
Computation Theory
Exercises

2021

Contents

1. Algorithmically undecidable problems . 1
2. Register machines . 1
3. Coding programs as numbers . 2
4. Universal register machine . 2
5. The Halting Problem and undecidability . 3
6. Turing machines . 3
7. Notions of computability . 3
8. Partial recursive functions . 4
9. Lambda calculus . 5
10. Lambda-definable functions . 6

1. Algorithmically undecidable problems
1. Two important concepts in the theory of computability are enumerations and diagonalisation.

Intuitively, an enumeration of a set S is an ordered, “exhaustive” listing of all elements. While
this intuition works for finite sets, we need to be more formal to handle infinite sets. Thus, an
enumeration of a finite or infinite set S is a surjective function from the natural numbers N to
S, if it exists. If it does, the set S is called countable; if it doesn’t, it is uncountable.

Prove or disprove the following statements:

a) The set of natural numbers is countable.

b) The set of integers is countable.

c) The Cartesian product of two countable sets is countable.

d) The set of rational numbers is countable.

e) The finite n-ary product of countable sets is countable.

f) The set of polynomials with coe�cients from a countable set is countable.

g) The powerset of a countable set is countable.

h) The set of real numbers is countable.

Feel free to do some research if you are not familiar with these results.

2. Rephrase the proof of the undecidability of the Halting Problem (with an abstract definition of
an algorithm) as a diagonal argument.

2. Register machines
1. Show that the following arithmetic functions are all register machine computable.

a) First projection function p ∈ N→ N, where p(x , y)¬ x
b) Constant function with value n ∈ N, cn ∈ N→ N where c(x)¬ n
c) Truncated subtraction function, _ .− _ ∈ N2→ N, where

x .− y ¬

(

x − y if y ≤ x

0 if y > x

d) Integer division function, _div_ ∈ N2→ N where

x div y ¬

(

integer part of x/y if y > 0

0 if y = 0

e) Integer remainder function, _mod_ ∈ N2→ N with x mod y ¬ x .− y · (x div y)
f) Exponentiation base 2, e ∈ N→ N, where e(x) = 2x

CO M P U TAT I O N T H E O RY E X E R C I S E S

g) Logarithm base 2, log2 ∈ N→ N, where

log2(x)¬

(

greatest y such that 2y ≤ x if x > 0

0 if x = 0

Hint: instead of defining everything from scratch, try implementing these machines with the
help of general control flow components.

3. Coding programs as numbers
1. Gödel numbering is a general technique for assigning a natural number to some mathematical

object (such as a well-formed formula in some formal language). The numbering is often
computed by translating every symbol of a formula Φ to a natural number, then combining
the codes to create a unique Gödel number G(Φ). For example, with the assignments t(‘∀’) =
1, t(‘x ’) = 2, t(‘.’) = 3, and t(‘= ’) = 4, the Gödel number of the formula ∀x . x = x with a
particular combination function could be G(‘∀x . x = x ’) = 272794772250.

a) Is the Gödel numbering of register machines described in the notes a bijection, an injection,
a surjection, a total function, a partial function, or a relation? Justify your answer.

b) In the example of first-order logic above, is a particular Gödel numbering a bijection, an
injection, a surjection, a total function, a partial function, or a relation? Justify your answer.

c) Suggest one or more ways of combining the symbol codes of a formula Φ to generate a
unique Gödel number for Φ. Demonstrate your methods on the formula Φ= ‘∀x . x = x ’
used above.

2. Let ϕe ∈ N * N denote the unary partial function from numbers to numbers computed by
the register machine with code e. Show that for any given register machine computable unary
partial function f ∈ N* N, there are infinitely many numbers e such that ϕe = f . Two partial
functions are equal if they are equal as sets of ordered pairs; equivalently, for all numbers
x ∈ N, ϕe(n) is defined if and only if f (x) is, and in that case they are equal numbers.

4. Universal register machine
1. What is the aim of the universal register machine U? How does it work? Annotate the diagram

of the register machine with its major components, explaining what they accomplish in the
bigger context of the operation of U .

2. Consider the list of register machine instructions whose graphical representation is shown
below. Assuming that register Z holds 0 initially, describe what happens when the code is
executed (both in terms of the e�ect on registers A and S and whether the code halts by

CO M P U TAT I O N T H E O RY E X E R C I S E S

jumping to the label EXIT or HALT).

START A− S− EXIT

Z+ S− Z− HALT

A+ Z− S+

Optional exercise
Write a register machine interpreter in a programming language you prefer (a functional language
such as ML or Haskell is recommended). Implement a library of RM building blocks such as the ones
appearing in the universal register machine or your answer for Ex. 2.1. You may try implementing the
RM U as well, but don’t worry if you run into resource constraints. The format of input and output is
up to you but the RM representation and computation must conform to the theoretical definition.

5. The Halting Problem and undecidability
1. Show that decidable sets are closed under union, intersection, and complementation. Do all of

these closure properties hold for undecidable languages?

2. Suppose S1 and S2 are subsets of N. Suppose r ∈ N→ N is a register machine computable
function satisfying: for all n in N, n is an element of S1 if and only if r(n) is an element of S2.
Show that S1 is register machine decidable if S2 is. Is the converse, inverse, or contrapositive of
this statement true?

3. Show that the set E of codes 〈e, e′〉 of pairs of numbers satisfying ϕe = ϕe′ is undecidable.

4. Show that there is a register machine computable partial function f : N* N such that both
sets {n ∈ N | f (n)↓} and { y ∈ N | ∃n ∈ N. f (n) = y } are register machine undecidable.

6. Turing machines
1. Compare and contrast register machines with Turing machines: how do they keep track of state,

how are programs represented, what form do machine configurations and computations take?

2. Familiarise yourself with the Chomsky hierarchy and explain the connection between regular
expressions and Turing machines.

7. Notions of computability
1. Before the formal development of the field of computation theory, mathematicians often used

the term e�ectively computable to describe functions that can – in principle – be computed
using mechanical, pen-and-paper methods.

CO M P U TAT I O N T H E O RY E X E R C I S E S

a) How was the notion of e�ective computability formalised by Church and Turing, and
generalised to other models of computation?

b) Suppose we invented a new model of computation. How can we establish that it is as
“powerful” as mechanical methods? Make sure to formally explain what “power” means in
this case.

c) Can our new model be even more powerful?

2. Briefly describe of three Turing-complete models of computation not covered in the course.

8. Partial recursive functions
1. Show that the following functions are all primitive recursive. Make sure to give the final form of

the function as a composition of primitive functions and projection.

a) Truncated subtraction function, minus: N2→ N, where

minus(x , y)¬

(

x − y if y ≤ x

0 if y > x

b) Exponentiation, exp: N2→ N, where exp(x , y) = x y .

c) Conditional branch on zero, ifzero: N3→ N, where

ifzero(x , y, z)¬

(

y if x = 0

z if x > 0

d) Bounded summation: if f : Nn+1→ N is primitive recursive, then so is g : Nn+1→ N where
where

g(~x , x)¬

0 if x = 0

f (~x , 0) if x = 1

f (~x , 0) + · · ·+ f (~x , x − 1) if x > 1

2. Explain the motivation and intuition behind minimisation. How does it extend the set of func-
tions computable using primitive recursion? Give three examples of computable partial functions
that are not definable using primitive recursion, justifying your answer in each case.

3. Use minimisation to show that the following functions are partial recursive:

a) the binary maximum function max : N2→ N.

b) the integer square root function sqrt : N* N which is only defined if its argument is a
perfect square.

Optional exercises
1. Write a Turing machine simulator in a programming language you prefer (a functional language

such as ML or Haskell is recommended). Implement the machine described on Slide 64.

https://www.cl.cam.ac.uk/teaching/2021/CompTheory/lectures/comt-slides.pdf#page=142

CO M P U TAT I O N T H E O RY E X E R C I S E S

2. For the example Turing machine given on Slide 64, give the register machine program imple-
menting (S, T, D) := δ(S, T), as described on Slide 70.

3. Recall the definition of Ackermann’s function ack. Sketch how to build a register machine M
that computes ack(x1, x2) in R0 when started with x1 in R1 and x2 in R2 and all other registers
zero. (E9)

Hint: Call a finite list L = [(x1, y1, z1), (x2, y2, z2), . . .] of triples of numbers suitable if it satisfies

a) if (0, y, z) ∈ L, then z = y + 1

b) if (x + 1, 0, z) ∈ L, then (x , 1, z) ∈ L

c) if (x + 1, y + 1, z) ∈ L, then there is some u with (x + 1, y, u) ∈ L and (x , u, z) ∈ L.

The idea is that if (x , y, z) ∈ L and L is suitable then z = ack(x , y) and L contains all the
triples (x ′, y ′, ack(x , y ′)) needed to calculate ack(x , y). Show how to code lists of triples of
numbers as numbers in such a way that we can (in principle, no need to do it explicitly!) build
a register machine that recognises whether or not a number is the code for a suitable list of
triples. Show how to use that machine to build a machine computing ack(x , y) by searching for
the code of a suitable list containing a triple with x and y in its first two components.

9. Lambda calculus
1. Given a set V = {x , y, . . .} of variables, define the set T of λ-terms

a) as an inductively defined set (see IA Formal Languages course).

b) using Backus–Naur form (see IB Semantics course).

c) using a recursive set comprehension (see Lecture 7 of the IB Logic course).

2. a) Simplify the following λ-terms (as much as possible, but without evaluating them) using
the notational conventions described on Slide 105:

(λx . ((ux)y)) (((λu. (λv. (vu)u))z)y) ((((λx . (λy. (λz. ((xz)(yz)))))u)v)w)

b) Expand the following simplified λ-terms (as much as possible) using the notational
conventions described on Slide 105, inserting all parentheses and λ’s:

x yz(y x) λu. u(λx . y) λx y . ux(yz)(λv. v y)

3. Give a recursive definition of the function len(M) denoting the length of the λ-term M given
by the total number of variables in M . For example, len(x(λy. yux)) = 5.

4. a) Define the subterm relation M v N by recursion on N . For example,

x v λy. ux λx . y v λx . y x y v (λx . x y)z z v x(λz. y)

but uv 6v λx . xu(v y).

b) We say there is an occurrence of M in N if M v N .

https://www.cl.cam.ac.uk/teaching/2021/CompTheory/lectures/comt-slides.pdf#page=142
https://www.cl.cam.ac.uk/teaching/2021/CompTheory/lectures/comt-slides.pdf#page=153
https://www.cl.cam.ac.uk/teaching/2021/CompTheory/lectures/comt-slides.pdf#page=2.5
https://www.cl.cam.ac.uk/teaching/2021/CompTheory/lectures/comt-slides.pdf#page=210
https://www.cl.cam.ac.uk/teaching/2021/CompTheory/lectures/comt-slides.pdf#page=210

CO M P U TAT I O N T H E O RY E X E R C I S E S

(i) Mark all occurrences of x y in (x y)(λx . x y).
(ii) Mark all occurrences of x in (x y)(λx . x y).

(iii) Mark all occurrences of x y in λx y . x y .
(iv) Mark all occurrences of uv in x(uv)(λu. v(uv))uv.
(v) Does λu. u occur in λu. uv?

5. Let M be the λ-term λx y . x(λz. zu)y .

a) What is the β-normal form of the term N = M(λvw. v(wb)) (λx y . yaz)?

b) Apply the simultaneous substitution σ = [x/y, (λx y . z y)/u] to M and N , and find the
β-normal form of N[σ].

c) Give 2 terms α-equivalent to M . Give 2 other terms β-equivalent to M .

h. We define η-equivalence as: M =η λx . M x for any λ-term M . Give a shorter and a longer
term η-equivalent to M . What is the use of η-equivalence in functional programming?

6. What are some di�erences between the lambda calculus as defined in this course, and the
functional subset of L2 from the IB Semantics course?

10. Lambda-definable functions
1. Give a complete proof of the correctness of Church addition from Slide 119. Hint: a formal

justification of one of the steps will require mathematical induction.

Plus m n=β m+ n

2. Define the λ-terms Times and Exp representing multiplication and exponentiation of Church
numerals respectively. Prove the correctness of your definitions.

Times m n=β m× n Exp m n=β mn

3. Show that the λ-term Ack¬ λx . x T Succ, where T ¬ (λ f y . y f (f 1)) represents Ackermann’s
function ack ∈ N2 → N. Hint: you will need to use nested induction; consider deriving a
simplified form for the outer inductive case before starting the nested proof.

4. Consider the following λ-terms:

I¬ λx . x B¬ λg f x . f x I (g(f x))

a) Show that n I=β I for every n ∈ N.

b) Assuming the fact about normal order reduction mentioned on Slide 115, show that if
partial functions f , g : N* N are represented by closed λ-terms F and G respectively,
then their composition (g ◦ f)(x) ¬ g(f (x)) is represented by B G F . Explain how this
avoids the discrepancy with partial functions mentioned in Slide 125.

5. In the following questions you may use all of the λ-definable functions presented in the notes,
as well as the terms you define as part of this exercise. You should explain your answers

https://www.cl.cam.ac.uk/teaching/2021/CompTheory/lectures/comt-slides.pdf#page=244
https://www.cl.cam.ac.uk/teaching/2021/CompTheory/lectures/comt-slides.pdf#page=240
https://www.cl.cam.ac.uk/teaching/2021/CompTheory/lectures/comt-slides.pdf#page=250

CO M P U TAT I O N T H E O RY E X E R C I S E S

(possibly using some examples), but don’t need to prove their correctness.

a) Give a λ-term Not representing Boolean negation.

b) Give λ-terms And and Or representing Boolean conjunction and disjunction.

c) Give a λ-term Minus representing truncated subtraction (i.e. Minus m n= 0 if m< n).

d) Giveλ-terms Eq, NEq, LT, LEq, GT, GEq, representing the numeric comparison operations
=, 6=,<,≤,>,≥ respectively. You can define them in any order you find most convenient.

e) Define the λ-term UCr that represents the uncurrying higher-order function: if 〈M , N〉
denotes Pair M N , then UCr F 〈M , N〉=β F M N .

f) Give a λ-term MapPair that applies a function to both elements of a pair: that is,
MapPair F 〈M , N〉=β 〈F M , F N〉.

g) Give a λ-term SqSum which represents the function 〈m, n〉 7→ m2 + n2.

6. a) Explain why Curry’s Y combinator is needed and how it works.

b) Give a λ-term which is β-equivalent to the Y combinator, but only uses it’s f argument
once. Hint: see if you can exploit the symmetry of the Y combinator.

c) Define the λ-term Fact that computes the factorial of a Church numeral.

d) Define the λ-term Fib such that Fib n =β Fn where Fn is the nth Fibonacci number defined
recursively as F0 = 0, F1 = 1, and Fn = Fn−1 + Fn−2.

	Algorithmically undecidable problems
	Register machines
	Coding programs as numbers
	Universal register machine
	The Halting Problem and undecidability
	Turing machines
	Notions of computability
	Partial recursive functions
	Lambda calculus
	Lambda-definable functions

