
Computation Theory
Supervision 1

1. Algorithmically undecidable problems
1. Two important concepts in the theory of computability are enumerations and diagonalisation.

Intuitively, an enumeration of a set S is an ordered, “exhaustive” listing of all elements. While
this intuition works for finite sets, we need to be more formal to handle infinite sets. Thus, an
enumeration of a finite or infinite set S is a surjective function from the natural numbers N to
S, if it exists. If it does, the set S is called countable; if it doesn’t, it is uncountable.

Prove or disprove the following statements:

a) The set of natural numbers is countable.

b) The set of integers is countable.

c) The Cartesian product of two countable sets is countable.

d) The set of rational numbers is countable.

e) The finite n-ary product of countable sets is countable.

f) The set of polynomials with coe�cients from a countable set is countable.

g) The powerset of a countable set is countable.

h) The set of real numbers is countable.

Feel free to do some research if you are not familiar with these results.

2. Rephrase the proof of the undecidability of the Halting Problem (with an abstract definition of
an algorithm) as a diagonal argument.

2. Register machines
1. Show that the following arithmetic functions are all register machine computable.

a) First projection function p ∈ N→ N, where p(x , y)¬ x
b) Constant function with value n ∈ N, cn ∈ N→ N where c(x)¬ n
c) Truncated subtraction function, _ .− _ ∈ N2→ N, where

x .− y ¬

(

x − y if y ≤ x

0 if y > x

d) Integer division function, _div_ ∈ N2→ N where

x div y ¬

(

integer part of x/y if y > 0

0 if y = 0



CO M P U TAT I O N T H E O RY S U P E R V I S I O N 1

e) Integer remainder function, _mod_ ∈ N2→ N with x mod y ¬ x .− y · (x div y)
f) Exponentiation base 2, e ∈ N→ N, where e(x) = 2x

g) Logarithm base 2, log2 ∈ N→ N, where

log2(x)¬

(

greatest y such that 2y ≤ x if x > 0

0 if x = 0

Hint: instead of defining everything from scratch, try implementing these machines with the
help of general control flow components.

3. Coding programs as numbers
1. Gödel numbering is a general technique for assigning a natural number to some mathematical

object (such as a well-formed formula in some formal language). The numbering is often
computed by translating every symbol of a formula Φ to a natural number, then combining
the codes to create a unique Gödel number G(Φ). For example, with the assignments t(‘∀’) =
1, t(‘x ’) = 2, t(‘.’) = 3, and t(‘= ’) = 4, the Gödel number of the formula ∀x . x = x with a
particular combination function could be G(‘∀x . x = x ’) = 272794772250.

a) Is the Gödel numbering of register machines described in the notes a bijection, an injection,
a surjection, a total function, a partial function, or a relation? Justify your answer.

b) In the example of first-order logic above, is a particular Gödel numbering a bijection, an
injection, a surjection, a total function, a partial function, or a relation? Justify your answer.

c) Suggest one or more ways of combining the symbol codes of a formula Φ to generate a
unique Gödel number for Φ. Demonstrate your methods on the formula Φ= ‘∀x . x = x ’
used above.

2. Let ϕe ∈ N * N denote the unary partial function from numbers to numbers computed by
the register machine with code e. Show that for any given register machine computable unary
partial function f ∈ N* N, there are infinitely many numbers e such that ϕe = f . Two partial
functions are equal if they are equal as sets of ordered pairs; equivalently, for all numbers
x ∈ N, ϕe(n) is defined if and only if f (x) is, and in that case they are equal numbers.

4. Universal register machine
1. What is the aim of the universal register machine U? How does it work? Annotate the diagram

of the register machine with its major components, explaining what they accomplish in the
bigger context of the operation of U .

2. Consider the list of register machine instructions whose graphical representation is shown
below. Assuming that register Z holds 0 initially, describe what happens when the code is
executed (both in terms of the e�ect on registers A and S and whether the code halts by



CO M P U TAT I O N T H E O RY S U P E R V I S I O N 1

jumping to the label EXIT or HALT).

START A− S− EXIT

Z+ S− Z− HALT

A+ Z− S+

Optional exercise
Write a register machine interpreter in a programming language you prefer (a functional language
such as ML or Haskell is recommended). Implement a library of RM building blocks such as the ones
appearing in the universal register machine or your answer for Ex. 2.1. You may try implementing the
RM U as well, but don’t worry if you run into resource constraints. The format of input and output is
up to you but the RM representation and computation must conform to the theoretical definition.
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