
Computation Theory
Supervision 3 – Solutions

9. Lambda calculus
1. Given a set V = {x , y, . . .} of variables, define the set T of λ-terms

a) as an inductively defined set (see IA Formal Languages course).

One axiom for variables, and two rules:

x ∈ T
(x ∈ V)

M ∈ T

(λx . M) ∈ T
(x ∈ V)

M ∈ T N ∈ T

(MN) ∈ T

The ∈ T is often omitted.

b) using Backus–Naur form (see IB Semantics course).

BNF often makes the set where variables come from, and set of terms being construc-
ted implicit.

M , N ····= x | (λx . M) | (MN)

c) using a recursive set comprehension (see Lecture 7 of the IB Logic course).

Hierarchical construction:

T0 ¬ V , Tk+1 ¬ { (λx . M) | x ∈ V ∧ M ∈ Tk } ∪ { (MN) | M , N ∈ Tk }, T ¬
⋃

k∈N
Tk

Recursive set comprehension:

T ¬ V ∪ { (λx . M) | x ∈ V ∧ M ∈ T } ∪ { (MN) | M , N ∈ T }

2. a) Simplify the following λ-terms (as much as possible, but without evaluating them) using
the notational conventions described on Slide 105:

(λx . ((ux)y)) (((λu. (λv. (vu)u))z)y) ((((λx . (λy. (λz. ((xz)(yz)))))u)v)w)

Application is left-associative, dot after binding extends as far to the right as possible.

λx . ux y (λuv. vuu)z y (λx yz. xz(yz))uvw

b) Expand the following simplified λ-terms (as much as possible) using the notational
conventions described on Slide 105, inserting all parentheses and λ’s:

x yz(y x) λu. u(λx . y) λx y . ux(yz)(λv. v y)
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Note that the syntax includes parentheses around every compound lambda term, so
the whole expression should be wrapped in parentheses.

(((x y) z)(y x)) (λu. (u(λx . y))) (λx . (λy. (((ux)(yz))(λv. (v y)))))

3. Give a recursive definition of the function len(M) denoting the length of the λ-term M given
by the total number of variables in M . For example, len(x(λy. yux)) = 5.

Straightforward recursive function that pattern-matches on the shape of the argument.

len(x) ¬ 1

len(λx . M)¬ 1+ len(M)

len(MN) ¬ len(M) + len(N)

4. a) Define the subterm relation M v N by recursion on N . For example,

x v λy. ux λx . y v λx . y x y v (λx . x y)z z v x(λz. y)

but uv 6v λx . xu(v y).

By recursion on N , we have three cases:

• M v x if M = x (and x is a variable)
• M v λx . N if M = x or M v N
• M v NN ′ if M v N or M v N ′ The relation is also reflexive, so we have M v M

for all M .

b) We say there is an occurrence of M in N if M v N .

(i) Mark all occurrences of x y in (x y)(λx . x y).
(ii) Mark all occurrences of x in (x y)(λx . x y).

(iii) Mark all occurrences of x y in λx y . x y .
(iv) Mark all occurrences of uv in x(uv)(λu. v(uv))uv.
(v) Does λu. u occur in λu. uv?

1) (x y)(λx . x y)
2) (x y)(λx . x y)
3) Since λx y . x y = λx . λy. x y , we only have one occurrence: λx y . x y .
4) If we add one omitted pair of parentheses, we get (x(uv)(λu. v(uv))u)v, so the

last “uv” is not actually an occurrence: x(uv)(λu. v(uv))uv.
5) No, since λu. uv = λu. (uv), not (λu. u)v.

5. Let M be the λ-term λx y . x(λz. zu)y .

a) What is the β-normal form of the term N = M(λvw. v(wb)) (λx y . yaz)?

We calculate the normal form by successive β reductions and substitutions. We may
start by α-renaming the second argument term, but performing both substitutions at
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once in the first step, any name clashes are avoided.

M(λvw. v(wb)) (λx y . yaz) =β (λx y . x(λz. zu)y)(λvw. v(wb)) (λx y . yaz)

=β (λvw. v(wb)) (λz. zu) (λx y . yaz)

=β (λz. zu)((λx y . yaz)b)

=β ((λx y . yaz)b)u

=β (λy. yaz)u

=β uaz

b) Apply the simultaneous substitution σ = [x/y, (λx y . z y)/u] to M and N , and find the
β-normal form of N[σ].

Substitutions are only performed for free variables: even if the names match, bound
variables are una�ected by substitutions and can always be arbitrarily renamed. To
avoid the capture of z, we rename the bound z to w in M first.

M[σ] = (λx y . x(λw. wu)y)[x/y, (λx y . z y)/u] = λx y . x(λw. w(λx y . z y))y

Since substitution distributes over application, we can apply it to the two arguments
of N first – however, neither of them contain free occurrences of y or u, so the
substitution is a no-op. Hence:

N[σ] = M[σ] (λvw. v(wb)) (λx y . yaz)

= (λx y . x(λw. w(λx y . z y))y) (λvw. v(wb)) (λx y . yaz)

To find the normal form of N[σ], we could evaluate the above expression. However,
we can once again make use of the fact that substitution distributes over application,
so the normal form of N[σ] will be the normal form of N with σ applied to it.

N[σ] =β (uaz)[x/y, (λx y . z y)/u] = (λx y . z y)az = zz

c) Give 2 terms α-equivalent to M . Give 2 other terms β-equivalent to M .

The α-equivalent terms will have the same structure, but renamed (bound) variables.

λ f a. f (λz. zu)a λx y . x(λ,. ,u)y

The β-equivalent terms all evaluate to M (since M is in β-nf, there are no shorter
β-equivalent terms). Remember that the rules allow for evaluation inside the body
of a λ-binding. An infinite number of possibilities here of course – for “yeah okay fair
enough” points you can recall that =β is reflexive so M is β-equivalent to M .

(λx . x)M λx y . (λabc. bca)(λz. zu)y x

h. We define η-equivalence as: M =η λx . M x for any λ-term M . Give a shorter and a longer
term η-equivalent to M . What is the use of η-equivalence in functional programming?
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A longer term can simply surround M with an application and a binding:
λw. (λx y . x(λz. zu)y)w. For a shorter term we notice that M = λx .λy. x(λz. zu)y ,
and the body of the outermost binding has the right shape to be η-reduced:
λy. x(λz. zu)y =η x(λz. zu). Hence M =η λx . x(λz. zu). This is an example of a
term which is in β-normal form, but not in η-normal form, but λx . x(λz. zu) cannot
be reduced any further with either method, so it is in βη-normal form.

In functional programming η-reduction corresponds to pointfree programming: a
style of writing functions without mentioning (all of the) arguments, and instead
concentrating on how the functions can be combined and composed. For instance,
we can write a function to get the last element of a list as the head of its reverse:

let last xs = hd (rev xs)

However, we can use the o operator to compose hd and rev:

let last xs = (hd o rev) xs

We can rewrite this as a value equalling an anonymous function

let last = fun xs -> (hd o rev) xs

But the anonymous function is precisely of the form that admits η-reduction: it is
a function that takes an argument and applies another function to the argument.
Extensionally, the two functions are equal, so we can also write

let last = hd o rev

6. What are some di�erences between the lambda calculus as defined in this course, and the
functional subset of L2 from the IB Semantics course?

The basic syntactic constructs are the same: we have terms e made up of variables x ,
functional bindings fn x : T ⇒ e and application e1 e2. The main di�erence is that L2
is typed while the (untyped) λ-calculus presented in this course is not. This has many
consequences, most notably a severe restriction on what kinds of terms we may construct:
while the grammar of λ-terms is unrestricted (so e.g. x x is a perfectly reasonable term), in
a simply typed setting every subterm is required to have a unique type (so self-application
is not possible). Another di�erence is the evaluation strategy: in L2 we use call-by-value
(reduce argument first, then substitute). In UTLC, the β-reduction is nondeterministic
(albeit confluent), and also allows reduction in the body of a lambda term. We can restrict
it to normal-order reduction (left-most, outer-most), which corresponds to call-by-name
evaluation: application is performed without evaluating the argument.



CO M P U TAT I O N T H E O RY S U P E R V I S I O N 3 – S O LU T I O N S

10. Lambda-definable functions
1. Give a complete proof of the correctness of Church addition from Slide 119. Hint: a formal

justification of one of the steps will require mathematical induction.

Plus m n=β m+ n

The full calculation is given in the notes, the only step that requires a more formal proof is
f m( f n x) = f m+n – we remedy that now.

We prove that for all m, n ∈ N and λ-terms F and M , we have that F m(F nM) = F m+nM by
mathematical induction on m.

Base case: m= 0. We have F0(F nM) = F nM = F0+nM , as required.

Inductive step: m= k+ 1. Assume that the IH holds for m= k: F k(F nM) = F k+nM . Then
we have: F k+1(F nM) = F(F k(F nM)) = F(F k+nM) = F (k+1)+nM , where we applied the IH
in the second equality.

2. Define the λ-terms Times and Exp representing multiplication and exponentiation of Church
numerals respectively. Prove the correctness of your definitions.

Times m n=β m× n Exp m n=β mn

Addition applies the successor function n then m times. Multiplication applies the “apply
the successor function n times” function m times.

Times¬ λmn. λ f x . m(nf )x (=η λmn. λ f . m(nf ))

We can calculate (noting the di�erence between definitional equality and β-equivalence):

Times m n=β λ f x . m(nf )x

=β λ f x . ( f n)m x

= λ f x . f n×m x

= n×m

The property we use in the third step is (F n)mM = F n×mM for all terms F, M and naturals
m, n. We prove it by induction on m:

Base case: m= 0. We have (F n)0M = M = F n×0, as required.

Inductive step: m= k+ 1. Assume that the IH holds for m= k: (F n)kM = F n×kM . Then:

(F n)k+1M = F n((F n)kM) =IH F n(F n×kM) = F n×k+nM = F n×(k+1)M

where we made use of the addition property above in the third step.

Exponentiation of Church numerals is remarkably simple, as their definition automatically
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performs the “exponentiation”:

Exp¬ λmn. λ f x . n mf x (=η λmn. n m)

We can calculate:

Exp m n=β λ f x . n m f x

=β λ f x . (m)n f x

= λ f x . (mn) f x

= λ f x . f mn
x

= mn

The property we use in the third step is (m)n M = mn M for all terms M and m, n ∈ N. We
proceed by induction on n:

Base case: n= 0. We have (m)0 M = M = 1 M = m0 M , as required.

Inductive step: n= k+ 1. Assume that the IH holds for n= k: (m)k M = mk M . Then:

(m)k+1M = m ((m)kM) =IH m ((mk)M) = Times m mk M = m×mk M = mk+1 M

3. Show that the λ-term Ack¬ λx . x T Succ, where T ¬ (λ f y . y f ( f 1)) represents Ackermann’s
function ack ∈ N2 → N. Hint: you will need to use nested induction; consider deriving a
simplified form for the outer inductive case before starting the nested proof.

For brevity I will write A for Ack and S for Succ. We need to show that for all naturals
m, n ∈ N, Am n=β ack(m, n) by induction on m.

Base case: m= 0.

A0 n= 0 T S n= T 0 S n= S n= n+ 1= ack(0, n)

Inductive step. Assume
∀n ∈ N. Am n=β ack(m, n) (IH1)

and prove that for all n ∈ N, Am+ 1 n =β ack(m+ 1, n). Before attempting this proof, it’s
worth showing some simple lemmas. First, we calculate the partial application:

Am+ 1=β m+ 1 T S =β T (T m S) =β T (m T S) =β T (Am) (†)

This gives us

Am+ 1 n=β T (Am)n (by †)
= (λ f y . y f ( f 1)) (Am)n

=β n (Am) (Am 1)

=β n (Am)ack(m, 1) (by IH1)
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Thus we have that Am+ 1 n=β n (Am)ack(m, 1) and can proceed with a proof of

∀n ∈ N. Am+ 1 n=β ack(m+ 1, n)

by (nested) induction on n ∈ N.

Base case: n= 0. We have

Am+ 1 0=β 0 (Am)ack(m, 1) =β ack(m, 1)

and ack(m+ 1,0)¬ ack(m, 1) by definition.

Inductive step. Assume
Am+ 1 n=β ack(m+ 1, n) (IH2)

We need to prove Am+ 1 n+ 1=β ack(m+ 1, n+ 1):

Am+ 1 n+ 1=β n+ 1 (Am)ack(m, 1) (by †)

=β (Am)n+1 ack(m, 1) (def. of Church numerals)

= Am (n (Am)ack(m, 1)) (by def. of exponentiation)

=β Am (Am+ 1 n) (by †)
=β Am ack(m+ 1, n) (by IH2)

=β ack(m, ack(m+ 1, n)) (by IH1 with n= ack(m+ 1, n))

=β ack(m+ 1, n+ 1) (by def. of Ackermann)

All cases are covered, so the proof is finished. And what a proof it was.

4. Consider the following λ-terms:

I¬ λx . x B¬ λg f x . f x I (g( f x))

a) Show that n I=β I for every n ∈ N.

Unsurprisingly, we prove this by induction on n ∈ N. We also introduce an arbitrary
λ-term M as the argument.

Base case: n= 0. We have 0 I M =β I0 M = M =β I M , as required.

Inductive step: n= k+ 1. Assume the IH holds for n= k: k I M = I M . Now

k+ 1 I M =β I (k I M) =β I (I M) =β I M

b) Assuming the fact about normal order reduction mentioned on Slide 115, show that if
partial functions f , g : N* N are represented by closed λ-terms F and G respectively,
then their composition (g ◦ f )(x) ¬ g( f (x)) is represented by B G F . Explain how this
avoids the discrepancy with partial functions mentioned in Slide 125.

https://www.cl.cam.ac.uk/teaching/current/CompTheory/lectures/comt-slides.pdf#page=240
https://www.cl.cam.ac.uk/teaching/current/CompTheory/lectures/comt-slides.pdf#page=250


CO M P U TAT I O N T H E O RY S U P E R V I S I O N 3 – S O LU T I O N S

Let F and G be closedλ-terms representing partial functions f , g : N* N. We need to
show that for all n ∈ N where g( f (n)) is defined, B G F n =β g( f (n)). If g( f (n)) = m
for some m ∈ N, we must have a k ∈ N such that f (n) = k and g(k) = m, so F n =β k
and G k =β m by assumption. Then, using k I=β I from (a):

B G F n=β F n I (G (F n)) =β k I (G k) =β I (G k) =β G k =β m

Now, if k exists but g(k) is undefined, the last step will diverge. Since normal-order
reduction will eventually try evaluating G k in F n I (G k), the evaluation of B G F n
will also diverge. On the other hand, if f (n) is undefined, then F n will diverge; since
this is the outermost subterm of F n I (G (F n)), normal-order reduction will also
diverge. This di�ers from simply defining the composition as G (F n), since normal-
order reduction may not reach the evaluation of (F n), e.g. if G is a constant function.
The B combinator forces the evaluation of F n even if it wouldn’t get encountered
otherwise, and therefore it corresponds to composition of partial functions.

5. In the following questions you may use all of the λ-definable functions presented in the notes,
as well as the terms you define as part of this exercise. You should explain your answers
(possibly using some examples), but don’t need to prove their correctness.

a) Give a λ-term Not representing Boolean negation.

Since a Church Boolean corresponds to a branching operation, all we need to do is
return false in the true branch, and true in the false branch:

Not¬ λp. p False True

b) Give λ-terms And and Or representing Boolean conjunction and disjunction.

Again, we use the standard definition of conjunction and disjunction in terms of
Boolean branching, also exploiting the fact that Booleans are encoded as their own
eliminators. For example, in p ∧ q, if p is true then we return q (and the truth value
of q will determine the truth value of > ∧ q), otherwise we return false. But, since p
already denotes false (in its own ‘else’ branch), we just need to return p itself.

And¬ λpq. p q p

Or¬ λpq. p p q

c) Give a λ-term Minus representing truncated subtraction (i.e. Minus m n= 0 if m< n).

Subtraction is repeated application of the predecessor function. Since Pred 0 = 0, it
already performs the truncation.

Minus¬ λmn. n Pred m

d) Giveλ-terms Eq, NEq, LT, LEq, GT, GEq, representing the numeric comparison operations
=, 6=,<,≤,>,≥ respectively. You can define them in any order you find most convenient.
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Most of these relations can be defined in terms of each other, so it’s possible to define
one as a starting point, then construct the rest from it. A good starting point is ≤ or
≥ which give you both the notion of ordering and equality. These are also simple to
define in terms of truncated subtraction and zero check: m≤ n i� m .− n= 0.

LEq¬ λmn. Eq0 (Minus m n)

From here, the remaining operations can be defined using Boolean operators. Here is
one possible ordering, several others are possible:

Eq¬ λmn. And (LEq m n) (LEq n m)

NEq¬ λmn. Not (Eq m n)

GT¬ λmn. Not (LEq m n)

GEq¬ λmn. Or (GT m n) (Eq m n)

LT¬ λmn. Not (GEq m n)

e) Define the λ-term UCr that represents the uncurrying higher-order function: if 〈M , N〉
denotes Pair M N , then UCr F 〈M , N〉=β F M N .

Nothing surprising here – use projections to get the two elements of the pair.

UCr¬ λ f p. f (Fst p) (Snd p)

f) Give a λ-term MapPair that applies a function to both elements of a pair: that is,
MapPair F 〈M , N〉=β 〈F M , F N〉.

Still nothing surprising!

MapPair¬ λ f p. Pair ( f (Fst p)) ( f (Snd p))

g) Give a λ-term SqSum which represents the function 〈m, n〉 7→ m2 + n2.

We can combine many of the functions we defined already to give a relatively clean,
compositional definition.

SqSum¬ λp. UCr Plus (MapPair (λk. Exp k 2) p)

We can even go point-free by using the composition combinator B from above:

SqSum¬ B (UCr Plus) (MapPair (λk. Exp k 2))

6. a) Explain why Curry’s Y combinator is needed and how it works.

Term definitions in the λ-calculus are simply abbreviations for larger λ-terms, and
therefore they cannot be self-referential (otherwise trying to expand the term in its
own definition would lead to an infinite expansion). This prevents us from writing
“recursive” definitions such as Fact n ¬ n× (Fact (n− 1)): all subterms of a term
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should be well-defined. However, this doesn’t mean that we cannot define recursive
functions in the λ-calculus. We first note that a recursively defined term would have
the general form M ¬ F M , where the body of the definition of M itself takes the
term M as an argument (e.g. Fact¬ (λ f . λm. m× f (m− 1)) Facta). We can instead
state this in terms of β-equivalence (as a specification, rather than definition):

M =β F M

This form characterises M as a fixed point of F , where a fixed point of a function f is
an argument x such that f (x) = x . Fixed points and recursion go hand-in-hand, since
M =β F M =β F(F M) =β F(F · · · (F M) · · · ), giving rise to the repetitive behavior
that we are trying to capture. Hence, to define a term M that satisfies the “recursive”
specification M =β F M , we need to find a fixed point of F . The fixed point of the
λ-term (λ f m. m× f (m− 1)) is precisely the factorial function.

The next question is: how do we find the fixed point of a λ-term? We can use fixed-
point combinators, which are higher-order λ-terms that take a function and return
its fixed point. One of the simplest fixed-point combinators is Curry’s Y combinator,
which satisfies the required fixed point property (stating that Y F is a FP of F ):

Y F =β F(Y F)

Curry defined Y as follows:

Y¬ λ f . (λx . f (x x)) (λx . f (x x))

It is crucially dependent on self-application, which is possible in the absence of
types, but becomes impossible in a typed setting. Y is therefore slightly “magical”
and doesn’t correspond obviously to a natural computational construction, but it
nevertheless satisfies the fixed point property above (see Slide 135). The Y combinator
now allows us to define recursion indirectly: given the “intended” definition M ¬ F M ,
we can define the λ-term that satisfies this as the fixed point Y F of F . For example,

Fact¬ Y (λ f m. m× f (m− 1))
a The base case in the definitions will be omitted for brevity – of course they are important, and are

easy to define with If and Eq0.

b) Give a λ-term which is β-equivalent to the Y combinator, but only uses it’s f argument
once. Hint: see if you can exploit the symmetry of the Y combinator.

We can notice that the body of Y¬ λ f . (λx . f (x x)) (λx . f (x x)) is the same term
(λx . f (x x)) repeated twice. We can exploit this using the “self-application combin-
ator” λx . x x to get Y′, which reduces to Y in one step.

Y′ ¬ λ f . (λx . x x) (λx . f (x x))

c) Define the λ-term Fact that computes the factorial of a Church numeral.
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We expand our previous, informal example of fixpoint recursion. The λ-term Fact
should satisfy the following equivalence:

Fact=β λn. If (Eq0 n) 1 (Times n (Fact (Pred n)))

To make this into a well-formed term definition, we need to abstract out the recursive
call, then “tie the knot” using the Y combinator.

Fact¬ Y
�

λ f . λn. If (Eq0 n) 1 (Times n ( f (Pred n)))
�

d) Define the λ-term Fib such that Fib n =β Fn where Fn is the nth Fibonacci number defined
recursively as F0 = 0, F1 = 1, and Fn = Fn−1 + Fn−2.

Similarly, we start with the recursive specification, then turn it into a definition.

Fib=β λn. If (LEq n 1) n (Plus (Fib (Pred n)) (Fib (Minus n 2)))

Rewriting with the fixed point combinator, we notice that the recursive call is made
twice, which is captured by the repeated use of the higher-order argument f .

Fib¬ Y
�

λ f . λn. If (LEq n 1) n (Plus ( f (Pred n)) ( f (Minus n 2)))
�
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