
Computation Theory
Supervision 1 – Solutions

1. Algorithmically undecidable problems
1. Two important concepts in the theory of computability are enumerations and diagonalisation.

Intuitively, an enumeration of a set S is an ordered, “exhaustive” listing of all elements. While
this intuition works for finite sets, we need to be more formal to handle infinite sets. Thus, an
enumeration of a finite or infinite set S is a surjective function from the natural numbers N to
S, if it exists. If it does, the set S is called countable; if it doesn’t, it is uncountable.

Prove or disprove the following statements:

a) The set of natural numbers is countable.

Yes, enumerated by the identity function idN : N�N.

b) The set of integers is countable.

Yes, the enumeration alternates between positive and negative numbers:
0, 1,−1,2,−2,3,−3, Explicitly,

ϕ(n)¬

(

n+1
2 if n is odd

− n
2 if n is even

c) The Cartesian product of two countable sets is countable.

Perhaps surprisingly, yes: the enumeration traverses the “multiplication table” from
one corner diagonally. Given two countable sets S and T , they can be enumerated
to create two coordinate axes, with the points representing elements of S × T . The
systematic, exhaustive enumeration of the table starts at the upper left corner with
(s0, t0), moving to the right to (s0, t1), then diagonally down and to the left to (s1, t0),
down to (s2, t0), diagonally up and to the right to (s1, t1), further to (s0, t2), and so
on. Despite both dimensions being infinite, this method will cover every pair in S× T .

(s0, t0) (s0, t1) (s0, t2) (s0, t3) · · ·

(s1, t0) (s1, t1) (s1, t2) (s1, t3) · · ·

(s2, t0) (s2, t1) (s2, t2) (s2, t3) · · ·

(s3, t0) (s3, t1) (s3, t2) (s3, t3) · · ·
...

...
...

... . . .

d) The set of rational numbers is countable.

CO M P U TAT I O N T H E O RY S U P E R V I S I O N 1 – S O LU T I O N S

Yes, since any rational number can be represented by an ordered pair of the integer
numerator and integer denominator, integers are countable, and the Cartesian product
Z×Z is therefore also countable. Note that the enumeration will include every fraction
an infinite number of times (since 2

3 , 4
6 , 8

12 all denote the same fractions but correspond
to di�erent pairs), but since we only ask for a surjection N� Z×Z, not a bijection,
this will not be an issue.

e) The finite n-ary product of countable sets is countable.

Any n-ary product S0× S1× S2× · · · × Sn is isomorphic/equivalent to a nested binary
product (· · · ((S0 × S1)× S2)× · · ·)× Sn. S0 and S1 are countable, so S0 × S1 will be
countable, and in turn, (S0 × S1)× S2 will be countable, and so on. As long as the
number of sets is finite, the product will be countable.

f) The set of polynomials with coe�cients from a countable set is countable.

Polynomials are finite sums of terms consisting of a natural power of the variable and a
countable (e.g. rational) coe�cient. A polynomial an xn+an−1 xn−1+· · ·+a2 x2+a1 x+a0

of degree n (meaning that the highest exponent of the variable is n) can therefore
be represented as an n-tuple of the coe�cients (an, an−1, . . . , a1, a0), with ak = 0 if a
term of degree k does not appear in the polynomial. Thus, the set of all polynomials
of degree n is isomorphic to the n-ary Cartesian product of the set of coe�cients. If
this set is countable, the product will also be countable from part (e) above.

g) The powerset of a countable set is countable.

This is false: there is no surjection from N to P(S) for a countable S, i.e. there are
infinite sets that are “more infinite”, than the countably infinite set of natural numbers.
This deep result was established by Georg Cantor in 1891 using his famous diagonal
argument, which has since been applied to many other nonexistence proofs. A more
general version of the statement is known as Cantor’s Theorem:

There is no surjection f : A→ P(A) from a set A to its powerset.

The proof proceeds by contradiction. Assume f is a surjection, i.e. for every subset
S ⊆ A there is an a ∈ A such that f (a) = S. In particular, consider the subset
D ¬ { x ∈ A | x 6∈ f (x) } of elements x ∈ A which are not in f (x). Since f is
surjective, there exists an associated a ∈ A such that f (a) = D. But then a ∈ D would
imply that a 6∈ f (a), and a 6∈ D would imply that a ∈ D; but a ∈ D ⇐⇒ a 6∈ D is a
contradiction, so the assumption that f is surjective was wrong.

As a corollary of Cantor’s theorem we get that there is no surjection N→ P(N), so
there are indeed countable sets whose powerset is not countable.

The intuition behind the construction of the diagonal set D for the case of N is the
following. The contradictive assumption f : N� P(N) states that P(N) is countable,
so we have an exhaustive listing of all subsets of the natural numbers. However, for

CO M P U TAT I O N T H E O RY S U P E R V I S I O N 1 – S O LU T I O N S

any such listing we can construct a set of naturals that cannot be in the listing, so it
couldn’t have been exhaustive. To construct this set, we look at whether n ∈ N occurs
in the nth set of the enumeration. If n 6∈ f (n), we include n in D, otherwise we don’t.
Thus, by construction, every set in the enumeration will di�er from D in at least one
element: there may be a k ∈ N such that f (k) is nearly identical to D, but they will
certainly di�er in their inclusion of k. This D can be constructed for any listing, so no
listing can be exhaustive – P(N) is not countable.

h) The set of real numbers is countable.

Real numbers have a countably infinite decimal expansion, so every real number
corresponds to a subset of the natural numbers. Since subsets of naturals are not
enumerable (Cantor’s Theorem), the set of real numbers will not be enumerable either.
Another similar diagonal construction creates a real number that cannot be part of
any listing by setting the nth digit of its decimal expansion to be di�erent from the
nth digit of the nth real number in the listing. By the same reasoning as above, this
new real number will not be in the listing by construction, so it cannot be exhaustive.

Feel free to do some research if you are not familiar with these results.

2. Rephrase the proof of the undecidability of the Halting Problem (with an abstract definition of
an algorithm) as a diagonal argument.

Any algorithm (implemented as a register machine, Turing machine, etc.) can be encoded as
a natural number, so algorithms are enumerable – they can be exhaustively listed. Consider
therefore the following table, where the vertical axis is the nth algorithm An in the listing,
and the horizontal axis is the code for the nth algorithm ðAnñ. We can populate the (n, k)th

cell of the table with the behaviour of An on ðAkñ: whether it halts (with value 0 or 1), or it
doesn’t (denoted by ×):

CO M P U TAT I O N T H E O RY S U P E R V I S I O N 1 – S O LU T I O N S

ðA0ñ ðA1ñ ðA2ñ ðA3ñ · · ·

A0 1 0 × 1 · · ·

A1 × × 1 × · · ·

A2 1 × 0 1 · · ·

A3 0 1 × × · · ·
...

...
...

... . . .

The Halting Problem amounts to constructing an algorithm H such that H(A, D) = 1 if
A(D) halts, and H(A, D) = 0 otherwise. That is, the computation table of H for the inputs
An and ðAkñ would be the table above, with 0 and 1 replaced with 1 and × replaced with 0.

ðA0ñ ðA1ñ ðA2ñ ðA3ñ · · ·

A0 1 1 0 1 · · ·

A1 0 0 1 0 · · ·

A2 1 0 1 1 · · ·

A3 1 1 0 0 · · ·
...

...
...

... . . .

The undecidability of the Halting Problem means that such a H does not exist. Assume, for
contradiction, that we do have such a decider H . Then we can construct a new algorithm D
that takes descriptions of algorithms ðAkñ and operates the following way:

D(ðAkñ)¬

(

0 if H(Ak,ðAkñ) = 0

↑ otherwise

The graph of D is precisely the diagonal of the computation table for H above, with 0
changed to 1 and 1 changed to ↑. D di�ers from every line of H in at least one position:
if it didn’t, there would be a k ∈ N such that Ak = D, and Ak(ðAkñ) = D(ðDñ) would halt
if and only if H(D,ðDñ) = 0, i.e. D(ðDñ) didn’t halt. Thus D cannot be in the listing of
computable algorithms, so it’s not computable; but since it was computably constructed
from H , this implies that the computable halting function H cannot exist.

Note the subtle di�erence between this proof and Cantor’s Theorem: we’re not trying to
prove that there is no exhaustive listing of algorithms as we can always construct a new
one which is not in the list, since we already know that algorithms are computable (due to
a possibly bijective encoding scheme with natural numbers). Instead, we’re proving that a
specific machine cannot be computable because it cannot be in the exhaustive listing of
computable functions.

2. Register machines
1. Show that the following arithmetic functions are all register machine computable.

CO M P U TAT I O N T H E O RY S U P E R V I S I O N 1 – S O LU T I O N S

a) First projection function p ∈ N→ N, where p(x , y)¬ x
b) Constant function with value n ∈ N, cn ∈ N→ N where c(x)¬ n
c) Truncated subtraction function, _ .− _ ∈ N2→ N, where

x .− y ¬

(

x − y if y ≤ x

0 if y > x

d) Integer division function, _div_ ∈ N2→ N where

x div y ¬

(

integer part of x/y if y > 0

0 if y = 0

e) Integer remainder function, _mod_ ∈ N2→ N with x mod y ¬ x .− y · (x div y)
f) Exponentiation base 2, e ∈ N→ N, where e(x) = 2x

g) Logarithm base 2, log2 ∈ N→ N, where

log2(x)¬

(

greatest y such that 2y ≤ x if x > 0

0 if x = 0

Hint: instead of defining everything from scratch, try implementing these machines with the
help of general control flow components.

As hinted in the question, we can save some e�ort by working at a higher level of abstrac-
tion rather than individual register operations. Specifically, we can create RM “combinators”
corresponding to the three fundamental building blocks of programming: sequential com-
position, conditional branching and iteration. Any register machine is equivalent to one
with a single halt state, so abstractly an RM program looks like

START M HALT

Then, we have ways of combining RMs with sequential composition

START M1 M2 HALT

conditional branching with if R= 0 then M1 else M2

START R− M1 HALT

R+ M2

and iteration with while R 6= 0 do M

START R− HALT

R+ M

CO M P U TAT I O N T H E O RY S U P E R V I S I O N 1 – S O LU T I O N S

a) First projection: copy over R1 to R0.

START R−1 HALT

R+0

b) Constant function: the constant value is not an argument, it has to be “baked into” the
register machine. We can illustrate this schematically – in principle this machine can
be constructed for any finite n.

START R+0 · · · R+0 HALT
(n− 2 times)

c) Truncated subtraction: subtract R2 from R1, then move R1 to R0. Alternatively, copy R1

to R0, and then subtract R2 from R0.

START R−2 R−1 R+0

R−1 HALT

START R−1 R−2 HALT

R+0 R−0

d) Integer division: repeated truncated subtraction. Abstractly, we can write this as:

START while R1 6= 0 do R1
.− R2

HALT R+0

e) Integer remainder: compose previously defined computation blocks together accord-
ing to the definition. Assignment and multiplication is defined in the notes; doing
computation and assignment in the same expression is just a matter of using an
auxiliary register to store the intermediate value.

START R3 := R1 div R2 R4 := R3 × R2

R0 := R1
.− R4 HALT

One might well argue that such programs can be written in a more e�cient way from
scratch, without using any higher-level abstractions. This might indeed be the case,
but remember that for the purposes of computability we only care about whether
performing the computation is possible at all, not necessarily if there is an e�cient
implementation. And given that our blocks are just shorthands for low-level register

CO M P U TAT I O N T H E O RY S U P E R V I S I O N 1 – S O LU T I O N S

machines, all of these high-level definitions can be expanded into individual register
operations, just like in a real computer.

f) Exponentiation base 2: initialise R0 to 1, then repeatedly multiply R0 R1 times.

START R+0 while R1 6= 0 do R2 := R0 × 2

HALT R0 := R2

As an example of the above remark, this program can also be written in a fairly terse
and elegant form without using any high-level combinators. However, readability
su�ers somewhat, and as explained above, we do not get any conceptual benefits: if
something is computable in a high-level, perhaps ine�cient way, it is computable.

START R+0 R−1 R−0 R−2 R+0

HALT R+2 R+2

g) Logarithm base 2: repeated division by 2. Since the while loop tests for 0 instead of
1, we end up overshooting the result by one, so we decrement R0 after the loop.

START while R1 6= 0 do R−0 HALT

R1 := R1 div 2 R+0

3. Coding programs as numbers
1. Gödel numbering is a general technique for assigning a natural number to some mathematical

object (such as a well-formed formula in some formal language). The numbering is often
computed by translating every symbol of a formula Φ to a natural number, then combining
the codes to create a unique Gödel number G(Φ). For example, with the assignments t(‘∀’) =
1, t(‘x ’) = 2, t(‘.’) = 3, and t(‘= ’) = 4, the Gödel number of the formula ∀x . x = x with a
particular combination function could be G(‘∀x . x = x ’) = 272794772250.

a) Is the Gödel numbering of register machines described in the notes a bijection, an injection,
a surjection, a total function, a partial function, or a relation? Justify your answer.

The encoding of register machines is a bijection: every machine is associated with a
unique natural number, and vice versa. Every encoding (e.g. pairs, lists and instruc-
tions) is a bijection by construction.

b) In the example of first-order logic above, is a particular Gödel numbering a bijection, an

CO M P U TAT I O N T H E O RY S U P E R V I S I O N 1 – S O LU T I O N S

injection, a surjection, a total function, a partial function, or a relation? Justify your answer.

Every formula can be encoded as a unique number, but not every number will be
decoded as a well-formed logical formula – this is because we treat formulae as
strings of symbols, rather than expression trees. Thus the encoding is not a bijection,
but only an injection.

c) Suggest one or more ways of combining the symbol codes of a formula Φ to generate a
unique Gödel number for Φ. Demonstrate your methods on the formula Φ= ‘∀x . x = x ’
used above.

(i) We can convert the list of symbols into a list of the individual symbol codes (such
as [1,2,3,2,4,2]), then use the list encoding from the lecture notes to convert
it into a number.

G([1,2,3,2,4,2]) = 〈〈1, G([2,3,2,4,2])〉〉= · · ·= 592146

(ii) Another common way to ensure a unique encoding is to make use of the Fun-
damental Theorem of Arithmetic, which states that every number has a unique
prime decomposition. Thus, if the encoding is based on a prime decomposition,
it can always be recovered from the code. In particular, we can encode a string
of symbol codes c0 c1 c2 c3 . . . as the natural number 2c0 · 3c1 · 5c2 · 7c3 · · · ·. To get
back the original formula from a natural, we find its prime factorisation and read
o� the exponents of the (ordered) primes.

G([1,2,3,2,4,2]) = 21 · 32 · 53 · 72 · 114 · 132 = 272794772250

2. Let ϕe ∈ N * N denote the unary partial function from numbers to numbers computed by
the register machine with code e. Show that for any given register machine computable unary
partial function f ∈ N* N, there are infinitely many numbers e such that ϕe = f . Two partial
functions are equal if they are equal as sets of ordered pairs; equivalently, for all numbers
x ∈ N, ϕe(n) is defined if and only if f (x) is, and in that case they are equal numbers.

This question shows that two functions with di�erent codes can have the same behaviour,
so while there is a bijection between the machine implementing the function and its code,
there are infinitely many register machines implementing the same function. In practice,
we can decode f ∈ N * N as a register machine program, then simply extend it with
instructions that never get reached, such as any number of HALT instructions. This will
change the code of the program without modifying its behaviour.

4. Universal register machine
1. What is the aim of the universal register machine U? How does it work? Annotate the diagram

of the register machine with its major components, explaining what they accomplish in the
bigger context of the operation of U .

CO M P U TAT I O N T H E O RY S U P E R V I S I O N 1 – S O LU T I O N S

Th universal register machine U implements a register machine evaluator as a register
machine. Its inputs are R1 = e and R2 = a, where e is the code for a RM program, and a is
the code for the list of arguments. The URM first decodes e as a program P , then decodes
a as a list of register values a1, . . . , an, then executes the program P on the arguments
R1 = a1, . . . ,Rn = an, storing the result in R0.

The implementation of the machine is similar to a rudimentary processor, keeping track
of the currently executed instruction using a program counter and iteratively executing
the commands on the arguments. A detailed, annotated analysis of the implementation
can be found in the slides for Lecture 4, but it’s worth analysing it yourself and getting a
high-level grasp of its operation.

2. Consider the list of register machine instructions whose graphical representation is shown
below. Assuming that register Z holds 0 initially, describe what happens when the code is
executed (both in terms of the e�ect on registers A and S and whether the code halts by
jumping to the label EXIT or HALT).

START A− S− EXIT

Z+ S− Z− HALT

A+ Z− S+

This is just a rearranged and renamed version of the “pop” operation described on Slide 47.

Optional exercise
Write a register machine interpreter in a programming language you prefer (a functional language
such as ML or Haskell is recommended). Implement a library of RM building blocks such as the ones
appearing in the universal register machine or your answer for Ex. 2.1. You may try implementing the
RM U as well, but don’t worry if you run into resource constraints. The format of input and output is
up to you but the RM representation and computation must conform to the theoretical definition.

https://www.cl.cam.ac.uk/teaching/current/CompTheory/lectures/comt-slides.pdf#page=103

	Algorithmically undecidable problems
	Register machines
	Coding programs as numbers
	Universal register machine

