish in the
bigger context of the operation of U .

CO M P U TAT I O N T H E O RY S O LU T I O N S

Th universal register machine U implements a register machine evaluator as a register
machine. Its inputs are R1 = e and R2 = a, where e is the code for a RM program, and a is
the code for the list of arguments. The URM first decodes e as a program P , then decodes
a as a list of register values a1, . . . , an, then executes the program P on the arguments
R1 = a1, . . . ,Rn = an, storing the result in R0.

The implementation of the machine is similar to a rudimentary processor, keeping track
of the currently executed instruction using a program counter and iteratively executing
the commands on the arguments. A detailed, annotated analysis of the implementation
can be found in the slides for Lecture 4, but it’s worth analysing it yourself and getting a
high-level grasp of its operation.

2. Consider the list of register machine instructions whose graphical representation is shown
below. Assuming that register Z holds 0 initially, describe what happens when the code is
executed (both in terms of the e�ect on registers A and S and whether the code halts by
jumping to the label EXIT or HALT).

START A− S− EXIT

Z+ S− Z− HALT

A+ Z− S+

This is just a rearranged and renamed version of the “pop” operation described on Slide 47.

Optional exercise
Write a register machine interpreter in a programming language you prefer (a functional language
such as ML or Haskell is recommended). Implement a library of RM building blocks such as the ones
appearing in the universal register machine or your answer for Ex. 2.1. You may try implementing the
RM U as well, but don’t worry if you run into resource constraints. The format of input and output is
up to you but the RM representation and computation must conform to the theoretical definition.

5. The Halting Problem and undecidability
1. Show that decidable sets are closed under union, intersection, and complementation. Do all of

these closure properties hold for undecidable languages?

Let S, T be decidable sets. Intuitively, this means that we can ask the question n ∈? S and
get an answer. Closure under union, intersection and complementation simply amounts

https://www.cl.cam.ac.uk/teaching/2021/CompTheory/lectures/comt-slides.pdf#page=103

CO M P U TAT I O N T H E O RY S O LU T I O N S

to asking the appropriate questions and combining the answers: n ∈? S ∪ T if n ∈? S or
n ∈? T , n ∈? S∩ T if n ∈? S and n ∈? T , n ∈? Sû if not n ∈? S. The logical operations are of
course computable: for instance, for deciding S ∪ T , we run the machine deciding S, halt if
the result register is 1, run the machine deciding T otherwise and return its result.

These constructions rely on the fact that the membership test returns an answer, so the
reasoning can’t be adapted for undecidable languages. The only somewhat obvious result is
that the complement of an undecidable language is also undecidable: if it wasn’t, we could
just negate the answer to decide the original set. However, undecidable sets are not closed
under union and intersection (and some other set operations): there are undecidable sets
which combine to become decidable. There’s nothing magical about this: if S is undecidable,
then so is Sû, but S ∪ Sû = N and S ∩ Sû = ;, which are of course decidable.

2. Suppose S1 and S2 are subsets of N. Suppose r ∈ N→ N is a register machine computable
function satisfying: for all n in N, n is an element of S1 if and only if r(n) is an element of S2.
Show that S1 is register machine decidable if S2 is. Is the converse, inverse, or contrapositive of
this statement true?

Such a mapping r : N→ N between subsets is called a reduction r : S1 ≤ S2: decidability
of S1 can be reduced to decidability of S2. Intuitively, if S2 is decidable, then we can turn
the problem of decidability of S1 into the decidability of S2 via the reduction, and due to
the assumption on r , the answer of r(x) ∈? S2 gives us the answer for x ∈? S1.

We can express this formally by considering the characteristic functions of the subsets.
The reduction property of r , ∀n ∈ N. n ∈ S1 ⇐⇒ r(n) ∈ S2, can be expressed as

∀n ∈ N. χS1
(n) ⇐⇒ χS2

(r(n))

That is, the functions χS1
and χS2

◦ r are equal. If S2 is decidable, χS2
is a computable func-

tion; composing it with another computable function r implies that χS1
is also computable,

i.e. S1 is a decidable subset of N.

This theorem gives us a useful proof technique: to show that a set S is decidable, we need to
find a computable reduction to another set T which we know to be decidable. Such proofs
will be common in Complexity Theory next term. In this course, we are more interested in
the contrapositive of the statement: if S1 is undecidable and there is a reduction r from S1

to S2, then S2 is also undecidable. Reductions “propagate” undecidability: this is because,
as the proof above shows, decidability of S2 would imply decidability of S1. Of course, the
“de facto” undecidable problem is the Halting Problem; expressed as a set, it’s defined as

H ¬ { 〈e, x〉 | ϕe(x)↓}

To show that another set S is undecidable, it is enough to construct a reduction r : H ≤ S,
i.e. a function r : N→ N which maps the code of a program e and an argument x to an
element s ∈ N which is furthermore an element of S ⊆ N if and only if ϕe(x) halts.

CO M P U TAT I O N T H E O RY S O LU T I O N S

Note that despite the reduction condition being a bi-implication, the reduction itself is
still a one-sided function: in particular, neither the converse (if S1 is decidable then S2 is
decidable) or inverse (if S2 is undecidable then S1 is undecidable) of the above statement
hold. The theorem might seem a bit backwards, but as you can see from the proof, that
is the only way it could work: the reduction translates the input to the problem (i.e. the
natural n ∈ N), not the answer (i.e. the Boolean χS(x) ∈ B).

3. Show that the set E of codes 〈e, e′〉 of pairs of numbers satisfying ϕe = ϕe′ is undecidable.

This corollary establishes that equality of programs is undecidable. There are several
ways of establishing this: all we need to show is that some other undecidable set would
be decidable if we could decide equality of programs. Consider, for instance, the set
S0 = { e | ϕe(0)↓} from Slide 57: the set of program codes that halt with argument 0. To
decide whether a function ϕe halts at 0, we can consider the partial function ce(x) = ϕe(0)
which is the constant function with value ϕe(0) when ϕe(0) is defined, and the constant
undefined function otherwise. To choose between the two, we can ask whether ce is equal
to the totally undefined function ⊥ (where ⊥(x)↑ for all x) using our machine deciding
E. If ce is equal to the totally undefined function, ϕe(0) is undefined so it shouldn’t be an
element of S0. If E says that the two are not equal, then ϕe(0) must be defined, so e ∈ S0.
Thus, if we could decide E, we could decide S0, but that is a contradiction.

We can present this reasoning more formally as a reduction proof from S0 to Eû =
{ 〈e, e′〉 | ϕe 6= ϕe′ }, then using the fact that undecidable languages are closed under
complement. The reduction r : S0 ≤ E maps the code e to the code of the pair consisting
of the (code of the) function x 7→ ϕe(0), and the totally undefined function ⊥. By the
reasoning above, e will be in S0 if and only if x 7→ ϕe(0) is not equal to the totally undefined
function, i.e. both are in Eû. This implies that Eû is undecidable, and so is E.

4. Show that there is a register machine computable partial function f : N* N such that both
sets {n ∈ N | f (n)↓} and { y ∈ N | ∃n ∈ N. f (n) = y } are register machine undecidable.

We are asked to define a partial function f : N* N such that the sets S1 ¬ {n ∈ N | f (n)↓}
and S2 ¬ { y ∈ N | ∃n ∈ N. f (n) = y } are undecidable. Undecidability means that we
have two reductions r1 : H ≤ S1 and r2 : H ≤ S2, mapping pairs 〈e, x〉 to natural numbers
such that

ϕe(x)↓⇐⇒ f (r1(〈e, x〉))↓ ∧ ∃n ∈ N. f (n) = r2(〈e, x〉)

The first condition suggests that f should preserve halting, while the second one suggests
that its return value should have something to do with the pair 〈e, x〉. Therefore a good
first guess is a function whose domain of definition (the set of naturals where it is defined)
is the set of pairs 〈e, x〉 where ϕe(x)↓, which is precisely H . Given a natural n, f should
decode it as a pair 〈e, x〉, and return a value only if ϕe(x) halts. What should be the return
value? From the second condition we see that f (〈e, x〉) = 〈e, x〉, which certainly holds for

CO M P U TAT I O N T H E O RY S O LU T I O N S

the identity function. Hence our guess is the “partial identity function”

f (n)¬

(

n if n= 〈e, x〉 and ϕe(x)↓

↑ otherwise

Using the RM components for decoding n as the pair, and the universal RM to run the
computation, we can show that f is computable. However, the set S1 is equal to {n ∈
N | n= 〈e, x〉 ∧ ϕe(x)↓}, and S2 is { y ∈ N | ∃n ∈ N. n= y ∧ n= 〈e, x〉 ∧ ϕe(x) }, both
of which are precisely the set { 〈e, x〉 | ϕe(x)↓}= H . The sets S1 and S2 are equal to the
set associated with the Halting Problem, and therefore are undecidable.

6. Turing machines
1. Compare and contrast register machines with Turing machines: how do they keep track of state,

how are programs represented, what form do machine configurations and computations take?

• A register machine stores data as natural numbers in its registers, while a Turing
machine writes symbols on a tape. Since there can only be a finite number of symbols,
natural numbers (and other data) have to be encoded explicitly on the tape, using
e.g. unary encoding. The state of program execution (program counter) corresponds to
the label of the currently executed register machine instruction; in TMs, it is a function
of the symbol under the current tape head, and the internal state of the machine.

• RM programs are a finite list of RM instructions: increment, conditional decrement,
and halt. In Turing machines, the program is the transition function δ : (Q ×Σ)→
(Q∪{acc,rej })×Σ×{ L, R, S }which assigns a state, symbol, and movement direction
to every pairing of the current TM state and symbol under the tape head.

• The configuration (`, r0, r1, . . . , rn) of a RM is the current instruction label ` and the
contents of the registers. A computation c0, c1, . . . is a sequence of configurations
starting with the initial configuration c0 (containing the initial register contents and
instruction label 0), with each $c_{n+1} determined from cn = (`, r0, r1, . . . , rn) by
executing the instruction at label ` on the registers r0, . . . , rn. The computation halts if
the sequence of configurations is finite (and ends at a HALT instruction), and doesn’t
halt if the sequence is infinite.

A TM configuration (q, w, u) consists of the current machine state q, string of symbols
w up to and including the tape head, and (finite) string of symbols to the right of the
tape head. A computation starts from the initial configuration (s,., u) and transitions
to new configuration based on the transition function δ. The computation halts of the
sequence of configurations is finite (and ends in a acc or rej state), and doesn’t halt
if the sequence is infinite.

2. Familiarise yourself with the Chomsky hierarchy and explain the connection between regular
expressions and Turing machines.

CO M P U TAT I O N T H E O RY S O LU T I O N S

The Chomsky hierarchy is a classification of formal languages of which regular languages
and (semi)decidable languages are the two extremes. Each type of language/grammar in
the hierarchy is associated with a machine that can recognise membership for a language:
for example, regular languages are accepted by finite state automata (recall the last part of
the Discrete Mathematics course last year), while semidecidable languages are recognised
by Turing machines. The precise distinction between recognising and deciding a language
(and semidecidable vs. decidable languages) will be discussed in Complexity Theory; for
now it’s worth noting that decidable languages require a machine computing the (total)
characteristic function (i.e. they must reject the string explicitly, if it’s not a member of a
set), while semidecidable languages only need firm acceptance for elements of the set,
but can reject or diverge if the element is not in the set.

The full Chomsky hierarchy for demonstration purposes (more detail in the Formal Models
of Language course next term):

Grammar Languages Machine
Type-0 Semidecidable Turing machine
Type-1 Context-sensitive Linear-bounded nondeterministic TM
Type-2 Context-free Nondeterministic pushdown automaton
Type-3 Regular Finite state automaton

7. Notions of computability
1. Before the formal development of the field of computation theory, mathematicians often used

the term e�ectively computable to describe functions that can – in principle – be computed
using mechanical, pen-and-paper methods.

a) How was the notion of e�ective computability formalised by Church and Turing, and
generalised to other models of computation?

The Church–Turing thesis states that formal models of computation exactly char-
acterise the nature of e�ective computation: a function on the natural numbers is
e�ectively computable if and only if it is Turing-computable. This is just a hypothesis,
and since there is no formal definition of e�ective computability, it cannot be formally
proven; however, the thesis is universally accepted as identifying the classes of form-
ally and e�ectively computable functions. In addition, the thesis also states that all
(su�ciently strong) models of computation are in fact equivalent: Church and Turing
proved this for the independently developed models of Turing machines, partial
recursive functions and the λ-calculus, and it has since been reinforced through many
new models of computation that are all equivalent to Turing machines. In summary,
the Church–Turing thesis gives a formal definition of computable functions (functions
that are computed by a Turing machine, or any other model of computation), and
equates this definition with the informal notion of e�ective computability. A useful

CO M P U TAT I O N T H E O RY S O LU T I O N S

consequence of this is that it gives us a shortcut to establishing the computability of
functions: instead of giving a full, formal specification of an operation as a Turing/re-
gister machine program or lambda-expression, we can write an informal, English
description of the algorithm, and as long as there are no dubious steps (such as if
the computation halts, do . . . , else do . . .), we have strong reasons to believe that the
description corresponds to a computable function.

b) Suppose we invented a new model of computation. How can we establish that it is as
“powerful” as mechanical methods? Make sure to formally explain what “power” means in
this case.

The power of a model of computation simply refers to the class of functions that it can
compute: if that class is as big as the class of Turing-computable function, the model
of computation is as powerful as a Turing machine. To establish Turing-completeness
it is su�cient to encode a Turing machine (or any other Turing-complete model
of computation) in the system; to compute a computable function, we can simply
simulate the associated Turing machine computation.

c) Can our new model be even more powerful?

The most likely answer is no: so far, every new model of computation was proved to
be computationally equivalent to a Turing machine, meaning that both can simulate
each other. The Church–Turing thesis implies that any model of computation that
can simulate a Turing machine is computationally equivalent to a Turing machine
(as a TM can simulate any other model of computation), and all known models of
computation support this. However, we do not have a definitive proof of this (because
the Church–Turing thesis cannot be formally proved), so in principle there may be a
model of computation that is more powerful than a Turing machine and cannot be
simulated by one. This is the realm of hypercomputation or super-Turing computation,
and while there are some theoretical models of hypercomputation (using random
oracles or infinite time), there is little hope in discovering a “practical” model that
would invalidate the Church–Turing thesis.

2. Briefly describe of three Turing-complete models of computation not covered in the course.

There are many examples: abstract rewriting systems, combinatory logic, Kahn process
networks, some cellular automata, etc. Sometimes Turing-completeness arises unintention-
ally in a system not necessarily developed as a model of computation: many games and
software have been shown to be Turing-complete by enthusiastic users. Some unsurprising
examples are Minecraft, LittleBigPlanet, Excel, Factorio, Opus Magnum; some slightly more
surprising ones are C++ templates, Java generics, SQL, Magic: The Gathering, PowerPoint,
and of course the sewage-based 4-bit adder in Cities: Skylines. It’s a fun internet hole to
get lost in.

https://en.wikipedia.org/wiki/Abstract_rewriting_system
https://en.wikipedia.org/wiki/Combinatory_logic
https://en.wikipedia.org/wiki/Kahn_process_networks
https://en.wikipedia.org/wiki/Kahn_process_networks
https://en.wikipedia.org/wiki/Cellular_automaton
https://www.gwern.net/Turing-complete
https://www.gwern.net/Turing-complete
https://beza1e1.tuxen.de/articles/accidentally_turing_complete.html
https://beza1e1.tuxen.de/articles/accidentally_turing_complete.html
https://medium.com/@balidani/cities-skylines-is-turing-complete-e5ccf75d1c3a

CO M P U TAT I O N T H E O RY S O LU T I O N S

8. Partial recursive functions
1. Show that the following functions are all primitive recursive. Make sure to give the final form of

the function as a composition of primitive functions and projection.

a) Truncated subtraction function, minus: N2→ N, where

minus(x , y)¬

(

x − y if y ≤ x

0 if y > x

The recursive definition of the function is as follows:
(

minus(x , 0) = x

minus(x , y + 1) = pred(minus(x , y))

We know that pred is primitive recursive, and thus so is minus. Explicitly, we have

minus¬ ρ1
�

proj1
1, pred ◦ proj3

3

�

= ρ1
�

proj1
1, ρ0

�

zero0, proj2
1

�

◦ proj3
3

�

b) Exponentiation, exp: N2→ N, where exp(x , y) = x y .

The recursive definition is:
(

exp(x , 0) = 1

exp(x , y + 1) =mult(x , exp(x , y))

exp¬ ρ1
�

succ ◦ zero1, mult ◦
�

proj3
3,proj3

1

��

= ρ1
�

succ ◦ zero1, ρ1
�

zero1, plus ◦
�

proj3
3,proj3

1

��

◦
�

proj3
3,proj3

1

��

= ρ1
�

succ ◦ zero1,ρ1
�

zero1, ρ1
�

proj1
1, succ ◦ proj3

3

�

◦
�

proj3
3,proj3

1

��

◦
�

proj3
3,proj3

1

��

c) Conditional branch on zero, ifzero: N3→ N, where

ifzero(x , y, z)¬

(

y if x = 0

z if x > 0

The definition is simple, but we need to swap the arguments of the function so the
Boolean condition is the last argument (since we only pattern-match on the last
argument). Define C : N3→ N as:

(

C(x1, x2, 0) = x1

C(x1, x2, x + 1) = x2

Then ifzero= ρ2
�

proj2
1, proj4

2

�

◦
�

proj3
2,proj3

3,proj3
1

�

.

d) Bounded summation: if f : Nn+1→ N is primitive recursive, then so is g : Nn+1→ N where

CO M P U TAT I O N T H E O RY S O LU T I O N S

where

g(~x , x)¬











0 if x = 0

f (~x , 0) if x = 1

f (~x , 0) + · · ·+ f (~x , x − 1) if x > 1

The function g can be defined recursively as:
(

g(~x , 0) = 0

g(~x , x + 1) = add(g(~x , x), f (~x , x))

The explicit definition depends on the number of arguments, but it’s easy to see that
the function is primitive recursive because both f and add are.

2. Explain the motivation and intuition behind minimisation. How does it extend the set of func-
tions computable using primitive recursion? Give three examples of computable partial functions
that are not definable using primitive recursion, justifying your answer in each case.

Given a partial function f : Nn+1 * N, the minimisation of f , denoted µn f (~x) is the least
argument x ∈ N such that f (~x , x) = 0 while f (~x , i) for all i = 0, . . . , x − 1 is defined
and strictly greater than 0. This looks like a very specific operation of seemingly limited
applicability, however, it is the operator that expands the class of primitive recursive
functions to the class of partial recursive, or computable functions. The way to think
about minimisation is as unbounded search: we’re looking for a least value x satisfying
some decidable property P . The key is that the functions we try to minimise are not some
traditional, “naturally arising” functions, but custom-made ones defined specifically to
encapsulate the property P that we want satisfied after minimisation. Quite often, the
function f will simply be a step function that switches from 1 to 0 as soon as the property
holds:

f (~x , x)¬

(

1 if ¬P(~x , x)

0 if P(~x , x)

Minimising such a function will give us the least x that satisfies the required property. As
an example, we can compute the integer division function div: N2 * N using minimisation
by noticing that the output of div(x1, x2) has the unique property that it is the least x such
that x1 < x2(x + 1). Extracting this into a helper function:

f (x1, x2, x)¬

(

1 if x1 ≥ x2(x + 1)

0 if x1 < x2(x + 1)

This function will switch to 0 exactly when x = bx1/x2c, so div¬ µ2 f .

Still, many of the functions that are expressible as a minimisation problem can be defined
using primitive recursion. The only definite non-example is Ackermann’s function, which
can be proved to grow faster than any definable primitive recursive function, but has

CO M P U TAT I O N T H E O RY S O LU T I O N S

a valid definition using minimisation. This does not mean that the only examples of
computable, non-primitive-recursive functions are variations on Ackermann, however.
Primitive recursive functions are all total by construction, so any partial function is also not
primitive recursive – not because of some “limitation” in the power of primitive recursion,
but because it can never diverge. Minimisation gives us partiality because there may not be
a least element satisfying our property; for instance, in the integer division function above,
f never becomes 0 if x2 is 0, so µ2 f (x1, 0) is undefined, as expected. The Ackermann
function is still special, however, as it is one of the simplest total computable functions
that is not primitive recursive.

3. Use minimisation to show that the following functions are partial recursive:

a) the binary maximum function max : N2→ N.

The maximum of two numbers x1, x2 ∈ N is the least x greater than or equal to both
x1 and x2 – clearly this will return one of the two numbers. We can encapsulate this
with the helper function:

f (x1, x2, x)¬

(

1 if x < x1 or x < x2

0 if x ≥ x1 and x ≥ x2

As before, this switches to 0 when we reached the maximum, so max ¬ µ2 f .

b) the integer square root function sqrt : N* N which is only defined if its argument is a
perfect square.

Unlike before, now we ask for the function to be undefined whenever its argument is
not of the right form. The usual helper step-function still works here, with f (x , y) = 1
if x = y2 and 0 otherwise. However, we can often define the helper function in a
more natural way. Consider f (x , y) = |x − y2|. This will be zero only when x = y2

and positive otherwise; moreover, it will never reach 0 if x is not a perfect square.
This is precisely what we were looking for, so sqrt¬ µ1 f .

Optional exercises
1. Write a Turing machine simulator in a programming language you prefer (a functional language

such as ML or Haskell is recommended). Implement the machine described on Slide 64.

2. For the example Turing machine given on Slide 64, give the register machine program imple-
menting (S, T, D) := δ(S, T), as described on Slide 70.

3. Recall the definition of Ackermann’s function ack. Sketch how to build a register machine M
that computes ack(x1, x2) in R0 when started with x1 in R1 and x2 in R2 and all other registers
zero. (E9)

Hint: Call a finite list L = [(x1, y1, z1), (x2, y2, z2), . . .] of triples of numbers suitable if it satisfies

a) if (0, y, z) ∈ L, then z = y + 1

https://www.cl.cam.ac.uk/teaching/2021/CompTheory/lectures/comt-slides.pdf#page=142
https://www.cl.cam.ac.uk/teaching/2021/CompTheory/lectures/comt-slides.pdf#page=142
https://www.cl.cam.ac.uk/teaching/2021/CompTheory/lectures/comt-slides.pdf#page=153
https://www.cl.cam.ac.uk/teaching/2021/CompTheory/lectures/comt-slides.pdf#page=2.5

CO M P U TAT I O N T H E O RY S O LU T I O N S

b) if (x + 1, 0, z) ∈ L, then (x , 1, z) ∈ L

c) if (x + 1, y + 1, z) ∈ L, then there is some u with (x + 1, y, u) ∈ L and (x , u, z) ∈ L.

The idea is that if (x , y, z) ∈ L and L is suitable then z = ack(x , y) and L contains all the
triples (x ′, y ′, ack(x , y ′)) needed to calculate ack(x , y). Show how to code lists of triples of
numbers as numbers in such a way that we can (in principle, no need to do it explicitly!) build
a register machine that recognises whether or not a number is the code for a suitable list of
triples. Show how to use that machine to build a machine computing ack(x , y) by searching for
the code of a suitable list containing a triple with x and y in its first two components.

9. Lambda calculus
1. Given a set V = {x , y, . . .} of variables, define the set T of λ-terms

a) as an inductively defined set (see IA Formal Languages course).

One axiom for variables, and two rules:

x ∈ T
(x ∈ V)

M ∈ T

(λx . M) ∈ T
(x ∈ V)

M ∈ T N ∈ T

(MN) ∈ T

The ∈ T is often omitted.

b) using Backus–Naur form (see IB Semantics course).

BNF often makes the set where variables come from, and set of terms being construc-
ted implicit.

M , N ····= x | (λx . M) | (MN)

c) using a recursive set comprehension (see Lecture 7 of the IB Logic course).

Hierarchical construction:

T0 ¬ V , Tk+1 ¬ { (λx . M) | x ∈ V ∧ M ∈ Tk } ∪ { (MN) | M , N ∈ Tk }, T ¬
⋃

k∈N
Tk

Recursive set comprehension:

T ¬ V ∪ { (λx . M) | x ∈ V ∧ M ∈ T } ∪ { (MN) | M , N ∈ T }

2. a) Simplify the following λ-terms (as much as possible, but without evaluating them) using
the notational conventions described on Slide 105:

(λx . ((ux)y)) (((λu. (λv. (vu)u))z)y) ((((λx . (λy. (λz. ((xz)(yz)))))u)v)w)

Application is left-associative, dot after binding extends as far to the right as possible.

λx . ux y (λuv. vuu)z y (λx yz. xz(yz))uvw

https://www.cl.cam.ac.uk/teaching/2021/CompTheory/lectures/comt-slides.pdf#page=210

CO M P U TAT I O N T H E O RY S O LU T I O N S

b) Expand the following simplified λ-terms (as much as possible) using the notational
conventions described on Slide 105, inserting all parentheses and λ’s:

x yz(y x) λu. u(λx . y) λx y . ux(yz)(λv. v y)

Note that the syntax includes parentheses around every compound lambda term, so
the whole expression should be wrapped in parentheses.

(((x y) z)(y x)) (λu. (u(λx . y))) (λx . (λy. (((ux)(yz))(λv. (v y)))))

3. Give a recursive definition of the function len(M) denoting the length of the λ-term M given
by the total number of variables in M . For example, len(x(λy. yux)) = 5.

Straightforward recursive function that pattern-matches on the shape of the argument.

len(x) ¬ 1

len(λx . M)¬ 1+ len(M)

len(MN) ¬ len(M) + len(N)

4. a) Define the subterm relation M v N by recursion on N . For example,

x v λy. ux λx . y v λx . y x y v (λx . x y)z z v x(λz. y)

but uv 6v λx . xu(v y).

By recursion on N , we have three cases:

• M v x if M = x (and x is a variable)
• M v λx . N if M = x or M v N
• M v NN ′ if M v N or M v N ′ The relation is also reflexive, so we have M v M

for all M .

b) We say there is an occurrence of M in N if M v N .

(i) Mark all occurrences of x y in (x y)(λx . x y).
(ii) Mark all occurrences of x in (x y)(λx . x y).

(iii) Mark all occurrences of x y in λx y . x y .
(iv) Mark all occurrences of uv in x(uv)(λu. v(uv))uv.
(v) Does λu. u occur in λu. uv?

1) (x y)(λx . x y)
2) (x y)(λx . x y)
3) Since λx y . x y = λx . λy. x y , we only have one occurrence: λx y . x y .
4) If we add one omitted pair of parentheses, we get (x(uv)(λu. v(uv))u)v, so the

last “uv” is not actually an occurrence: x(uv)(λu. v(uv))uv.
5) No, since λu. uv = λu. (uv), not (λu. u)v.

5. Let M be the λ-term λx y . x(λz. zu)y .

https://www.cl.cam.ac.uk/teaching/2021/CompTheory/lectures/comt-slides.pdf#page=210

CO M P U TAT I O N T H E O RY S O LU T I O N S

a) What is the β-normal form of the term N = M(λvw. v(wb)) (λx y . yaz)?

We calculate the normal form by successive β reductions and substitutions. We may
start by α-renaming the second argument term, but performing both substitutions at
once in the first step, any name clashes are avoided.

M(λvw. v(wb)) (λx y . yaz) =β (λx y . x(λz. zu)y)(λvw. v(wb)) (λx y . yaz)

=β (λvw. v(wb)) (λz. zu) (λx y . yaz)

=β (λz. zu)((λx y . yaz)b)

=β ((λx y . yaz)b)u

=β (λy. yaz)u

=β uaz

b) Apply the simultaneous substitution σ = [x/y, (λx y . z y)/u] to M and N , and find the
β-normal form of N[σ].

Substitutions are only performed for free variables: even if the names match, bound
variables are una�ected by substitutions and can always be arbitrarily renamed. To
avoid the capture of z, we rename the bound z to w in M first.

M[σ] = (λx y . x(λw. wu)y)[x/y, (λx y . z y)/u] = λx y . x(λw. w(λx y . z y))y

Since substitution distributes over application, we can apply it to the two arguments
of N first – however, neither of them contain free occurrences of y or u, so the
substitution is a no-op. Hence:

N[σ] = M[σ] (λvw. v(wb)) (λx y . yaz)

= (λx y . x(λw. w(λx y . z y))y) (λvw. v(wb)) (λx y . yaz)

To find the normal form of N[σ], we could evaluate the above expression. However,
we can once again make use of the fact that substitution distributes over application,
so the normal form of N[σ] will be the normal form of N with σ applied to it.

N[σ] =β (uaz)[x/y, (λx y . z y)/u] = (λx y . z y)az = zz

c) Give 2 terms α-equivalent to M . Give 2 other terms β-equivalent to M .

The α-equivalent terms will have the same structure, but renamed (bound) variables.

λ f a. f (λz. zu)a λx y . x(λ,. ,u)y

The β-equivalent terms all evaluate to M (since M is in β-nf, there are no shorter
β-equivalent terms). Remember that the rules allow for evaluation inside the body
of a λ-binding. An infinite number of possibilities here of course – for “yeah okay fair

CO M P U TAT I O N T H E O RY S O LU T I O N S

enough” points you can recall that =β is reflexive so M is β-equivalent to M .

(λx . x)M λx y . (λabc. bca)(λz. zu)y x

h. We define η-equivalence as: M =η λx . M x for any λ-term M . Give a shorter and a longer
term η-equivalent to M . What is the use of η-equivalence in functional programming?

A longer term can simply surround M with an application and a binding:
λw. (λx y . x(λz. zu)y)w. For a shorter term we notice that M = λx .λy. x(λz. zu)y ,
and the body of the outermost binding has the right shape to be η-reduced:
λy. x(λz. zu)y =η x(λz. zu). Hence M =η λx . x(λz. zu). This is an example of a
term which is in β-normal form, but not in η-normal form, but λx . x(λz. zu) cannot
be reduced any further with either method, so it is in βη-normal form.

In functional programming η-reduction corresponds to pointfree programming: a
style of writing functions without mentioning (all of the) arguments, and instead
concentrating on how the functions can be combined and composed. For instance,
we can write a function to get the last element of a list as the head of its reverse:

let last xs = hd (rev xs)

However, we can use the o operator to compose hd and rev:

let last xs = (hd o rev) xs

We can rewrite this as a value equalling an anonymous function

let last = fun xs -> (hd o rev) xs

But the anonymous function is precisely of the form that admits η-reduction: it is
a function that takes an argument and applies another function to the argument.
Extensionally, the two functions are equal, so we can also write

let last = hd o rev

6. What are some di�erences between the lambda calculus as defined in this course, and the
functional subset of L2 from the IB Semantics course?

The basic syntactic constructs are the same: we have terms e made up of variables x ,
functional bindings fn x : T ⇒ e and application e1 e2. The main di�erence is that L2
is typed while the (untyped) λ-calculus presented in this course is not. This has many
consequences, most notably a severe restriction on what kinds of terms we may construct:
while the grammar of λ-terms is unrestricted (so e.g. x x is a perfectly reasonable term), in
a simply typed setting every subterm is required to have a unique type (so self-application
is not possible). Another di�erence is the evaluation strategy: in L2 we use call-by-value

CO M P U TAT I O N T H E O RY S O LU T I O N S

(reduce argument first, then substitute). In UTLC, the β-reduction is nondeterministic
(albeit confluent), and also allows reduction in the body of a lambda term. We can restrict
it to normal-order reduction (left-most, outer-most), which corresponds to call-by-name
evaluation: application is performed without evaluating the argument.

10. Lambda-definable functions
1. Give a complete proof of the correctness of Church addition from Slide 119. Hint: a formal

justification of one of the steps will require mathematical induction.

Plus m n=β m+ n

The full calculation is given in the notes, the only step that requires a more formal proof is
f m(f n x) = f m+n – we remedy that now.

We prove that for all m, n ∈ N and λ-terms F and M , we have that F m(F nM) = F m+nM by
mathematical induction on m.

Base case: m= 0. We have F0(F nM) = F nM = F0+nM , as required.

Inductive step: m= k+ 1. Assume that the IH holds for m= k: F k(F nM) = F k+nM . Then
we have: F k+1(F nM) = F(F k(F nM)) = F(F k+nM) = F (k+1)+nM , where we applied the IH
in the second equality.

2. Define the λ-terms Times and Exp representing multiplication and exponentiation of Church
numerals respectively. Prove the correctness of your definitions.

Times m n=β m× n Exp m n=β mn

Addition applies the successor function n then m times. Multiplication applies the “apply
the successor function n times” function m times.

Times¬ λmn. λ f x . m(nf)x (=η λmn. λ f . m(nf))

We can calculate (noting the di�erence between definitional equality and β-equivalence):

Times m n=β λ f x . m(nf)x

=β λ f x . (f n)m x

= λ f x . f n×m x

= n×m

The property we use in the third step is (F n)mM = F n×mM for all terms F, M and naturals
m, n. We prove it by induction on m:

Base case: m= 0. We have (F n)0M = M = F n×0, as required.

https://www.cl.cam.ac.uk/teaching/2021/CompTheory/lectures/comt-slides.pdf#page=244

CO M P U TAT I O N T H E O RY S O LU T I O N S

Inductive step: m= k+ 1. Assume that the IH holds for m= k: (F n)kM = F n×kM . Then:

(F n)k+1M = F n((F n)kM) =IH F n(F n×kM) = F n×k+nM = F n×(k+1)M

where we made use of the addition property above in the third step.

Exponentiation of Church numerals is remarkably simple, as their definition automatically
performs the “exponentiation”:

Exp¬ λmn. λ f x . n mf x (=η λmn. n m)

We can calculate:

Exp m n=β λ f x . n m f x

=β λ f x . (m)n f x

= λ f x . (mn) f x

= λ f x . f mn
x

= mn

The property we use in the third step is (m)n M = mn M for all terms M and m, n ∈ N. We
proceed by induction on n:

Base case: n= 0. We have (m)0 M = M = 1 M = m0 M , as required.

Inductive step: n= k+ 1. Assume that the IH holds for n= k: (m)k M = mk M . Then:

(m)k+1M = m ((m)kM) =IH m ((mk)M) = Times m mk M = m×mk M = mk+1 M

3. Show that the λ-term Ack¬ λx . x T Succ, where T ¬ (λ f y . y f (f 1)) represents Ackermann’s
function ack ∈ N2 → N. Hint: you will need to use nested induction; consider deriving a
simplified form for the outer inductive case before starting the nested proof.

For brevity I will write A for Ack and S for Succ. We need to show that for all naturals
m, n ∈ N, Am n=β ack(m, n) by induction on m.

Base case: m= 0.

A0 n= 0 T S n= T 0 S n= S n= n+ 1= ack(0, n)

Inductive step. Assume
∀n ∈ N. Am n=β ack(m, n) (IH1)

and prove that for all n ∈ N, Am+ 1 n =β ack(m+ 1, n). Before attempting this proof, it’s
worth showing some simple lemmas. First, we calculate the partial application:

Am+ 1=β m+ 1 T S =β T (T m S) =β T (m T S) =β T (Am) (†)

CO M P U TAT I O N T H E O RY S O LU T I O N S

This gives us

Am+ 1 n=β T (Am)n (by †)
= (λ f y . y f (f 1)) (Am)n

=β n (Am) (Am 1)

=β n (Am)ack(m, 1) (by IH1)

Thus we have that Am+ 1 n=β n (Am)ack(m, 1) and can proceed with a proof of

∀n ∈ N. Am+ 1 n=β ack(m+ 1, n)

by (nested) induction on n ∈ N.

Base case: n= 0. We have

Am+ 1 0=β 0 (Am)ack(m, 1) =β ack(m, 1)

and ack(m+ 1,0)¬ ack(m, 1) by definition.

Inductive step. Assume
Am+ 1 n=β ack(m+ 1, n) (IH2)

We need to prove Am+ 1 n+ 1=β ack(m+ 1, n+ 1):

Am+ 1 n+ 1=β n+ 1 (Am)ack(m, 1) (by †)

=β (Am)n+1 ack(m, 1) (def. of Church numerals)

= Am (n (Am)ack(m, 1)) (by def. of exponentiation)

=β Am (Am+ 1 n) (by †)
=β Am ack(m+ 1, n) (by IH2)

=β ack(m, ack(m+ 1, n)) (by IH1 with n= ack(m+ 1, n))

=β ack(m+ 1, n+ 1) (by def. of Ackermann)

All cases are covered, so the proof is finished. And what a proof it was.

4. Consider the following λ-terms:

I¬ λx . x B¬ λg f x . f x I (g(f x))

a) Show that n I=β I for every n ∈ N.

Unsurprisingly, we prove this by induction on n ∈ N. We also introduce an arbitrary
λ-term M as the argument.

Base case: n= 0. We have 0 I M =β I0 M = M =β I M , as required.

Inductive step: n= k+ 1. Assume the IH holds for n= k: k I M = I M . Now

k+ 1 I M =β I (k I M) =β I (I M) =β I M

CO M P U TAT I O N T H E O RY S O LU T I O N S

b) Assuming the fact about normal order reduction mentioned on Slide 115, show that if
partial functions f , g : N* N are represented by closed λ-terms F and G respectively,
then their composition (g ◦ f)(x) ¬ g(f (x)) is represented by B G F . Explain how this
avoids the discrepancy with partial functions mentioned in Slide 125.

Let F and G be closedλ-terms representing partial functions f , g : N* N. We need to
show that for all n ∈ N where g(f (n)) is defined, B G F n =β g(f (n)). If g(f (n)) = m
for some m ∈ N, we must have a k ∈ N such that f (n) = k and g(k) = m, so F n =β k
and G k =β m by assumption. Then, using k I=β I from (a):

B G F n=β F n I (G (F n)) =β k I (G k) =β I (G k) =β G k =β m

Now, if k exists but g(k) is undefined, the last step will diverge. Since normal-order
reduction will eventually try evaluating G k in F n I (G k), the evaluation of B G F n
will also diverge. On the other hand, if f (n) is undefined, then F n will diverge; since
this is the outermost subterm of F n I (G (F n)), normal-order reduction will also
diverge. This di�ers from simply defining the composition as G (F n), since normal-
order reduction may not reach the evaluation of (F n), e.g. if G is a constant function.
The B combinator forces the evaluation of F n even if it wouldn’t get encountered
otherwise, and therefore it corresponds to composition of partial functions.

5. In the following questions you may use all of the λ-definable functions presented in the notes,
as well as the terms you define as part of this exercise. You should explain your answers
(possibly using some examples), but don’t need to prove their correctness.

a) Give a λ-term Not representing Boolean negation.

Since a Church Boolean corresponds to a branching operation, all we need to do is
return false in the true branch, and true in the false branch:

Not¬ λp. p False True

b) Give λ-terms And and Or representing Boolean conjunction and disjunction.

Again, we use the standard definition of conjunction and disjunction in terms of
Boolean branching, also exploiting the fact that Booleans are encoded as their own
eliminators. For example, in p ∧ q, if p is true then we return q (and the truth value
of q will determine the truth value of > ∧ q), otherwise we return false. But, since p
already denotes false (in its own ‘else’ branch), we just need to return p itself.

And¬ λpq. p q p

Or¬ λpq. p p q

c) Give a λ-term Minus representing truncated subtraction (i.e. Minus m n= 0 if m< n).

Subtraction is repeated application of the predecessor function. Since Pred 0 = 0, it

https://www.cl.cam.ac.uk/teaching/2021/CompTheory/lectures/comt-slides.pdf#page=240
https://www.cl.cam.ac.uk/teaching/2021/CompTheory/lectures/comt-slides.pdf#page=250

CO M P U TAT I O N T H E O RY S O LU T I O N S

already performs the truncation.

Minus¬ λmn. n Pred m

d) Giveλ-terms Eq, NEq, LT, LEq, GT, GEq, representing the numeric comparison operations
=, 6=,<,≤,>,≥ respectively. You can define them in any order you find most convenient.

Most of these relations can be defined in terms of each other, so it’s possible to define
one as a starting point, then construct the rest from it. A good starting point is ≤ or
≥ which give you both the notion of ordering and equality. These are also simple to
define in terms of truncated subtraction and zero check: m≤ n i� m .− n= 0.

LEq¬ λmn. Eq0 (Minus m n)

From here, the remaining operations can be defined using Boolean operators. Here is
one possible ordering, several others are possible:

Eq¬ λmn. And (LEq m n) (LEq n m)

NEq¬ λmn. Not (Eq m n)

GT¬ λmn. Not (LEq m n)

GEq¬ λmn. Or (GT m n) (Eq m n)

LT¬ λmn. Not (GEq m n)

e) Define the λ-term UCr that represents the uncurrying higher-order function: if 〈M , N〉
denotes Pair M N , then UCr F 〈M , N〉=β F M N .

Nothing surprising here – use projections to get the two elements of the pair.

UCr¬ λ f p. f (Fst p) (Snd p)

f) Give a λ-term MapPair that applies a function to both elements of a pair: that is,
MapPair F 〈M , N〉=β 〈F M , F N〉.

Still nothing surprising!

MapPair¬ λ f p. Pair (f (Fst p)) (f (Snd p))

g) Give a λ-term SqSum which represents the function 〈m, n〉 7→ m2 + n2.

We can combine many of the functions we defined already to give a relatively clean,
compositional definition.

SqSum¬ λp. UCr Plus (MapPair (λk. Exp k 2) p)

We can even go point-free by using the composition combinator B from above:

SqSum¬ B (UCr Plus) (MapPair (λk. Exp k 2))

6. a) Explain why Curry’s Y combinator is needed and how it works.

CO M P U TAT I O N T H E O RY S O LU T I O N S

Term definitions in the λ-calculus are simply abbreviations for larger λ-terms, and
therefore they cannot be self-referential (otherwise trying to expand the term in its
own definition would lead to an infinite expansion). This prevents us from writing
“recursive” definitions such as Fact n ¬ n× (Fact (n− 1)): all subterms of a term
should be well-defined. However, this doesn’t mean that we cannot define recursive
functions in the λ-calculus. We first note that a recursively defined term would have
the general form M ¬ F M , where the body of the definition of M itself takes the
term M as an argument (e.g. Fact¬ (λ f . λm. m× f (m− 1)) Facta). We can instead
state this in terms of β-equivalence (as a specification, rather than definition):

M =β F M

This form characterises M as a fixed point of F , where a fixed point of a function f is
an argument x such that f (x) = x . Fixed points and recursion go hand-in-hand, since
M =β F M =β F(F M) =β F(F · · · (F M) · · ·), giving rise to the repetitive behavior
that we are trying to capture. Hence, to define a term M that satisfies the “recursive”
specification M =β F M , we need to find a fixed point of F . The fixed point of the
λ-term (λ f m. m× f (m− 1)) is precisely the factorial function.

The next question is: how do we find the fixed point of a λ-term? We can use fixed-
point combinators, which are higher-order λ-terms that take a function and return
its fixed point. One of the simplest fixed-point combinators is Curry’s Y combinator,
which satisfies the required fixed point property (stating that Y F is a FP of F):

Y F =β F(Y F)

Curry defined Y as follows:

Y¬ λ f . (λx . f (x x)) (λx . f (x x))

It is crucially dependent on self-application, which is possible in the absence of
types, but becomes impossible in a typed setting. Y is therefore slightly “magical”
and doesn’t correspond obviously to a natural computational construction, but it
nevertheless satisfies the fixed point property above (see Slide 135). The Y combinator
now allows us to define recursion indirectly: given the “intended” definition M ¬ F M ,
we can define the λ-term that satisfies this as the fixed point Y F of F . For example,

Fact¬ Y (λ f m. m× f (m− 1))
a The base case in the definitions will be omitted for brevity – of course they are important, and are

easy to define with If and Eq0.

b) Give a λ-term which is β-equivalent to the Y combinator, but only uses it’s f argument
once. Hint: see if you can exploit the symmetry of the Y combinator.

https://www.cl.cam.ac.uk/teaching/2021/CompTheory/lectures/comt-slides.pdf#page=260

CO M P U TAT I O N T H E O RY S O LU T I O N S

We can notice that the body of Y¬ λ f . (λx . f (x x)) (λx . f (x x)) is the same term
(λx . f (x x)) repeated twice. We can exploit this using the “self-application combin-
ator” λx . x x to get Y′, which reduces to Y in one step.

Y′ ¬ λ f . (λx . x x) (λx . f (x x))

c) Define the λ-term Fact that computes the factorial of a Church numeral.

We expand our previous, informal example of fixpoint recursion. The λ-term Fact
should satisfy the following equivalence:

Fact=β λn. If (Eq0 n) 1 (Times n (Fact (Pred n)))

To make this into a well-formed term definition, we need to abstract out the recursive
call, then “tie the knot” using the Y combinator.

Fact¬ Y
�

λ f . λn. If (Eq0 n) 1 (Times n (f (Pred n)))
�

d) Define the λ-term Fib such that Fib n =β Fn where Fn is the nth Fibonacci number defined
recursively as F0 = 0, F1 = 1, and Fn = Fn−1 + Fn−2.

Similarly, we start with the recursive specification, then turn it into a definition.

Fib=β λn. If (LEq n 1) n (Plus (Fib (Pred n)) (Fib (Minus n 2)))

Rewriting with the fixed point combinator, we notice that the recursive call is made
twice, which is captured by the repeated use of the higher-order argument f .

Fib¬ Y
�

λ f . λn. If (LEq n 1) n (Plus (f (Pred n)) (f (Minus n 2)))
�

	Algorithmically undecidable problems
	Register machines
	Coding programs as numbers
	Universal register machine
	The Halting Problem and undecidability
	Turing machines
	Notions of computability
	Partial recursive functions
	Lambda calculus
	Lambda-definable functions

