
Computation Theory
Supervision 2 – Solutions

5. The Halting Problem and undecidability
1. Show that decidable sets are closed under union, intersection, and complementation. Do all of

these closure properties hold for undecidable languages?

Let S, T be decidable sets. Intuitively, this means that we can ask the question n ∈? S and
get an answer. Closure under union, intersection and complementation simply amounts
to asking the appropriate questions and combining the answers: n ∈? S ∪ T if n ∈? S or
n ∈? T , n ∈? S∩ T if n ∈? S and n ∈? T , n ∈? Sû if not n ∈? S. The logical operations are of
course computable: for instance, for deciding S ∪ T , we run the machine deciding S, halt if
the result register is 1, run the machine deciding T otherwise and return its result.

These constructions rely on the fact that the membership test returns an answer, so the
reasoning can’t be adapted for undecidable languages. The only somewhat obvious result is
that the complement of an undecidable language is also undecidable: if it wasn’t, we could
just negate the answer to decide the original set. However, undecidable sets are not closed
under union and intersection (and some other set operations): there are undecidable sets
which combine to become decidable. There’s nothing magical about this: if S is undecidable,
then so is Sû, but S ∪ Sû = N and S ∩ Sû = ;, which are of course decidable.

2. Suppose S1 and S2 are subsets of N. Suppose r ∈ N→ N is a register machine computable
function satisfying: for all n in N, n is an element of S1 if and only if r(n) is an element of S2.
Show that S1 is register machine decidable if S2 is. Is the converse, inverse, or contrapositive of
this statement true?

Such a mapping r : N→ N between subsets is called a reduction r : S1 ≤ S2: decidability
of S1 can be reduced to decidability of S2. Intuitively, if S2 is decidable, then we can turn
the problem of decidability of S1 into the decidability of S2 via the reduction, and due to
the assumption on r , the answer of r(x) ∈? S2 gives us the answer for x ∈? S1.

We can express this formally by considering the characteristic functions of the subsets.
The reduction property of r , ∀n ∈ N. n ∈ S1 ⇐⇒ r(n) ∈ S2, can be expressed as

∀n ∈ N. χS1
(n) ⇐⇒ χS2

(r(n))

That is, the functions χS1
and χS2

◦ r are equal. If S2 is decidable, χS2
is a computable func-

tion; composing it with another computable function r implies that χS1
is also computable,

i.e. S1 is a decidable subset of N.

This theorem gives us a useful proof technique: to show that a set S is decidable, we need to
find a computable reduction to another set T which we know to be decidable. Such proofs

CO M P U TAT I O N T H E O RY S U P E R V I S I O N 2 – S O LU T I O N S

will be common in Complexity Theory next term. In this course, we are more interested in
the contrapositive of the statement: if S1 is undecidable and there is a reduction r from S1

to S2, then S2 is also undecidable. Reductions “propagate” undecidability: this is because,
as the proof above shows, decidability of S2 would imply decidability of S1. Of course, the
“de facto” undecidable problem is the Halting Problem; expressed as a set, it’s defined as

H ¬ { 〈e, x〉 | ϕe(x)↓}

To show that another set S is undecidable, it is enough to construct a reduction r : H ≤ S,
i.e. a function r : N→ N which maps the code of a program e and an argument x to an
element s ∈ N which is furthermore an element of S ⊆ N if and only if ϕe(x) halts.

Note that despite the reduction condition being a bi-implication, the reduction itself is
still a one-sided function: in particular, neither the converse (if S1 is decidable then S2 is
decidable) or inverse (if S2 is undecidable then S1 is undecidable) of the above statement
hold. The theorem might seem a bit backwards, but as you can see from the proof, that
is the only way it could work: the reduction translates the input to the problem (i.e. the
natural n ∈ N), not the answer (i.e. the Boolean χS(x) ∈ B).

3. Show that the set E of codes 〈e, e′〉 of pairs of numbers satisfying ϕe = ϕe′ is undecidable.

This corollary demonstrates that equality of programs is undecidable. There are several
ways of establishing this: all we need to show is that some other undecidable set would
be decidable if we could decide equality of programs. Consider, for instance, the set
S0 = { e | ϕe(0)↓} from Slide 57: the set of program codes that halt with argument 0. To
decide whether a function ϕe halts at 0, we can consider the partial function ce(x) = ϕe(0)
which is the constant function with value ϕe(0) when ϕe(0) is defined, and the constant
undefined function otherwise. To choose between the two, we can ask whether ce is equal
to the totally undefined function ⊥ (where ⊥(x)↑ for all x) using our machine deciding
E. If ce is equal to the totally undefined function, ϕe(0) is undefined so it shouldn’t be an
element of S0. If E says that the two are not equal, then ϕe(0) must be defined, so e ∈ S0.
Thus, if we could decide E, we could decide S0, but that is a contradiction.

We can present this reasoning more formally as a reduction proof from S0 to Eû =
{ 〈e, e′〉 | ϕe 6= ϕe′ }, then using the fact that undecidable languages are closed under
complement. The reduction r : S0 ≤ E maps the code e to the code of the pair consisting
of the (code of the) constant function x 7→ ϕe(0), and the totally undefined function ⊥.
By the reasoning above, e will be in S0 if and only if x 7→ ϕe(0) is not equal to the totally
undefined function, i.e. both are in Eû. This implies that Eû is undecidable, and so is E.

4. Show that there is a register machine computable partial function f : N* N such that both
sets {n ∈ N | f (n)↓} and { y ∈ N | ∃n ∈ N. f (n) = y } are register machine undecidable.

We are asked to define a partial function f : N* N such that the sets S1 ¬ {n ∈ N | f (n)↓}
and S2 ¬ { y ∈ N | ∃n ∈ N. f (n) = y } are undecidable. Undecidability means that we

https://www.cl.cam.ac.uk/teaching/2021/CompTheory/lectures/comt-slides.pdf#page=128

CO M P U TAT I O N T H E O RY S U P E R V I S I O N 2 – S O LU T I O N S

have two reductions r1 : H ≤ S1 and r2 : H ≤ S2, mapping pairs 〈e, x〉 to natural numbers
such that

ϕe(x)↓⇐⇒ f (r1(〈e, x〉))↓ ∧ ∃n ∈ N. f (n) = r2(〈e, x〉)

The first condition suggests that f should preserve halting, while the second one suggests
that its return value should have something to do with the pair 〈e, x〉. Therefore a good
first guess is a function whose domain of definition (the set of naturals where it is defined)
is the set of pairs 〈e, x〉 where ϕe(x)↓, which is precisely H . Given a natural n, f should
decode it as a pair 〈e, x〉, and return a value only if ϕe(x) halts. What should be the return
value? From the second condition we see that f (〈e, x〉) = 〈e, x〉, which certainly holds for
the identity function. Hence our guess is the “partial identity function”

f (n)¬

(

n if n= 〈e, x〉 and ϕe(x)↓

↑ otherwise

Using the RM components for decoding n as the pair, and the universal RM to run the
computation, we can show that f is computable. However, the set S1 is equal to {n ∈
N | n= 〈e, x〉 ∧ ϕe(x)↓}, and S2 is { y ∈ N | ∃n ∈ N. n= y ∧ n= 〈e, x〉 ∧ ϕe(x) }, both
of which are precisely the set { 〈e, x〉 | ϕe(x)↓}= H . The sets S1 and S2 are equal to the
set associated with the Halting Problem, and therefore are undecidable.

6. Turing machines
1. Compare and contrast register machines with Turing machines: how do they keep track of state,

how are programs represented, what form do machine configurations and computations take?

• A register machine stores data as natural numbers in its registers, while a Turing
machine writes symbols on a tape. Since there can only be a finite number of symbols,
natural numbers (and other data) have to be encoded explicitly on the tape, using
e.g. unary encoding. The state of program execution (program counter) corresponds to
the label of the currently executed register machine instruction; in TMs, it is a function
of the symbol under the current tape head, and the internal state of the machine.

• RM programs are a finite list of RM instructions: increment, conditional decrement,
and halt. In Turing machines, the program is the transition function δ : (Q ×Σ)→
(Q∪{acc,rej })×Σ×{ L, R, S }which assigns a state, symbol, and movement direction
to every pairing of the current TM state and symbol under the tape head.

• The configuration (`, r0, r1, . . . , rn) of a RM is the current instruction label ` and the
contents of the registers. A computation c0, c1, . . . is a sequence of configurations
starting with the initial configuration c0 (containing the initial register contents and
instruction label 0), with each cn+1 determined from cn = (`, r0, r1, . . . , rn) by executing
the instruction at label ` on the registers r0, . . . , rn. The computation halts if the
sequence of configurations is finite (and ends at a HALT instruction), and doesn’t halt
if the sequence is infinite.

CO M P U TAT I O N T H E O RY S U P E R V I S I O N 2 – S O LU T I O N S

A TM configuration (q, w, u) consists of the current machine state q, string of symbols
w up to and including the tape head, and (finite) string of symbols to the right of the
tape head. A computation starts from the initial configuration (s,., u) and transitions
to new configuration based on the transition function δ. The computation halts if the
sequence of configurations is finite (and ends in an acc or rej state), and doesn’t
halt if the sequence is infinite.

2. Familiarise yourself with the Chomsky hierarchy and explain the connection between regular
expressions and Turing machines.

The Chomsky hierarchy is a classification of formal languages of which regular languages
and (semi)decidable languages are the two extremes. Each type of language/grammar in
the hierarchy is associated with a machine that can recognise membership for a language:
for example, regular languages are accepted by finite state automata (recall the last part of
the Discrete Mathematics course last year), while semidecidable languages are recognised
by Turing machines. The precise distinction between recognising and deciding a language
(and semidecidable vs. decidable languages) will be discussed in Complexity Theory; for
now it’s worth noting that decidable languages require a machine computing the (total)
characteristic function (i.e. they must reject the string explicitly, if it’s not a member of a
set), while semidecidable languages only need firm acceptance for elements of the set,
but can reject or diverge if the element is not in the set.

The full Chomsky hierarchy for demonstration purposes (more detail in the Formal Models
of Language course next term):

Grammar Languages Machine
Type-0 Semidecidable Turing machine
Type-1 Context-sensitive Linear-bounded nondeterministic TM
Type-2 Context-free Nondeterministic pushdown automaton
Type-3 Regular Finite state automaton

7. Notions of computability
1. Before the formal development of the field of computation theory, mathematicians often used

the term e�ectively computable to describe functions that can – in principle – be computed
using mechanical, pen-and-paper methods.

a) How did Church and Turing propose to formalise the notion of e�ective computability and
generalise it to other models of computation?

The Church–Turing thesis states that formal models of computation exactly char-
acterise the nature of e�ective computation: a function on the natural numbers is
e�ectively computable if and only if it is Turing-computable. This is just a hypothesis,
and since there is no formal definition of e�ective computability, it cannot be formally
proved; however, the thesis is universally accepted as identifying the classes of form-

CO M P U TAT I O N T H E O RY S U P E R V I S I O N 2 – S O LU T I O N S

ally and e�ectively computable functions. In addition, the thesis also states that all
(su�ciently strong) models of computation are in fact equivalent: Church and Turing
proved this for the independently developed models of Turing machines, partial
recursive functions and the λ-calculus, and it has since been reinforced through many
new models of computation that are all equivalent to Turing machines. In summary,
the Church–Turing thesis gives a formal definition of computable functions (functions
that are computed by a Turing machine, or any other model of computation), and
equates this definition with the informal notion of e�ective computability. A useful
consequence of this is that it gives us a shortcut to establishing the computability of
functions: instead of giving a full, formal specification of an operation as a Turing/re-
gister machine program or lambda-expression, we can write an informal, English
description of the algorithm, and as long as there are no dubious steps (such as if
the computation halts, do . . . , else do . . .), we have strong reasons to believe that the
description corresponds to a computable function.

b) Suppose we invented a new model of computation. How can we establish that it is as
“powerful” as mechanical methods? Make sure to formally explain what “power” means in
this case.

The power of a model of computation simply refers to the class of functions that it can
compute: if that class is as big as the class of Turing-computable function, the model
of computation is as powerful as a Turing machine. To establish Turing-completeness
it is su�cient to encode a Turing machine (or any other Turing-complete model
of computation) in the system; to compute a computable function, we can simply
simulate the associated Turing machine computation.

c) Can our new model be even more powerful?

The most likely answer is no: so far, every new model of computation was proved to
be computationally equivalent to a Turing machine, meaning that both can simulate
each other. The Church–Turing thesis implies that any model of computation that
can simulate a Turing machine is computationally equivalent to a Turing machine
(as a TM can simulate any other model of computation), and all known models of
computation support this. However, we do not have a definitive proof of this (because
the Church–Turing thesis cannot be formally proved), so in principle there may be a
model of computation that is more powerful than a Turing machine and cannot be
simulated by one. This is the realm of hypercomputation or super-Turing computation,
and while there are some theoretical models of hypercomputation (using random
oracles or infinite time), there is little hope in discovering a “practical” model that
would invalidate the Church–Turing thesis.

2. Briefly describe of three Turing-complete models of computation not covered in the course.

CO M P U TAT I O N T H E O RY S U P E R V I S I O N 2 – S O LU T I O N S

There are many examples: abstract rewriting systems, combinatory logic, Kahn process
networks, some cellular automata, etc. Sometimes Turing-completeness arises unintention-
ally in a system not necessarily developed as a model of computation: many games and
software have been shown to be Turing-complete by enthusiastic users. Some unsurprising
examples are Minecraft, LittleBigPlanet, Excel, Factorio, Opus Magnum; some slightly more
surprising ones are C++ templates, Java generics, SQL, Magic: The Gathering, PowerPoint,
and of course the sewage-based 4-bit adder in Cities: Skylines. It’s a fun internet hole to
get lost in.

8. Partial recursive functions
1. Show that the following functions are all primitive recursive. Make sure to give the final form of

the function as a composition of primitive functions and projection.

a) Truncated subtraction function, minus: N2→ N, where

minus(x , y)¬

(

x − y if y ≤ x

0 if y > x

The recursive definition of the function is as follows:
(

minus(x , 0) = x

minus(x , y + 1) = pred(minus(x , y))

We know that pred is primitive recursive, and thus so is minus. Explicitly, we have

minus¬ ρ1
�

proj1
1, pred ◦ proj3

3

�

= ρ1
�

proj1
1, ρ0

�

zero0, proj2
1

�

◦ proj3
3

�

b) Exponentiation, exp: N2→ N, where exp(x , y) = x y .

The recursive definition is:
(

exp(x , 0) = 1

exp(x , y + 1) =mult(x , exp(x , y))

exp¬ ρ1
�

succ ◦ zero1, mult ◦
�

proj3
3,proj3

1

��

= ρ1
�

succ ◦ zero1, ρ1
�

zero1, plus ◦
�

proj3
3,proj3

1

��

◦
�

proj3
3,proj3

1

��

= ρ1
�

succ ◦ zero1,ρ1
�

zero1, ρ1
�

proj1
1, succ ◦ proj3

3

�

◦
�

proj3
3,proj3

1

��

◦
�

proj3
3,proj3

1

��

c) Conditional branch on zero, ifzero: N3→ N, where

ifzero(x , y, z)¬

(

y if x = 0

z if x > 0

https://en.wikipedia.org/wiki/Abstract_rewriting_system
https://en.wikipedia.org/wiki/Combinatory_logic
https://en.wikipedia.org/wiki/Kahn_process_networks
https://en.wikipedia.org/wiki/Kahn_process_networks
https://en.wikipedia.org/wiki/Cellular_automaton
https://www.gwern.net/Turing-complete
https://www.gwern.net/Turing-complete
https://beza1e1.tuxen.de/articles/accidentally_turing_complete.html
https://beza1e1.tuxen.de/articles/accidentally_turing_complete.html
https://medium.com/@balidani/cities-skylines-is-turing-complete-e5ccf75d1c3a

CO M P U TAT I O N T H E O RY S U P E R V I S I O N 2 – S O LU T I O N S

The definition is simple, but we need to swap the arguments of the function so the
Boolean condition is the last argument (since we only pattern-match on the last
argument). Define C : N3→ N as:

(

C(x1, x2, 0) = x1

C(x1, x2, x + 1) = x2

Then ifzero= ρ2
�

proj2
1, proj4

2

�

◦
�

proj3
2,proj3

3,proj3
1

�

.

d) Bounded summation: if f : Nn+1→ N is primitive recursive, then so is g : Nn+1→ N where
where

g(~x , x)¬











0 if x = 0

f (~x , 0) if x = 1

f (~x , 0) + · · ·+ f (~x , x − 1) if x > 1

The function g can be defined recursively as:
(

g(~x , 0) = 0

g(~x , x + 1) = add(g(~x , x), f (~x , x))

The explicit definition depends on the number of arguments, but it’s easy to see that
the function is primitive recursive because both f and add are.

2. Explain the motivation and intuition behind minimisation. How does it extend the set of func-
tions computable using primitive recursion? Give three examples of computable partial functions
that are not definable using primitive recursion, justifying your answer in each case.

Given a partial function f : Nn+1 * N, the minimisation of f , denoted µn f (~x) is the least
argument x ∈ N such that f (~x , x) = 0 while f (~x , i) for all i = 0, . . . , x − 1 is defined
and strictly greater than 0. This looks like a very specific operation of seemingly limited
applicability, however, it is the operator that expands the class of primitive recursive
functions to the class of partial recursive, or computable functions. The way to think about
minimisation is as unbounded search: we’re looking for a least value x satisfying some
decidable property P . The key is that the functions we try to minimise are often not some
traditional, “naturally arising” functions, but custom-made ones defined specifically to
encapsulate the property P that we want satisfied after minimisation. Quite often, the
function f will simply be a step function that switches from 1 to 0 as soon as the property
holds:

f (~x , x)¬

(

1 if ¬P(~x , x)

0 if P(~x , x)

Minimising such a function will give us the least x that satisfies the required property. As
an example, we can compute the integer division function div: N2 * N using minimisation

CO M P U TAT I O N T H E O RY S U P E R V I S I O N 2 – S O LU T I O N S

by noticing that the output of div(x1, x2) has the unique property that it is the least x such
that x1 < x2(x + 1). Extracting this into a helper function:

f (x1, x2, x)¬

(

1 if x1 ≥ x2(x + 1)

0 if x1 < x2(x + 1)

This function will switch to 0 exactly when x = bx1/x2c, so div¬ µ2 f .

Still, many of the functions that are expressible as a minimisation problem can be defined
using primitive recursion. The only definite non-example is Ackermann’s function, which
can be proved to grow faster than any definable primitive recursive function, but has
a valid definition using minimisation. This does not mean that the only examples of
computable, non-primitive-recursive functions are variations on Ackermann, however.
Primitive recursive functions are all total by construction, so any partial function is also not
primitive recursive – not because of some “limitation” in the power of primitive recursion,
but because it can never diverge. Minimisation gives us partiality because there may not be
a least element satisfying our property; for instance, in the integer division function above,
f never becomes 0 if x2 is 0, so µ2 f (x1, 0) is undefined, as expected. The Ackermann
function is still special, however, as it is one of the simplest total computable functions
that is not primitive recursive.

3. Use minimisation to show that the following functions are partial recursive:

a) the binary maximum function max : N2→ N.

The maximum of two numbers x1, x2 ∈ N is the least x greater than or equal to both
x1 and x2 – clearly this will return one of the two numbers. We can encapsulate this
with the helper function:

f (x1, x2, x)¬

(

1 if x < x1 or x < x2

0 if x ≥ x1 and x ≥ x2

As before, this switches to 0 when we reached the maximum, so max ¬ µ2 f .

b) the integer square root function sqrt : N* N which is only defined if its argument is a
perfect square.

Unlike before, now we ask for the function to be undefined whenever its argument is
not of the right form. The usual helper step-function still works here, with f (x , y) = 0
if x = y2 and 1 otherwise. However, we can often define the helper function in a
more natural way. Consider f (x , y) = |x − y2|. This will be zero only when x = y2

and positive otherwise; moreover, it will never reach 0 if x is not a perfect square.
This is precisely what we were looking for, so sqrt¬ µ1 f .

CO M P U TAT I O N T H E O RY S U P E R V I S I O N 2 – S O LU T I O N S

Optional exercises
1. Write a Turing machine simulator in a programming language you prefer (a functional language

such as ML or Haskell is recommended). Implement the machine described on Slide 64.

2. For the example Turing machine given on Slide 64, give the register machine program imple-
menting (S, T, D) := δ(S, T), as described on Slide 70.

3. Recall the definition of Ackermann’s function ack. Sketch how to build a register machine M
that computes ack(x1, x2) in R0 when started with x1 in R1 and x2 in R2 and all other registers
zero. (E9)

Hint: Call a finite list L = [(x1, y1, z1), (x2, y2, z2), . . .] of triples of numbers suitable if it satisfies

a) if (0, y, z) ∈ L, then z = y + 1

b) if (x + 1, 0, z) ∈ L, then (x , 1, z) ∈ L

c) if (x + 1, y + 1, z) ∈ L, then there is some u with (x + 1, y, u) ∈ L and (x , u, z) ∈ L.

The idea is that if (x , y, z) ∈ L and L is suitable then z = ack(x , y) and L contains all the
triples (x ′, y ′, ack(x , y ′)) needed to calculate ack(x , y). Show how to code lists of triples of
numbers as numbers in such a way that we can (in principle, no need to do it explicitly!) build
a register machine that recognises whether or not a number is the code for a suitable list of
triples. Show how to use that machine to build a machine computing ack(x , y) by searching for
the code of a suitable list containing a triple with x and y in its first two components.

https://www.cl.cam.ac.uk/teaching/2021/CompTheory/lectures/comt-slides.pdf#page=142
https://www.cl.cam.ac.uk/teaching/2021/CompTheory/lectures/comt-slides.pdf#page=142
https://www.cl.cam.ac.uk/teaching/2021/CompTheory/lectures/comt-slides.pdf#page=153
https://www.cl.cam.ac.uk/teaching/2021/CompTheory/lectures/comt-slides.pdf#page=2.5

	The Halting Problem and undecidability
	Turing machines
	Notions of computability
	Partial recursive functions

