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Despite extensive research both on the theoretical and practical fronts, formalising, reasoning about, and
implementing languages with variable binding is still a daunting endeavour – repetitive boilerplate and the
overly complicated metatheory of capture-avoiding substitution often get in the way of progressing on to the
actually interesting properties of a language. Existing developments offer some relief, however at the expense
of inconvenient and error-prone term encodings and lack of formal foundations.

We present a mathematically-inspired language-formalisation framework implemented in Agda. The sys-
tem translates the description of a syntax signature with variable-binding operators into an intrinsically-
encoded, inductive data type equipped with syntactic operations such as weakening and substitution, along
with their correctness properties. The generated metatheory further incorporates metavariables and their
associated operation of metasubstitution, which enables second-order equational/rewriting reasoning. The
underlying mathematical foundation of the framework – initial algebra semantics – derives compositional
interpretations of languages into their models satisfying the semantic substitution lemma by construction.

CCS Concepts: • Software and its engineering→ Formal software verification; Functional languages;
• Theory of computation→ Type theory; Equational logic and rewriting.

Additional Key Words and Phrases: Agda, abstract syntax, language formalisation, category theory

1 INTRODUCTION
Programming and logic research papers that introduce and study new languages and calculi with
variable binding typically gloss over the associated notion of capture-avoiding substitution – it is
often taken as standard along with its correctness properties. Nevertheless, the representation of
variables and substitution becomes a major roadblock when one attempts to formalise such lan-
guages in proof assistants, as substituting into terms with variable binders involves dealing with
variable shadowing and capture. Some ways of encoding variables (e.g. using strings or numeric
de Bruijn indices) lead to fragile and error-prone implementations of syntactic operations: for in-
stance, binding links are easily broken if one increments the wrong index or forgets to modify a
string. Other approaches – such as type- and scope-safe de Bruijn indices – place static guarantees
on the correctness of the implementation but require significant boilerplate and seemingly super-
fluous generality that puts the interesting metatheoretic proofs on hold. Either way, the end result
is a formalisation littered with ad hoc definitions and lemmas about weakening, substitution, etc.,
all of which need to be tweaked if the syntax is changed even slightly.

We tackle this unsatisfactory state of affairs by stepping back and considering the mathemati-
cal foundations of second-order abstract syntax; that is, abstract syntax with variable binding and
parametrised metavariables. Using an approach derived from the presheaf model developed by
Fiore, Plotkin, and Turi [1999] and Fiore [2008], we build a powerful and entirely generic frame-
work for language formalisation that extracts the maximum amount of syntactic metatheory from
a second-order syntax description with minimal boilerplate and user effort. From a concise textual
specification of a typed syntax with binding operators, such as the following one for the simply-
typed lambda calculus (STLC)
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type
N : 0-ary
_�_ : 2-ary

term
app : 𝛼 � 𝛽 𝛼 → 𝛽
lam : 𝛼 .𝛽 → 𝛼 � 𝛽

with base type N and function type �, our system generates Agda code for: (𝑖) a grammar of
types and an intrinsically-typed data type of terms; (𝑖𝑖) operations of weakening and substitution
together with their correctness properties; (𝑖𝑖𝑖) a record that, when instantiated with a mathemati-
cal model, induces a semantic interpretation of the syntax in the model that preserves substitution;
(𝑖𝑣) a term constructor for parametrised metavariables and their associated operation of metasub-
stitution; and (𝑣) an equational/rewriting theory that can be instantiated with the axioms of the
syntax to obtain a library for second-order equational/rewriting reasoning.

1.1 Background
The framework presented in this paper builds on a long series of practical and theoretical devel-
opments in the study of abstract syntax, incorporating elements from both lines of research.

Intrinsic typing. Among the numerous language-formalisation strategies available for a variety of
proof assistants, the type- and scope-safe, intrinsically-typed encoding of typed syntax with vari-
able binding popularised by Altenkirch and Reus [1999], Benton et al. [2012], and, more recently,
by Allais, Atkey, Chapman, McBride, and McKinna [2021] (henceforth cited as AACMM [2021])
stands out as an excellent fit for dependently-typed metalanguages like Agda [Norell 2009] and
Coq [The Coq Development Team 2004]. It represents terms of a syntax as a type- and context-
indexed family X of sets: for a type 𝛼 and typing context (list of types) Γ, the set X 𝛼 Γ consists
of the terms 𝑡 that satisfy the typing judgment Γ ` 𝑡 : 𝛼 . In an intrinsically-typed formalisation
this indexed family X is generated inductively: for example, application in the syntax of the STLC
corresponds to a constructor app that combines a function term 𝑓 : X (𝛼 � 𝛽) Γ and an argument
term 𝑎 : X 𝛼 Γ into app(𝑓 , 𝑎) : X 𝛽 Γ. As such, constructors of the syntax are directly encoded as
their own typing rules, making ill-typed and ill-scoped terms unrepresentable.

In contrast, an extrinsic encoding resembles the way type systems are presented in the research
literature: one has a grammar of raw terms 𝑡 and an inductively-defined well-typedness relation
Γ ` 𝑡 : 𝛼 . While both approaches work and are widely used, dependent types and intrinsic en-
coding complement each other very well. For instance, in the introductory textbook Programming
Language Foundations in Agda, Kokke, Siek, and Wadler [2020] present the formalisation of the
STLC in both styles, clearly highlighting and advocating the superiority of intrinsic typing.

Another advantage of intrinsic typing is that the need for separate type-preservation proofs
of syntactic operations is eliminated: for example, defining the single-variable substitution oper-
ation sub1 : X 𝛼 Γ → X 𝛽 (𝛼 · Γ) → X 𝛽 Γ immediately establishes the fact that substitution
preserves typing. Just as the typing rules of terms are baked into their syntax, the well-typedness
proofs of operations are baked into their definition. The downside is that implementing such oper-
ations often requires significant effort, with sub1 being a prime example: it is not definable from
first principles, because the induction hypothesis (viz. the recursive call) is not general enough
to handle binding terms, whose fresh bound variables get added to the end of the typing context
and thereby “cover” the free variable one wants to substitute for. Instead, someone unfamiliar
with the approach has to walk through a long and frustrating path of trial and error. For instance:
trying to define weakening and exchange (which are usually employed in the pen-and-paper well-
typedness proof) is similarly futile; generalising to substitution for a variable in the middle of the
context works for binding terms but not for variables; further generalising to simultaneous substi-
tution still requires weakening; single-variable weakening cannot be implemented directly either,



Formal Metatheory of Second-Order Abstract Syntax 3

and must be derived from variable renaming. Even worse is that reasoning about single-variable
substitution (proving the syntactic or semantic substitution lemmas, for example) forces one to
prove similar properties about renaming, weakening, and simultaneous substitution, leading to a
tedious and bloated formalisation that is specific to a particular syntax.

Generic traversals. If we accept the hoops needed to jump through to implement single-variable
substitution, we can look for common patterns to abstract out – after all, renaming and substitution
both proceed by traversing a term and replacing variables with data, either a variable or a term.
McBride [2005] builds on this observation to axiomatise the properties that such data need possess
in order to define a generic term-traversal function that can be instantiated to either renaming or
substitution. Allais et al. [2017] generalise traversals to semantic interpretations in models of the
syntax, recovering renaming and substitution as interpretations into the syntactic model. They
also give a pattern for proving simulation and fusion properties of traversals, which capture –
among other things – the correctness properties of renaming and substitution. In AACMM [2021],
the authors further generalise their work on the STLC to an arbitrary universe of second-order
syntaxes, producing a robust and flexible language-formalisation framework.

Presheaf model. The presheaf model of second-order abstract syntax is a category-theoretic ap-
proach to enriching typed languages with variable binding by means of substitution and metasub-
stitution structures, developed by Fiore and collaborators; see e.g. [Fiore et al. 1999; Fiore 2008;
Fiore and Hamana 2013; Fiore and Hur 2010; Fiore and Mahmoud 2010]. It too represents syntax
as a type- and context-indexed family of sets, but further requires it to have a functorial renam-
ing structure upon which substitution, metasubstitution, etc. structures are built in a systematic
categorical way.While it is an elegant and powerful mathematical theory, its adoption in language-
formalisation frameworks has only been incidental: several concepts central to the abstract cate-
gorical approach (coends, colimits, etc.) are hard to represent in a dependently-typed setting and
a faithful reproduction of the theory would need to heavily rely on a formalised category-theory
library such as agda-categories [Hu and Carette 2021] or UniMath [Voevodsky et al. 2014].

Recent work by Borthelle et al. [2020] proposed that the presheaf model be adapted to a setting
of sorted families by axiomatising the renaming structure and its interaction with initial algebra
semantics – ideas which have been explored informally by Allais et al. [2017] and Kaiser et al.
[2018] as well. To note, however, is that their skew-monoidal [Szlachányi 2012] approach still
depends on categorical theory and results that lead to an impractical formalisation: for example,
the syntax of terms is presented by means of the colimit of an 𝜔-chain (and therefore represented
by equivalence classes), rather than by an inductive data type.

1.2 Contributions
Our work aims to place the constructions and empirical observations of intrinsically-typed term
encodings on a formal grounding, thereby bridging the gap between theory and practice. We are
closely guided by the presheaf model of second-order abstract syntax, adapting and re-working
its categorical theory (definitions and results) to a dependently-typed setting without sacrificing
practicality and generality over arbitrary second-order signatures.

• In Section 2 we give the basic mathematical framework of sorted families, renaming coalgebras,
and substitution monoids employed in the library.These notions are adapted from the presheaf
model [Fiore et al. 1999] which, on its own, is too abstract and high-level to be used as a basis
for practical language formalisation. However, with this new (and mathematically justifiable)
change of perspective, we can translate all the theory of the presheaf approach to type- and
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context-indexed families and, in doing so, shine a light upon the constructions and properties
commonly encountered in type- and scope-safe treatments of syntax.
• Section 3 outlines the main conceptual tool we rely on: initial algebra semantics. Crucially, not

only do we invoke initiality to derive generic traversals such as renaming and substitution,
we also use it to prove their correctness, including the associativity of substitution and its
interactionwith renaming.The notion of a⅀-monoid is introduced; it axiomatises the structure
of a model of the syntax where terms can be interpreted in a compositional and substitution-
preserving manner. We also discuss metavariables and metasubstitution [Fiore 2008], together
with their application to second-order equational/rewriting reasoning [Fiore and Hur 2010].
• After developing the entirely signature-generic metatheory, in Section 4 we present the trans-

lation of second-order syntax descriptions to signature endofunctors and give two approaches
of encoding the initial algebra of terms for a signature.
• Finally, in Section 5, we showcase the features of our framework in two extended examples:

the syntax of the STLC together with its sound denotational and operational semantics, and
the equational theory of partial differentiation.

The paper is intended for an audience familiar with dependently-typed proof assistants and the
struggles of language formalisation. Even though they play a vital role in the development, we
chose to minimise references to advanced categorical concepts. In the listings we use “retouched
Agda” which omits inessential implementation details to make the code cleaner, without impacting
clarity (for example, we hide some implicit arguments and record declarations, and use shading
instead of cong in equational proofs). The full formalisation with extended proofs and examples
can be found on the project website.

2 MATHEMATICAL FOUNDATIONS
We start by setting up the abstract mathematical foundations of our work, with the aim of de-
coupling the renaming and substitution structures from a particular syntax of terms. Section 2.1
lists the standard definitions for contexts, families, and variables, highlighting their important cat-
egorical properties. In Section 2.2 we introduce the coalgebraic and monoidal views of renaming
and substitution, and in Section 2.3 we consider properties of maps parametrised by a substitution
mapping which will be important players in the development of initial algebra semantics.

2.1 Contexts and families
The definitions of contexts and variables are well-known from intrinsically-typed treatments of
syntax. Rather than using named variable-type pairs, contexts are lists of types that come from a
fixed set 𝑇 , and variables are typed and scoped de Bruijn indices into the context: new points to
the first element of the context, while old(𝑣) points to the variable 𝑣 in an extended context.

data Ctx : Set where
∅ : Ctx
_·_ : (𝛼 : 𝑇 )→ (Γ : Ctx)→ Ctx

data I : 𝑇 → Ctx→ Set where
new : I𝛼 (𝛼 · Γ)
old : I 𝛽 Γ→I 𝛽 (𝛼 · Γ)

We call context-indexed sets of typeCtx→ Set families, and sort-indexed families (such asIabove)
a sorted family: for an arbitrary sorted family X :𝑇 → Ctx→ Set, an element in the set X 𝛼 Γ can
be seen as an X-term of type 𝛼 with free variables in context Γ. Maps between sorted families are
sort- and context-indexed families of functions, and together they form the category FamS.
Family : Set1
Family = Ctx→ Set

FamilyS : Set1
FamilyS = 𝑇 → Family

___ : FamilyS→ FamilyS→ Set
X_ Y = {𝛼 : 𝑇 }{Γ : Ctx}→X 𝛼 Γ→Y 𝛼 Γ

https://www.cl.cam.ac.uk/~ds709/agda-soas/
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The concatenation of two contexts is denoted Γ ∔ Δ. An associated endofunctor on families is
that of context extension: a (𝛿 Θ X)-term in context Γ is an X-term in the extended context Θ ∔ Γ.

_∔_ : Ctx→ Ctx→ Ctx
∅ ∔ Δ = Δ
(𝛼 · Γ) ∔ Δ = 𝛼 · (Γ ∔ Δ)

𝛿 : Ctx→ FamilyS→ FamilyS

𝛿 Θ X 𝛼 Γ = X 𝛼 (Θ ∔ Γ)

2.1.1 Cocartesian structure of contexts. Fundamental to the algebraic study of abstract syntax is
the category of contexts F , with contexts Γ,Δ as objects and type-preserving mappings between
variables of two contexts as morphisms. We will call these morphisms renamings; intuitively, a
renaming 𝜌 : Γ ; Δ assigns a variable 𝜌 (𝑣) : 𝛼 in context Δ to each variable 𝑣 : 𝛼 in Γ. Renamings
can be generalised to arbitrary context maps 𝜎 : Γ –[ X ]� Δ that assign an X-term 𝜎 (𝑣) : X 𝛼 Δ
to each variable 𝑣 : 𝛼 in Γ – a renaming is then expressed as an I-valued context map.

_–[_]�_ : Ctx→ FamilyS→ Ctx→ Set
Γ –[ X ]� Δ = {𝛼 : 𝑇 }→I𝛼 Γ→X 𝛼 Δ

_;_ : Ctx→ Ctx→ Set
Γ ; Δ = Γ –[ I ]� Δ

The category of contexts F is cocartesian, with context concatenation ∔ serving as coproduct. The
injection maps Γ ; (Γ ∔ Δ) and Δ ; (Γ ∔ Δ) and the universal copairing (definable for arbitrary
X-valued context maps) copair : (Γ –[ X ]� Θ) → (Δ –[ X ]� Θ) → (Γ ∔ Δ) –[ X ]� Θ can be
constructed by pattern-matching on the contexts and variables, and repeated applications of old.
A useful special case of copairing is adding a single term to a substitution, which corresponds to
the standard cons operation in the theory of explicit substitutions [Abadi et al. 1989].

add : (X : FamilyS)→X 𝛼 Δ→ Γ –[ X ]� Δ→ (𝛼 · Γ) –[ X ]� Δ
add X 𝑡 𝜎 = copair X (𝜆{ new � 𝑡 }) 𝜎

2.1.2 Bicartesian closed and linear structures of families. Since families are indexed sets, they in-
herit the bicartesian closed structure of Set: we take sums and products of families via point-
wise disjoint unions and Cartesian products, and also define family exponentials pointwise as
(X ⇒Y) 𝛼 Γ ≜ X 𝛼 Γ → Y 𝛼 Γ (since there are no functoriality requirements, relevant in the case
of presheaf exponentials, to be satisfied). We also have the following linear exponential (derived
from the Day [1970] internal hom) which will play an important role in metasubstitution:

_⊸_ : FamilyS→ FamilyS→ FamilyS

(X ⊸ Y) 𝛼 Γ = {Δ : Ctx}→X 𝛼 Δ→Y 𝛼 (Δ ∔ Γ)

2.2 Renaming and substitution
Our next step is to precisely identify the structure required on a sorted family to support substi-
tution; this way, defining substitution for a particular syntax will amount to equipping the family
of terms of the syntax with such structure. Since, in practice, capture-avoiding substitution into
syntactic terms involves weakening (a form of variable renaming), we are also looking for a way to
axiomatise renaming as a basic fundamental notion. Our guiding principle throughout the devel-
opment will be to characterise renaming, substitution, and other metatheoretic operations – along
with their correctness laws – as natural, recognisable categorical constructions in sorted families.

2.2.1 Renaming structure. A sorted familyX admits renaming whenX-terms in one variable con-
text can be compatibly transformed toX-terms in another.The corresponding renaming operation
lifts a renaming map Γ ; Δ to a function X 𝛼 Γ → X 𝛼 Δ. This amounts to the requirement that
the family X 𝛼 be a (covariant) presheaf on F (i.e. a functor from F to Set), and imposing such
structure on every family would give rise to the presheaf model of Fiore et al. [1999]. Here, instead
of going down this route, we refactor the type of the renaming operation on families as follows:
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r : {𝛼 : T}{Γ : Ctx}→X 𝛼 Γ→
(
{Δ : Ctx}→ (Γ ; Δ)→X 𝛼 Δ

)
Note that the codomain of r can be expressed as a function of 𝛼 and Γ. By abstracting the renaming-
dependence as amodal operator 2 [Allais et al. 2021], wemay then express the renaming operation
as a map of families X_ 2X, internalising the functorial action as a FamS-morphism.

2 : FamilyS→ FamilyS2 X 𝛼 Γ = {Δ : Ctx}→ (Γ ; Δ)→X 𝛼 Δ

The 2 modality is a comonad and a coalgebra for it has to respect the identity and composition
of renamings. This leads to our first observation: a sorted family has renaming structure when
equipped with a 2-coalgebra structure. The Coalg record collects these requirements.

record Coalg (X : FamilyS) : Set where
field r : X_ 2 X

counit : {𝑡 : X 𝛼 Γ}→ r 𝑡 id ≡ 𝑡
comult : {𝜌 : Γ ; Δ}{𝜚 : Δ ; Θ}{𝑡 : X 𝛼 Γ}→ r 𝑡 (𝜚 ◦ 𝜌) ≡ r (r 𝑡 𝜌) 𝜚

Since context transformations such as weakening, contraction, etc. correspond to renaming maps,
the associated structural rules for a 2-coalgebra X can be derived via renaming:
wkl : X 𝛼 Γ→X 𝛼 (Γ ∔ Δ)
wkl 𝑡 = r 𝑡 (inl Δ)

wkr : X 𝛼 Δ→X 𝛼 (Γ ∔ Δ)
wkr 𝑡 = r 𝑡 (inr Γ)

contr : X 𝛼 (Γ ∔ Γ)→X 𝛼 Γ
contr 𝑡 = r 𝑡 (copair I id id)

The natural notion of a transformation between 2-coalgebras is a homomorphism: a map X_ Y
that preserves the coalgebra structures of X and Y.

record Coalg⇒ (X2 : Coalg X)(Y2 : Coalg Y) (𝑓 : X_ Y) : Set where
field 〈r〉 : {𝜌 : Γ ; Δ}{𝑡 : X 𝛼 Γ}→ 𝑓 (X.r 𝑡 𝜌) ≡ Y.r (𝑓 𝑡 ) 𝜌

2.2.2 Pointed structure. If X is a sorted family of terms for a second-order abstract syntax, there
must be a way to coerce variables into X-terms. Sorted families with such a coercion 𝜂 : I_ X
will be called pointed. If the underlying family of a 2-coalgebra is pointed, we may also impose
the requirement that the point is compatible with renaming. We characterise pointed coalgebras
and their point-preserving homomorphisms as records:
record Coalg∗ (X : FamilyS) : Set where

field 2 : Coalg X ; 𝜂 : I_ X
r◦𝜂 : {𝑣 : I𝛼 Γ}{𝜌 : Γ ; Δ}→

r (𝜂 𝑣) 𝜌 ≡ 𝜂 (𝜌 𝑣)

record Coalg∗⇒ (X2
∗ : Coalg∗ X) (Y2

∗ : Coalg∗ Y)
(𝑓 : X_ Y) : Set where

field 2⇒ : Coalg⇒ X.2 Y.2 𝑓
〈𝜂〉 : {𝑣 : I𝛼 Γ}→ 𝑓 (X.𝜂 𝑣) ≡ Y.𝜂 𝑣

An example of a pointed 2-coalgebra is the family of variables, with renaming implemented as
application. The point 𝜂 of a pointed 2-coalgebra is itself a pointed 2-coalgebra homomorphism.

2.2.3 Substitution structure. The 2 modality parametrises a family by a renaming. We now gen-
eralise this by parametrising a family Y by an arbitrary X-valued context map. This is captured
as a binary operation on families which we call the internal substitution hom of X and Y:

⟬_,_⟭ : FamilyS→ FamilyS→ FamilyS

⟬ X , Y ⟭ 𝛼 Γ = {Δ : Ctx}→ (Γ –[ X ]� Δ)→Y 𝛼 Δ

A renaming operation has, equivalently, the type X _ ⟬I, X ⟭, and a substitution operation on
X has the type X_ ⟬X , X ⟭. The internal hom has a left adjoint �, called the substitution tensor
product; that is, maps of the form X _ ⟬Y , Z ⟭ are naturally isomorphic to maps of the form
X � Y _Z via “uncurrying”.These operators equip FamS with a skew-monoidal closed structure
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[Street 2013] (full monoidality would require that e.g. the unitor I� X _ X is invertible, which
is not the case since � is defined as a dependent sum, rather than a coend [Fiore et al. 1999]).

_�_ : FamilyS→ FamilyS→ FamilyS

(X � Y) 𝛼 Δ = Σ[ Γ ∈ Ctx ] (X 𝛼 Γ × (Γ –[ Y ]� Δ))

Expressed using the tensor product, the substitution operation has the type X � X_ X – it com-
bines a term X 𝛼 Γ and substitution map Γ –[ X ]� Δ into a term X 𝛼 Δ. To be proper, it must also
be associative, and be compatible with the point of X when it has one. If we package this struc-
ture on a family X into a record – a point and substitution operation I

𝜂
−→ X

𝜇
←− X � X satisfying

unit and associativity laws – we end up with precisely a monoid in (FamS,I,�). Monoids can be
equivalently expressed using the internal hom as I

𝜂
−→ X

𝜇
−→ ⟬X , X ⟭, which is the presentation

we prefer for technical reasons: the metatheory proofs would not go through if we had used �.

record Mon (M : FamilyS) : Set where
field 𝜂 : I _M

𝜇 :M _ ⟬M ,M ⟭

lunit : {𝜎 : Γ –[M ]� Δ}{𝑣 : I𝛼 Γ}→ 𝜇 (𝜂 𝑣) 𝜎 ≡ 𝜎 𝑣
runit : {𝑡 :M 𝛼 Γ}→ 𝜇 𝑡 𝜂 ≡ 𝑡
assoc : {𝜎 : Γ –[M ]� Δ} {𝜍 : Δ –[M ]� Θ} {𝑡 :M 𝛼 Γ}→

𝜇 (𝜇 𝑡 𝜎) 𝜍 ≡ 𝜇 𝑡 (𝜆 𝑣 � 𝜇 (𝜎 𝑣) 𝜍 )

The multiplication 𝜇 represents simultaneous substitution, replacing every variable in context Γ
with anM-term in Δ. In practice (e.g. in 𝛽-reduction) one often uses one- or two-variable substi-
tution for the last variable or variables in the context, which is derived using add:
[_/] :M 𝛼 Γ→M 𝛽 (𝛼 · Γ)→M 𝛽 Γ
[ 𝑠 /] 𝑡 = 𝜇 𝑡 (addM 𝑠 𝜂)

[_,_/]2 :M 𝛼 Γ→M 𝛽 Γ→M 𝜏 (𝛼 · 𝛽 · Γ)→M 𝜏 Γ
[ 𝑠1 , 𝑠2 /]2 𝑡 = 𝜇 𝑡 (addM 𝑠1 (addM 𝑠2 𝜂))

Monoid homomorphisms preserve the unit andmultiplication.WhenM is a family associatedwith
an inductively defined syntax,N is a model of the syntax, and 𝑓 is a mapM_N , the preservation
of multiplication 〈𝜇〉 : {𝜎 : Γ –[M ]� Δ}{𝑡 :M 𝛼 Γ}→ 𝑓 (M.𝜇 𝑡 𝜎) ≡ N .𝜇 (𝑓 𝑡 ) (𝑓 ◦ 𝜎) expresses
the semantic substitution lemma: the interpretation of substitution in the syntax is the substitution
of interpretations in the model. We give its familiar form for single-variable substitution as an
example below. The fact that 𝑓 commutes with add is established by function extensionality, case
analysis on the variable, and preservation of the unit 〈𝜂〉 : {𝑣 : I𝛼 Γ}→ 𝑓 (M.𝜂 𝑣) ≡ N .𝜂 𝑣 .

sub-lemma : (𝑠 :M 𝛼 Γ)(𝑡 :M 𝛽 (𝛼 · Γ))→ 𝑓 (M.[ 𝑠 /] 𝑡 ) ≡ N .[ 𝑓 𝑠 /] (𝑓 𝑡 )
sub-lemma 𝑠 𝑡 = trans 〈𝜇〉 (cong (N .𝜇 (𝑓 𝑡 )) (ext 𝜆{ new � refl ; (old 𝑦) � 〈𝜂〉}))

Every monoid has an induced pointed 2-coalgebra instance M.2∗ : Coalg∗, where renaming is
implemented by substituting variables for variables, and pointed 2-coalgebra laws follow from
monoid axioms. But, what if M already comes with a coalgebra structure? We will revisit this
question after examining some general properties of maps into internal homs.

2.3 Parametrised maps
Working with families with coalgebra structure lets us be precise about when renaming is required
in constructions: for example, we need the coalgebra structure for weakening on X, but not for
copairing ofX-valued context maps. However, as Fiore et al. [1999] show, the interaction between
the substitution tensor and the presheaf structure forms a core part of the model theory that will
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need to be recast in our coalgebraic setting. To achieve this, we introduce an important collection
of properties for maps into internal homs (equivalently, out of substitution tensors).

2.3.1 Coalgebraic maps. Maps of the form 𝑓 : X_ ⟬P ,Y ⟭ play a vital role in the mathematical
theory, since they transform X to Y while altering the variable context according to a parameter
family P. Many syntactic operations are of this form: for example, as we have already mentioned,
renamingX_ ⟬I,X ⟭ and substitutionX_ ⟬X ,X ⟭ are maps parametrised by IandX, respec-
tively. If all three families X,P,Y have pointed coalgebra structure, there are two ways in which
a map 𝑓 can be compatible with the various renaming operations: it can preserve renaming, or
identify terms that get renamed via the coalgebra structure and via the context map. Furthermore,
one can state a compatibility law between the points of all three families. Maps which satisfy these
three properties are called coalgebraic.

record Coalgebraic (𝑓 : X_ ⟬ P , Y ⟭) : Set where
field r◦f : {𝜎 : Γ –[ P ]� Δ}{𝜚 : Δ ; Θ} {𝑡 : X 𝛼 Γ}→Y.r (𝑓 𝑡 𝜎) 𝜚 ≡ 𝑓 𝑡 (𝜆 𝑣 � P.r (𝜎 𝑣) 𝜚 )

f◦r : {𝜌 : Γ ; Δ}{𝜍 : Δ –[ P ]� Θ} {𝑡 : X 𝛼 Γ}→ 𝑓 (X.r 𝑡 𝜌) 𝜍 ≡ 𝑓 𝑡 (𝜍 ◦ 𝜌)
f◦𝜂 : {𝑣 : I 𝛼 Γ}→ 𝑓 (X.𝜂 𝑣) P.𝜂 ≡ Y.𝜂 𝑣

Though the hom of pointed families is not in general pointed, the codomain of coalgebraic maps
has a pointed 2-coalgebra structure, and the map itself is a pointed 2-coalgebra homomorphism.

Cod2
∗ : Coalg∗ ⟬ P , Y ⟭

Cod2
∗ = record { 𝜂 = 𝜆 𝑣 𝜎 � 𝑓 (X.𝜂 𝑣) 𝜎

; 2 = record { r = 𝜆 ℎ 𝜌 𝜎 � ℎ (𝜎 ◦ 𝜌) ; counit = refl ; comult = refl }
; r◦𝜂 = 𝜆 {𝑣 }{𝜌} � ext 𝜆 𝜎 � begin 𝑓 (X.𝜂 𝑣) (𝜎 ◦ 𝜌) ≡˘〈 f◦r 〉

𝑓 (X.r (X.𝜂 𝑣) 𝜌) 𝜎 ≡〈 X.r◦𝜂 〉
𝑓 (X.𝜂 (𝜌 𝑣)) 𝜎 ■ }f2∗⇒ : Coalg∗⇒ X2

∗ Cod2
∗ 𝑓

f2∗⇒ = record { 2⇒ = record { 〈r〉 = ext (𝜆 𝜎 � f◦r) } ; 〈𝜂〉 = refl }

Examples of coalgebraic maps are the renaming map for a pointed 2-coalgebra:

rc : (X2
∗ : Coalg∗ X)→ Coalgebraic X2

∗ I2∗ X2
∗ X.r

rc X2
∗ = record { r◦f = sym comult ; f◦r = sym comult ; f◦𝜂 = r◦𝜂 }

as well as the multiplication 𝜇 for a substitution monoid and the structural map j : I_ ⟬X , X ⟭ of
skew-closed categories that corresponds to application (mapping 𝑣 to 𝜎 ↦→ 𝜎 (𝑣)). Later on, we will
be able to show that universal parametrised maps from an initial syntactic algebra are coalgebraic,
which will be a prerequisite for proving the substitution axioms.

2.3.2 Lifting and strength. Thedefinition of simultaneous substitution by hand involves traversing
the host term, applying the substitution map to variables, and recursing into subterms. The diffi-
culties arise when the subterm has a newly bound variable, such as in the body of a 𝜆-abstraction.
To avoid variable shadowing, substitution must map the newly bound variable to itself; to avoid
variable capture, the terms to be substituted must not contain free occurrences of the new variable.
Fortunately, intrinsically-typed encoding guides the complex de Bruijn “arithmetic” required and
guarantees to maintain type- and scope-safety.

The critical step is applying a substitution 𝜎 : Γ –[ P ]� Δ to a term in an extended context
P 𝛽 (𝛼 · Γ), without disturbing the newly bound variable 𝛼 . The usual name for the transformation
needed on 𝜎 is lifting [Altenkirch and Reus 1999; Benton et al. 2012], which can be generalised
to arbitrary extensions as lift Θ 𝜎 : (Θ ∔ Γ) –[ P ]� (Θ ∔ Δ). The inductive definition of lifting
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requires both a point (to map newly bound variables to themselves) and renaming (to weaken the
context of the recursive call), so we demand the structure of a pointed 2-coalgebra on P:

lift : (Θ : Ctx)→ (Γ –[ P ]� Δ)→ (Θ ∔ Γ) –[ P ]� (Θ ∔ Δ)
lift ∅ 𝜎 𝑣 = 𝜎 𝑣
lift (𝜏 · Θ) 𝜎 new = P.𝜂 new
lift (𝜏 · Θ) 𝜎 (old 𝑣) = P.r (lift Θ 𝜎 𝑣) old

While this definition works, it expresses lift as a Set-level transformation of context maps, rather
than as a morphism of sorted families – as such, it counterposes our goal of representing metasyn-
tactic operations purely algebraically. Consequently, it is not a priori obvious what laws lift should
satisfy. Benton et al. [2012, Section 4] demonstrate the intricate inter-dependence of lift with the
other structures by listing eight laws that concern the interaction amongst lifting, renaming, and
substitution, all of which must be proved in order, with each property building on top of the previ-
ous ones. It is these sorts of auxiliary definitions and ad-hoc lemmas that we wish to avoid in our
systematic, categorical development of abstract syntax.

The key to demystifying lift lies in the categorical concept of cotensorial strength [Kock 1971]
for a sorted-family endofunctor 𝐹 : namely, an operation of type 𝐹⟬X ,Y ⟭_ ⟬X , 𝐹Y ⟭ satisfying
certain coherence laws. The analogous tensorial strength 𝐹 (X)�Y _ 𝐹 (X�Y) plays a central
role in the presheaf model of abstract syntax [Fiore 2008], since it captures the intuition of pushing
a substitution into a syntactic structure represented by the endofunctor 𝐹 . Most notably, lift attains
a natural placewithin the categorical model as it can be used to implement strength for the instance
𝐹 = 𝛿 Θ: the resulting operation 𝛿 Θ ⟬P , X ⟭ _ ⟬P , 𝛿 ΘX ⟭ is then responsible for pushing a
substitution 𝜎 : Γ –[ P ]� Δ under a binder of variables in context Θ.

In our setting of families and coalgebras, a more refined notion of strength is required (similar
to the structural strength of Borthelle et al. [2020]). A coalgebraic strength for 𝐹 is a transformation

str : 𝐹⟬P , X ⟭ _ ⟬P , 𝐹X ⟭

where P is a pointed 2-coalgebra and X is a sorted family. The operation must be natural in
both components: that is, it must suitably commute with the functorial mapping of any pointed2-coalgebra homomorphism 𝑓 : Q _ P and family of maps 𝑔 : X_ Y.

str-nat1 : (𝑓
2
∗ ⇒ : Coalg∗⇒ Q2

∗ P2
∗ 𝑓 ) (ℎ : 𝐹⟬ P , X ⟭ 𝛼 Γ) (𝜎 : Γ –[ Q ]� Δ)→

str P2
∗ X ℎ (𝑓 ◦ 𝜎) ≡ str Q2

∗ X (𝐹1 (𝜆 ℎ′ 𝜎 ′ � ℎ′ (𝑓 ◦ 𝜎 ′) ) ℎ) 𝜎

str-nat2 : (𝑔 : X_ Y)(ℎ : 𝐹⟬ P , X ⟭ 𝛼 Γ)(𝜎 : Γ –[ P ]� Δ)→
str P2

∗ Y (𝐹1 (𝜆 ℎ′ 𝜎 ′ � 𝑔 (ℎ′ 𝜎 ′)) ℎ) 𝜎 ≡ 𝐹1 𝑔 (str P2
∗ X ℎ 𝜎)

The strength also satisfies a unit law str-unit: (ℎ : 𝐹 ⟬I, X ⟭ 𝛼 Γ) → str I2∗ X ℎ id ≡ 𝐹1 (i X) ℎ
and an associativity law with respect to the two other structural transformations of skew-closed
categories: the unit i = 𝜆 ℎ � ℎ id : ⟬I, X ⟭ _ X and the (curried) composition of internal homs
L = 𝜆 ℎ 𝜎 𝜍 � ℎ (𝜆 𝑣 � 𝜎 𝑣 𝜍 ) : ⟬Y , Z ⟭ _ ⟬ ⟬X , Y ⟭ , ⟬X , Z ⟭ ⟭. The associativity law has to
be stated in terms of coalgebraic maps 𝑓 : P _ ⟬Q , R ⟭, since the usual pentagon identity [Kock
1971, Lemma 1.3] is too strict in the skew-closed setting (see str-assoc in the diagram below).
This generalised associativity law neatly combines with naturality to give the following powerful
corollary, given both as Agda code and – for a clearer presentation – as a commutative diagram:
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str-dist : {𝑓 : P _ ⟬Q , R ⟭} (𝑓 c : Coalgebraic P2
∗ Q2

∗ R2
∗ 𝑓 )

(ℎ : 𝐹 ⟬R , X ⟭ 𝛼 Γ)(𝜎 : Γ –[ P ]� Δ)(𝜍 : Δ –[ Q ]� Θ)→
str R2

∗ X ℎ (𝜆 𝑣 � 𝑓 (𝜎 𝑣) 𝜍 )
≡ str Q2

∗ X (str P2
∗ ⟬Q , X ⟭ (𝐹1 (𝜆 ℎ 𝜎 𝜍 � ℎ (𝜆 𝑣 � 𝑓 (𝜎 𝑣) 𝜍 )) ℎ) 𝜎) 𝜍

𝐹⟬R ,X ⟭ 𝐹⟬ ⟬Q ,R ⟭ , ⟬Q ,X ⟭ ⟭ 𝐹⟬P , ⟬Q ,X ⟭ ⟭

⟬ ⟬Q ,R ⟭ , 𝐹⟬Q ,X ⟭ ⟭ ⟬P , 𝐹⟬Q ,X ⟭ ⟭

⟬R , 𝐹X ⟭ ⟬ ⟬Q ,R ⟭ , ⟬Q , 𝐹X ⟭ ⟭ ⟬P , ⟬Q , 𝐹X ⟭ ⟭

strR,X

L ⟬ 𝑓 ,id ⟭

strP,⟬Q ,X ⟭

⟬ id ,strQ,X ⟭

𝐹L 𝐹⟬ 𝑓 ,id ⟭

str⟬Q ,R ⟭,⟬Q ,X ⟭

⟬ 𝑓 ,id ⟭

str-nat1

str-assoc

As 𝑓 is coalgebraic, its codomain ⟬Q ,R ⟭ is a pointed2-coalgebra (Section 2.3.1) and thus is a valid
first component to str⟬ Q ,R ⟭,⟬ Q ,X ⟭. Remarkably, for different choices of 𝑓 , the str-dist corollary
above generalises all four lifting lemmas given by Benton et al., fulfilling our goal of placing lift
and its laws on a formal foundation.

The axiomatisation of strength as a categorical concept is required for the initiality and freeness
theorems of Section 3. The strength for a signature endofunctor (Section 4.2) will invariably derive
from the Strength instance of the context extension endofunctor 𝛿 , whose implementation makes
use of lift: to feed a context map Γ –[ P ]� Δ into a hom ⟬P , X ⟭ 𝛼 (Θ ∔ Γ), one has to extend
both its domain and codomain withΘ. The strength proofs feature many of the intricate properties
we axiomatised earlier, such as homomorphism and coalgebraic laws. We refer the reader to the
formalisation for the details.

2.3.3 Coalgebraic monoids. We revisit the question posed at the end of Section 2.2.3. As shown
there, every substitution monoid is a 2-coalgebra, since renaming with 𝜌 : Γ ; Δ can be imple-
mented as substitution with 𝜂 ◦ 𝜌 : Γ –[ X ]� Δ. This may suggest that renaming for a syntax
can be derived from substitution, and so that one only needs to define the latter operation. At-
tempting this will be futile, however: substitution into terms with variable binding will require
weakening (as part of lift), a special case of renaming. Consequently, to equip a family of terms
with substitution structure, one needs to have already shown that it is a pointed 2-coalgebra.

This a priori renaming structure will not necessarily be equivalent to the one induced by sub-
stitution (unlike in the presheaf model, where the two are identified by the quotiented dependent
sum used in the definition of the substitution tensor product), but their equivalence is a prereq-
uisite of the free monoid proof in Theorem 3.1 below. We overcome this conflict by axiomatising
families with compatible pointed coalgebra and monoid structures, called coalgebraic monoids:

record CoalgMon (X : FamilyS) : Set where
field X2

∗ : Coalg∗ X
XM : Mon X
𝜂-compat : {𝑣 : I𝛼 Γ} → 𝜂2

∗ 𝑣 ≡ 𝜂M 𝑣
𝜇-compat : {𝜌 : Γ ; Δ} {𝑡 : X 𝛼 Γ}→ r 𝑡 𝜌 ≡ 𝜇 𝑡 (𝜂M ◦ 𝜌)

The compatibility laws ensure that the existing X2
∗ and derived XM. 2∗ pointed 2-coalgebra struc-

tures on X are equivalent, and, in particular, can be exchanged in the first component of str.
We have now set up all the mathematical foundations needed for the development. Next, we move
on to the central conceptual tool of our framework: initial algebra semantics.

https://www.cl.cam.ac.uk/~ds709/agda-soas/
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3 INITIAL ALGEBRA SEMANTICS
Initial algebra semantics [Goguen et al. 1976] is one of the most useful concepts in the study of
data types and functional programming. It stems from the observation that every inductive data
type T corresponds to an endofunctor 𝐹𝑇 of which the data type is an initial algebra. For example,
the data type N of natural numbers has associated endofunctor 𝐹N (𝐴) = 1+𝐴 and comes equipped
with an isomorphism 1+N �→ N. Furthermore, for any 𝐹N-algebra𝐴 – equivalently, a type𝐴 with
an element 𝑧 : 𝐴 and an operation 𝑠 : 𝐴 → 𝐴 – one has a unique function recN (𝑧, 𝑠) : N → 𝐴 that
satisfies recN (𝑧, 𝑠) (0) = 𝑧 and recN (𝑧, 𝑠) (𝑛+1) = 𝑠 (recN (𝑧, 𝑠) (𝑛)). This is usually called the recursor,
fold, or catamorphism for N and captures the process of consuming an inhabitant of the inductive
type by recursion on its structure.

This idea extends to inductively defined families of types and endofunctors thereon [Altenkirch
et al. 2015], such as a data type of intrinsically-typed terms. In particular, the recursor out of
an initial family of terms can then be seen as a compositional semantic interpretation map: for
example, an interpretation of the STLC in any of its models. As we explore next, initial algebra
semantics is not only useful for semantic purposes: it can also be used to implement syntactic
operations and prove their laws for free.

3.1 Signature algebras and monoids
Just as the categorical theory, our framework is entirely signature-generic. The metatheory de-
veloped here can be freely instantiated for any second-order signature, encompassing algebraic
theories, computational calculi, logics, etc. Thus, for the remainder of the section, we fix a sorted-
family endofunctor ⅀

: FamS → FamS with an instance of coalgebraic strength ⅀
:Str. Algebras⅀A_A for this endofunctor represent families that support the operations of the signature. For

example, for the signature ⅀
Λ of the STLC, a ⅀

Λ-algebra is a family A equipped with operations
app : A (𝛼 � 𝛽) Γ × A 𝛼 Γ → A 𝛽 Γ and abs : A 𝛽 (𝜏 · Γ) → A (𝛼 � 𝛽) Γ.

We also consider⅀-algebras with substitution structure, known as⅀-monoids [Fiore et al. 1999;
Fiore and Saville 2017]. These are families with algebra structure ⅀X _ X and monoid structure
I_X_ ⟬X ,X ⟭which are compatible with each other; the compatibility is expressed using the
coalgebraic strength str on ⅀, used to swap the constructor application with the parametrisation
by a context map. Note that str uses the pointed 2-coalgebra structure derived from substitution.

record ΣMon (X : FamilyS) : Set where
field XM : Mon X

alg : ⅀X_ X
𝜇〈alg〉 : {𝜎 : Γ –[ X ]� Δ}{𝑡 : ⅀X 𝛼 Γ}→

𝜇 (alg 𝑡 ) 𝜎 ≡ alg (str X2
∗ X (⅀1 𝜇 𝑡 ) 𝜎)

⅀X ⅀
⟬X ,X ⟭ ⟬X ,

⅀X ⟭

X ⟬X , X ⟭

⅀
𝜇 strX,X

alg ⟬ id ,alg ⟭

𝜇

3.2 Algebras with metavariables
Our formalisation is novel in that it also incorporates parametrised metavariables [Aczel 1978;
Hamana 2004; Fiore 2008]: terms that take the syntactic form𝔪〈−1, · · · ,−ℓ〉 and are to be imagined
as “named holes with slots”, with the “hole” named𝔪 standing for an unspecified termwith ℓ open
variables and the “slots” containing terms that occupy the open variables. They too come from a
sorted family: for instance, the family 𝔅 containing the metavariables 𝔪 : 𝔅 𝛽 [𝛼] and 𝔫 : 𝔅𝛼 []
can be used to construct terms such as 𝑟 =

(
𝜆𝑥 : 𝛼. 𝔪〈𝑥〉

) (
𝔫〈 〉

)
and 𝑡 = 𝔪〈𝔫〈 〉〉. Metavariables

let us abstractly reason about generic terms of some specific syntactic structure: for example, the
notion of 𝛽-equivalence can be axiomatised as the identification of all common instances of 𝑟 and
𝑡 above. For the rest of this section until Section 3.5, we also fix a sorted family 𝔛 of metavariables.
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A ⅀-algebra structure map on A captures all the constructors of a second-order syntax, but
for full generality, one also needs to account for both variables and metavariables. These are re-
spectively represented by a point var : I_A and a metavariable operator mvar : 𝔛 _ ⟬A ,A ⟭.
In elementary terms, the latter is a function that associates an A-term mvar 𝔪 𝜀 : A 𝜏 Γ to every
parametrised metavariable 𝔪 : 𝔛 𝜏 Π and metavariable environment 𝜀 : Π –[A ]� Γ. For example,
the term 𝔪〈𝑡, 𝑠〉 : A 𝜏 Γ for a metavariable 𝔪 : 𝔛 𝜏 [𝛼, 𝛽], and terms 𝑡 : A 𝛼 Γ and 𝑠 : A 𝛽 Γ is
represented by mvar 𝔪 𝜆{ new � 𝑡 ; old new � 𝑠 }. Families that support this structure will be
called (⅀,𝔛)-meta-algebras, with the expected notion of homomorphism between them.

record MetaAlg (A : FamilyS) : Set where
field alg : ⅀A _ A

var : I_ A
mvar : 𝔛 _ ⟬A , A ⟭

record MetaAlg⇒ (AΣ : MetaAlg A) (BΣ : MetaAlg B) (𝑓 : A _ B) : Set where
field 〈alg〉 : {𝑡 : ⅀A 𝛼 Γ} → 𝑓 (A.alg 𝑡 ) ≡ B.alg (⅀ 𝑓 𝑡 )

〈var〉 : {𝑣 : I𝛼 Γ} → 𝑓 (A.var 𝑣) ≡ B.var 𝑣
〈mvar〉 : {𝔪 : 𝔛 𝛼 Π}{𝜀 : Π –[ A ]� Γ}→ 𝑓 (A.mvar 𝔪 𝜀) ≡ B.mvar 𝔪 (𝑓 ◦ 𝜀)

Such meta-algebras and their homomorphisms form a category MetaAlg, whose initial object –
whenever it exists – will be denoted T 𝔛 (or just T , if the metavariable family is clear from the
context) with structural maps alg, var and mvar . The universal property of initial objects states
that there is a unique meta-algebra homomorphism sem : T_ A into any meta-algebra A. Note
that, varying 𝔛, T acts as a mapping from families 𝔛 to (⅀,𝔛)-meta-algebras T 𝔛. Adapted from
Fiore [2008, Theorem 2], we have the following main result in the study of abstract syntax:

TheoRem 3.1. The initial meta-algebra T 𝔛 is the free
⅀
-monoid on 𝔛.

The most interesting implication of this concise statement is that the substitution structure of the
free ⅀-monoid is induced purely by initiality. Since the initial meta-algebra T corresponds to the
inductively defined grammar of terms (see Section 4.3), it follows that the syntactic structure fully
determines the action of substitution.The theorem formally captures the observation that much of
syntactic metatheory is uninteresting boilerplate, and themethodology of initial algebra semantics
will allow us to extract substitution, compositional interpretations, and related correctness laws
from the syntax for free. We outline the proof of the theorem in the rest of the section.

3.3 Parametrised interpretations
The initial algebra approach explains and validates our adherence to formality and efforts to inter-
nalise syntactic operations as categorical constructions at the level of sorted families. Since they
are maps out of an initial meta-algebra, the renaming T _ 2T and the substitution T _ ⟬ T , T ⟭
operations may be induced by initiality as soon as we show that their codomains 2T and ⟬ T , T ⟭
are meta-algebras. This will be derived from the following lemma.

Lemma 3.2. Given a pointed 2-coalgebra P, a ⅀
-algebra A, and family maps 𝜑 : P _ A and

𝜒 : 𝔛 _ ⟬A , A ⟭, the internal hom ⟬P , A ⟭ acquires a (⅀,𝔛)-meta-algebra structure.

The proof is encapsulated in the Traversal module, instantiations of which will give rise to homo-
morphic initial algebra interpretations T _ ⟬P ,A ⟭. It crucially relies on the coalgebraic strength
when defining the structuremap⅀

⟬P ,A ⟭_ ⟬P ,⅀A ⟭_ ⟬P ,A ⟭. A simple corollary (derived
by instantiating P with I) is that if A is a meta-algebra, then so is 2A.
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module Traversal (P2
∗ : Coalg∗ P) (algA : ⅀A _ A) (𝜑 : P _ A) (𝜒 : 𝔛 _ ⟬A , A ⟭) where

TravΣ : MetaAlg ⟬P , A ⟭
TravΣ = record { alg = 𝜆 ℎ 𝜎 � algA (str P2

∗ A ℎ 𝜎)
; var = 𝜆 𝑣 𝜎 � 𝜑 (𝜎 𝑣)
; mvar = 𝜆 𝔪 𝜀 𝜎 � 𝜒 𝔪 (𝜆 v � 𝜀 v 𝜎) }

Onemay be tempted to immediately induce the substitutionmap T _ ⟬ T , T ⟭ as a T -parametrised
traversal into T . However, that would require a pointed 2-coalgebra instance on T , which we do
not yet have. Our formalism very concretely exhibits the dependence of substitution on renaming.

3.4
⅀
-monoid structure by initiality

The construction of the renaming and substitution maps on the initial meta-algebra T make ex-
tensive use of initiality: maps of the form T _ A are uniquely induced by equipping A with a
meta-algebra structure. The proofs of the renaming and substitution laws are then established by
proving that the (composite) maps that correspond to the two sides of an equation aremeta-algebra
homomorphisms and must therefore be equal.

As an example, the renaming map ren : T _ 2T is induced as the unique homomorphism
from T ∈ MetaAlg to the sorted family 2T regarded as a meta-algebra by means of Lemma 3.2.
The counit law ren 𝑡 id = 𝑡 amounts to showing that the mapping 𝑡 ↦→ ren 𝑡 id : T _ T is a meta-
algebra homomorphism so that – by initiality of T – must be equal to the identity 𝑡 ↦→ 𝑡 . Similarly,
proving that the FamS-morphisms defined as 𝑡, 𝜌, 𝜚 ↦→ r 𝑡 (𝜚 ◦ 𝜌) and 𝑡, 𝜌, 𝜚 ↦→ r (r 𝑡 𝜌) 𝜚 of type
T _ ⟬I, ⟬I, T ⟭ ⟭ are meta-algebra homomorphisms implies that they must be equal, giving
us the comultiplication law. The proofs (available in the formalisation) depend on the structure-
preservation properties of ren, the strength laws str-unit and str-nat2, and the corollary str-dist
applied to the coalgebraic map j : I_ ⟬I, I⟭.

We therefore have a pointed2-coalgebra instance T 2
∗ :Coalg∗ T that is then used as a traversal

parameter to induce the substitution map sub : T _ ⟬ T , T ⟭. Initiality once again helps us prove
the substitution monoid laws abstractly; in fact, the reasoning steps very closely resemble those
needed in the proof of the renaming structure, and they can all be presented in the form of clear,
categorical proofs. Once the instances T M : Mon T and T 2M : CoalgMon T are derived, we further
establish that T is a ⅀-monoid, the proof of which relies on the fact that coalgebraic monoids
identify the given coalgebra instance T 2

∗ with the one induced from substitution.
The effort put into identifying the notions of coalgebraic map and strength (Section 2.3.2) pays

off repeatedly: the comultiplication law, coalgebraic axioms, and substitution associativity (the
fusion lemmas of Allais et al. [2017, Section 9.2]) are all established using str-dist, instantiated
at different coalgebraic maps (the application map j, renaming ren and substitution sub) to de-
rive the generalised forms of the four lifting laws listed by Benton et al. [2012]. The renaming
and substitution operations and their correctness laws are derived in an elegant, mathematically-
motivated manner, with no auxiliary definitions and ad-hoc lemmas, or additional reasoning ma-
chinery needed (such as the bisimulation/fusion framework developed by AACMM [2021]).

3.5 Free
⅀
-monoid structure

In the previous section we generically derived a ⅀-monoid structure for T 𝔛, for any family of
metavariables 𝔛. This gives us a lawful substitution operation on T 𝔛 that can be used in further
developments, such as an operational semantics or equational theory. We can go further, how-
ever, and characterise T 𝔛 as the free

⅀
-monoid on 𝔛: given any ⅀-monoidM and metavariable

interpretation 𝜔 : 𝔛 _ M, there is a unique ⅀-monoid homomorphism 𝜔# : T 𝔛 _ M that sat-
isfies 𝜔# (mvar 𝔪 var ) = 𝜔 (𝔪) for every metavariable 𝔪 : 𝔛 𝜏 Π. As expected, 𝜔# is constructed

https://www.cl.cam.ac.uk/~ds709/agda-soas/#3-4-monoid-structure-by-initiality
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by initiality, using the fact that the ⅀-monoid M is a meta-algebra with metavariable operator
𝔛

𝜔−−→ M
𝜇
−−→ ⟬M ,M ⟭. Initiality is also used to establish that the unique map 𝜔# preserves

substitution, i.e. that it is a ⅀-monoid homomorphism.
Freeness induces a free-forgetful adjunction between the categories of sorted families and of⅀-

monoids, and makes T into the free ⅀
-monoid monad on sorted families, whose Kleisli extension

(𝔛 _ T 𝔜) → (T 𝔛 _ T 𝔜) acts as a form, albeit limited, of metasubstitution [Hamana 2004]:
occurrences of metavariables from a family 𝔛 in a term of T 𝔛 get replaced with terms of T 𝔜
according to a mapping 𝔛 _ T 𝔜. This important notion and its generalisation are discussed next.

3.6 Metasubstitution
A main difference between metasubstitution and object-level substitution is that the former is
capture-permitting: a metavariable 𝔪 in a term 𝜆𝑥 : N. 𝔪〈𝑥〉 can be replaced with terms that con-
tain free occurrences of 𝑥 ; so that valid instances could be 𝜆𝑥. 𝑥 , 𝜆𝑥. 𝑥 · (𝑥 + 1), or 𝜆𝑥 . 𝔭〈𝑥, 𝑥〉 for a
metavariable𝔭 : 𝔅N [N,N].The aforementionedmetasubstitutionmap (𝔛_ T 𝔜) → (T 𝔛_ T 𝔜)
is limited in that the only free variables that the mapping 𝜁 : 𝔛 _ T 𝔜may refer to are the param-
eters of the metavariable: for example, in the open term 𝑥 : N, 𝑦 : N ` 𝔪〈𝑦〉 one cannot instantiate
𝔪 with 𝑥 + 𝑦, since 𝑥 is not a parameter of 𝔪 and is therefore not in scope in the output of 𝜁 . As
we wish metasubstitution to model “textual replacement”, this is an unnatural restriction.

Our goal then is to capture the following intuition [Fiore 2008]: the term that replaces a
metavariable𝔪 can feature both the parameters of𝔪, and all the object-level variables in scope at
the occurrence of 𝔪 in the term. In elementary terms, the type of the operation may be given as

msub : ∀{𝛼 Γ} → (𝑡 : T 𝔛 𝛼 Γ) →
(
𝜁 : ∀{𝜏 Π} → 𝔛 𝜏 Π → T 𝔜𝜏 (Π ∔ Γ)

)
→ T 𝔜𝛼 Γ

As usual, we aim to represent this operation as a morphism of families, and ideally derive it by ini-
tiality. Key to this is recognising the type∀{Π} → 𝔛 𝜏 Π → T 𝔜𝜏 (Π ∔ Γ) as the linear exponential
of families (𝔛⊸ T 𝔜) 𝜏 Γ (Section 2.1.2).The derived definition [X⊸Y ] Γ ≜ ∀{𝜏 }→ (X ⊸ Y) 𝜏 Γ
combines two sorted families into an unsorted one. We also modify the family exponential to take
an unsorted family as first argument; that is, overloading notation: (𝑋 ⇒Y) 𝛼 ≜ 𝑋 ⇒ (Y 𝛼). The
type of metasubstitution may be now succinctly expressed as

msub : T 𝔛 _ (
[𝔛 ⊸ T 𝔜]⇒ T 𝔜

)
We can then use the following general result to induce msub by initiality: given a ⅀-monoidM,
the family [ 𝔛 ⊸M ]⇒M acquires a (⅀,𝔛)-meta-algebra structure. However, this only applies
if we assume an additional property of the signature endofunctor ⅀: it comes with an exponential
strength estr :

⅀(𝑋 ⇒ Y) _ (𝑋 ⇒ ⅀Y) (equivalent to the usual Cartesian strength) for every
unsorted 2-coalgebra 𝑋 (i.e. unsorted family 𝑋 with an operation 𝑋 Γ → (Γ ; Δ) → 𝑋 Δ). With
this in place, the meta-algebra structure on [ 𝔛 ⊸M ]⇒M is given as follows:

MSubΣ : (𝔛 : FamilyS)→ ΣMonM→MetaAlg 𝔛 ([ 𝔛 ⊸M ]⇒M)
MSubΣ 𝔛MΣM = record { alg = 𝜆 𝑡 𝜁 �M.alg (estr [ 𝔛 ⊸M.2 ]2M 𝑡 𝜁 )

; var = 𝜆 𝑣 𝜁 �M.𝜂 𝑣
; mvar = 𝜆 𝔪 𝜀 𝜁 �M.𝜇 (𝜁 𝔪) (copairM (𝜆 𝑣 � 𝜀 𝑣 𝜁 )M.𝜂) }

• For alg, we use estr to swap the ⅀-algebra structure and dependence on the metasubstitution
map. We make use of the fact that [𝔛⊸ P ] is an unsorted coalgebra if P is a sorted coalgebra.
• For var, we ignore 𝜁 entirely and use the point ofM.
• For mvar, we start by looking up the metavariable𝔪 : 𝔛 𝜏 Π in the linear metasubstitution map
𝜁 : [ 𝔛 ⊸ M ] Γ, obtaining the term 𝜁 𝔪 :M 𝜏 (Π ∔ Γ) in an extended context. We need to
tweak this further to get the required output inM 𝜏 Γ, which we do by applying a substitution
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(Π ∔ Γ) –[M ]� Γ to 𝜁 𝔪. It is constructed as the copairing of the unitM.𝜂 : Γ –[M ]� Γ and
the substitution map Π –[M ]� Γ which looks up a variable in context Π in𝔪’s metavariable
environment 𝜀 : Π –[ ([ 𝔛 ⊸ P ]⇒M) ]� Γ and applies the resulting parametrised term to 𝜁 .

This latter specification is quite amouthful: metasubstitution (which is derived by initiality into the
meta-algebra MSubΣ 𝔛 T ΣM) is less a form of “textual replacement” and more an intricate surgical
procedure with several interconnected parts. The metavariable-preservation property of msub

illuminates the role of recursively applying metasubstitution to the elements of the metavariable
environment 𝜀, then substituting the terms into the parameters of 𝜁 𝔪:

msub (mvar 𝔪 𝜀) 𝜁 ≡ sub (𝜁 𝔪) (copair (T𝔜) (𝜆 𝑣 � msub (𝜀 𝑣) 𝜁 ) var )
As an illustration of metasubstitution, consider the open term 𝑥 : N ` 𝜆𝑦 : N. 𝔞〈𝑥 + 1, 𝔟〈𝑦〉〉 : N
and the metasubstitution mapping 𝜁 = (𝔞〈𝑚,𝑛〉 ↦→ 𝔠〈𝑚〉 × 𝑛; 𝔟〈𝑚〉 ↦→ 𝔠〈𝑚 + 𝑥〉) in the global
context 𝑥 : N (note that the latter term includes both the parameter 𝑚 and the free variable 𝑥 ).
The evaluation of the metasubstitution proceeds as follows (where sub 𝑡 [· · ·] and msub 𝑡 ⟪· · ·⟫
denote substitution and metasubstitution into 𝑡 , respectively):

msub (𝜆𝑦 : N. 𝔞〈𝑥 + 1, 𝔟〈𝑦〉〉) ⟪𝜁⟫
≡ 𝜆𝑦 : N. msub (𝔞〈𝑥 + 1, 𝔟〈𝑦〉〉) ⟪wk 𝜁⟫ 1⃝
≡ 𝜆𝑦 : N. sub (𝔠〈𝑚〉 × 𝑛)

[
𝑚 ↦→ 𝑥 + 1, 𝑛 ↦→ msub (𝔟〈𝑦〉) ⟪wk 𝜁⟫] 2⃝

≡ 𝜆𝑦 : N. sub (𝔠〈𝑚〉 × 𝑛)
[
𝑚 ↦→ 𝑥 + 1, 𝑛 ↦→ sub (𝔠〈𝑚 + 𝑥〉) [𝑚 ↦→ 𝑦]

]
3⃝

≡ 𝜆𝑦 : N. sub (𝔠〈𝑚〉 × 𝑛)
[
𝑚 ↦→ 𝑥 + 1, 𝑛 ↦→ 𝔠〈𝑦 + 𝑥〉

]
4⃝

≡ 𝜆𝑦 : N. 𝔠〈𝑥 + 1〉 × 𝔠〈𝑦 + 𝑥〉 5⃝

In step 1⃝ we push the metasubstitution under the binder. A crucial component of this step is
the weakening of the terms in the metasubstitution mapping 𝜁 represented here by wk 𝜁 . Indeed,
since the local context changes from 𝑥 : N to 𝑦 : N, 𝑥 : N, the de Bruijn index of the variable 𝑥 has
to be shifted without altering the parameters𝑚,𝑛 (for example,𝑚 : N, 𝑥 : N ` 𝔠〈𝑚 + 𝑥〉 is renamed
to𝑚 : N, 𝑦 : N, 𝑥 : N ` 𝔠〈𝑚 + 𝑥〉 by shifting the index of 𝑥 ). Although this modification makes no
differencewith the named-variable representation displayed here, in practice it becomes an explicit
application of ren – implemented as part of the exponential strength for 𝛿 . It is worth noting the
delicate interplay between ren, sub, and msub. In step 2⃝ we apply the metasubstitution to 𝔞 by
looking up the term 𝔠〈𝑚〉 × 𝑛, substituting the contents of 𝔞’s metavariable environment for 𝑚
and 𝑛, and recursively metasubstituting wk 𝜁 into 𝔟〈𝑦〉 (and into 𝑥 + 1, where it is a no-op). The
mappings of variables 𝑥,𝑦 to themselves are omitted. Steps 3⃝ and 4⃝ evaluate the recursive calls,
applying an object-level substitution to 𝔠〈𝑚 + 𝑥〉 that replaces the parameter𝑚 with the variable
𝑦 (and the global variable 𝑥 with itself). The final substitution is evaluated at step 5⃝.

3.7 Equational systems
An immediate application of metasubstitution is building generic equational systems for second-
order languages [Fiore and Hur 2010; Fiore and Mahmoud 2010]. By specifying the axioms of
an equational theory with the use of metavariables, one can use metasubstitution to extract ax-
iom instances between terms and apply rewrite rules within compound expressions. For example,
𝛽-equivalence arises from instances of the axiom

𝔟 : [𝛼]𝛽, 𝔞 : []𝛼 ⊲ ∅ ` (𝜆𝑥 : 𝛼. 𝔟〈𝑥〉) 𝔞〈〉 ≈ 𝔟〈𝔞〈〉〉 : 𝛽

with terms (of the appropriate types and contexts) metasubstituted for the metavariables 𝔞 and 𝔟.
Generic equality can be then directly encoded in Agda as the smallest equivalence relation closed
under a given relation Axiom : ∀(𝔛 Γ {𝛼 })→ T 𝔛 𝛼 Γ→ T 𝔛 𝛼 Γ→ Set and metasubstitution:
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data _�_`_≈_ : (𝔛 : FamilyS)(Γ : Ctx){𝛼 : 𝑇 }→ T 𝔛 𝛼 Γ→ T 𝔛 𝛼 Γ→ Set1 where
eq : 𝑡 ≡ 𝑠 → 𝔛 � Γ ` 𝑡 ≈ 𝑠
sy : 𝔛 � Γ ` 𝑡 ≈ 𝑠 → 𝔛 � Γ ` 𝑠 ≈ 𝑡
tr : 𝔛 � Γ ` 𝑡 ≈ 𝑠 → 𝔛 � Γ ` 𝑠 ≈ 𝑢 → 𝔛 � Γ ` 𝑡 ≈ 𝑢
ax : Axiom 𝔛 Γ 𝑡 𝑠 → 𝔛 � Γ ` 𝑡 ≈ 𝑠
ms : 𝔛 � Γ ` 𝑡 ≈ 𝑠 → (𝜁 𝜉 : [ 𝔛 ⊸ T 𝔜 ] Γ)→(

∀{𝜏 Π}(𝔪 : 𝔛 𝜏 Π)→ 𝔜� Π ∔ Γ ` 𝜁 𝔪 ≈ 𝜉 𝔪
)
→ 𝔜� Γ ` msub 𝑡 𝜁 ≈ msub 𝑠 𝜉

The ms constructor expresses that whenever two terms 𝑡 and 𝑠 are equivalent, and two instantia-
tions for their metavariable context 𝜁 and 𝜉 are equivalent (for every metavariable), then perform-
ing the metasubstitution also gives equivalent terms. Using the equivalence constructors one can
derive useful proof combinators and a library for equational reasoning; for example, ax≈ equates
two terms via the instantiation of an axiom:

ax≈ : Axiom 𝔛 Γ 𝑡 𝑠 → (𝜁 : [ 𝔛 ⊸ T 𝔜 ] Γ)→ 𝔜� Γ ` msub 𝑡 𝜁 ≈ msub 𝑠 𝜁
ax≈ 𝑎 𝜁 = ms (ax 𝑎) 𝜁 𝜁 (𝜆 _� eq refl)

The biggest gains, however, come from not having to tediously encode the congruence rules for ev-
ery subterm of every term of the syntax. To rewrite a deeply nested subexpression, we simplymark
its location in the term with a “typed hole” implemented as a distinguished metavariable ◌, and
usems to instantiate it with the two sides of an equality rule: for example, 𝑓 ≈ 𝑔 and (◌𝑎) ≈ (◌𝑎)
imply that 𝑓 𝑎 = msub (◌𝑎) (𝜆{◌ � 𝑓 }) ms≈ msub (◌𝑎) (𝜆{◌ � 𝑔}) = 𝑔 𝑎. Further examples of
this and other combinators are given in Section 5. An important future development is generically
proving the soundness and completeness of second-order equational logic.

We thus conclude our abstract development of initial algebra semantics and move on to the dis-
cussion of second-order signatures.

4 GENERIC SIGNATURES
The abstract development discussed so far was entirely generic over the second-order signature
and term syntax. In this section we discuss how endofunctors ⅀ are constructed from descriptions
of syntax signatures, the benefits and drawbacks of various term representations, and how we
leverage code generation to turn our library into a practical framework for language formalisation.
Thanks to our modular implementation, we have several choices in each of the following matters:
• how to encode the signature of a second-order syntax (e.g. binding algebras [Fiore et al. 1999],

indexed containers [Altenkirch et al. 2015], AACMM [2021]-style Descriptions);
• how to convert the signature into a FamS endofunctor

⅀ (e.g. polynomial functors [Fiore 2012;
Arkor and Fiore 2020], higher- or first-order argument collections, Desc interpretations);
• how to define the data type for the initial (⅀,𝔛)-meta-algebra (implicit or explicit encodings).

Each of these have their benefits and drawbacks, and we identify three choices that work particu-
larly well together and combine convenience, flexibility, and appropriate computational behaviour.

4.1 Binding signatures
Binding signatures were introduced by Aczel [1978] as a generalisation of standard algebraic sig-
natures to languages with variable binding. Our formalisation will use the typed variant of the
notion as given in [Fiore and Hur 2010]:

Definition 4.1. A second-order signature Σ = (𝑇,𝑂, |−|) is specified by a set of sorts 𝑇 , a set of
operators 𝑂 , and an arity function |−| : 𝑂 → List ((List 𝑇 ) ×𝑇 ) ×𝑇 .
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For an operator o, the tuple |o| = ( [( ®𝛼1, 𝛽1), ( ®𝛼2, 𝛽2), . . . , ( ®𝛼𝑛, 𝛽𝑛)], 𝜏) consists of the output sort
𝜏 ∈ 𝑇 , and a list of 𝑛 arguments of type 𝛽𝑖 , with each argument binding variables as listed in ®𝛼𝑖 .
We write this more concisely as o : [ ®𝛼1]𝛽1, . . . , [ ®𝛼𝑛]𝛽𝑛 → 𝜏 , omitting empty bound variable lists.

Example 4.2. The second-order signature of the simply-typed 𝜆-calculus over a base type has the
set of types𝑇 generated inductively from a base type 𝑁 and a binary function type �, and the two
type-indexed families of operators

app𝛼,𝛽 : (𝛼 � 𝛽), 𝛼 → 𝛽 lam𝛼,𝛽 : [𝛼]𝛽 → (𝛼 � 𝛽)

This definition of signatures can be adapted to Agda almost verbatim, using Ctx in place of List𝑇 :

record Signature (𝑂 : Set) : Set1 where
constructor sig

field |_| : 𝑂 → List (Ctx × 𝑇 ) × 𝑇

Arity : 𝑂 → List (Ctx × 𝑇 )
Arity 𝑜 = proj1 | 𝑜 |
Sort : 𝑂 → 𝑇
Sort 𝑜 = proj2 | 𝑜 |

The set𝑇 of types (or sorts) is normally given as an inductive data type, and𝑂 as an enumeration
of operators. For example, the STLC has the following sorts and operator symbols:

data ΛT : Set where
N : ΛT
_�_ : ΛT→ ΛT→ ΛT

data Λo : Set where
appo lamo : {𝛼 𝛽 : ΛT}→ Λo

The Signature instances are direct translations of Example 4.2 above. One can use some simple
shorthands for specifying arguments and bound variables to make the declaration concise.

Λ:Sig : Signature Λo
Λ:Sig = sig 𝜆 where (appo {𝛼 }{𝛽}) � (`0 𝛼 � 𝛽) , (`0 𝛼) ↦→2 𝛽

(lamo {𝛼 }{𝛽}) � (𝛼 `1 𝛽) ↦→1 𝛼 � 𝛽

4.2 Signature endofunctor
The signature contains all the information needed to determine the syntactic structure of a lan-
guage. To make use of the abstract development in Section 3, we need to convert a Signature into
a sorted-family endofunctor ⅀, which captures the way in which constructors of the syntax are as-
sociated with arguments. For example, given the signature of the STLC, an element of⅀X 𝛽 Γ may
be the operator app associated with two X-terms 𝑓 : X (𝛼 � 𝛽) Γ and 𝑎 : X 𝛼 Γ, while an element
of ⅀X (𝛼 � 𝛽) Γ may be the operator lam with a term 𝑏 : X 𝛽 (𝛼 · Γ).

For technical reasons, that we will expand upon later, we choose to represent the “collection”
of arguments of an operator as a tuple of terms. An alternative would be a higher-order encoding
as a mapping from an argument index to a term (similar to the implementation of substitutions as
context maps); however, even though constructing the Strength for such a representation would
be easier, it complicates the initiality proof which we wish to keep as simple as possible.

Arg : List (Ctx × 𝑇 )→ FamilyS→ Family
Arg [] X Γ = >
Arg ((Θ , 𝜏) :: 𝑎𝑠) X Γ = 𝛿 Θ X 𝜏 Γ × Arg 𝑎𝑠 X Γ

Note the use of the context extension endofunctor 𝛿 : it is used to add the new variables bound by
an argument to the the global context, making all variables available in the body of the binder.

We are ready to give the definition of the signature endofunctor for a signature (𝑇,𝑂,Arity, Sort):
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⅀ : FamilyS→ FamilyS⅀ X 𝛼 Γ = Σ[ 𝑜 ∈ 𝑂 ] (𝛼 ≡ Sort 𝑜 × Arg (Arity 𝑜) X Γ)

An element of the set⅀X 𝛼 Γ is a dependent tuple consisting of an operator symbol 𝑜 ∈ 𝑂 , a proof
that the output sort of the operator is 𝛼 , and a tuple of X-terms for each operand of the operator
of the type and extension context given by the operator arity. For example, an element of ⅀X 𝛽 Γ
is (app, refl, (𝑓 , 𝑡,tt)), for terms 𝑓 : X (𝛼 � 𝛽) Γ and 𝑡 : X 𝛼 Γ. One can suppress the tt for operators
of positive arity by adding a case for a singleton argument list in the definition of Arg, and use a
pattern synonym [Pickering et al. 2016] to hide the refl element, writing app ⋮ (𝑓 , 𝑡) for the above.

The only other construction we need is the Strength instance for ⅀. The family X in a
(⅀X)-term is only used in the argument list, so the ⅀-strength can be easily derived from the
Arg-strength Arg 𝑎𝑠 ⟬P ,X ⟭ _ ⟬P , Arg 𝑎𝑠 X ⟭. Applying strength to the tuple of arguments sim-
ply applies it to every component of type 𝛿 Θ ⟬P , X ⟭𝜏 Γ – and this is nothing but the strength
instance for 𝛿 which we constructed back in Section 2.3.2.

str𝐴 : (P2
∗ : Coalg∗ P)(X : FamilyS)(𝑎𝑠 : List (Ctx × 𝑇 ))→ Arg 𝑎𝑠 ⟬P , X ⟭ _ ⟬P , Arg 𝑎𝑠 X ⟭

str𝐴 P2
∗ X [] tt 𝜎 = tt

str𝐴 P2
∗ X ((Θ , 𝜏) :: as) (ℎ , ℎ𝑠) 𝜎 = (𝛿 :Str.str Θ P2

∗ X ℎ 𝜎) , (str𝐴 P2
∗ X 𝑎𝑠 ℎ𝑠 𝜎)

The strength laws are similarly established by pointwise application of the appropriate 𝛿 :Str fields
to the elements of the argument tuple. Extending Arg-strength to ⅀ is easy, since the operation
does not modify the operator or sort equality proof. In addition to ⅀

:Str below, we also have an
instance of exponential strength for ⅀ derived via weakening.⅀
:Str : Strength ⅀

F⅀
:Str = record { str = 𝜆 P2

∗ X (𝑜 , 𝑒 , 𝑎) 𝜎 � 𝑜 , 𝑒 , (str𝐴 P2
∗ X (Arity 𝑜) 𝑎 𝜎)

; str-nat1 = 𝜆 𝑓 2
∗ ⇒ (𝑜 , 𝑒 , 𝑎) 𝜎 � cong (𝑜 , 𝑒 ,_) (str𝐴-nat1 𝑓 2

∗ ⇒ (Arity 𝑜) 𝑎 𝜎)
; str-nat2 = 𝜆 𝑔 (𝑜 , 𝑒 , 𝑎) 𝜎 � cong (𝑜 , 𝑒 ,_) (str𝐴-nat2 𝑔 (Arity 𝑜) 𝑎 𝜎) ; … }

4.3 Term syntax
The final piece of the puzzle is constructing the initial (⅀,𝔛)-meta-algebra T from a second-order
signature endofuctor. Such initial algebras correspond to inductive data types whose constructors
combine T -terms into other T -terms, allowing for arbitrarily nested syntactic structure.

We have several choices in the approach we take. One is to treat the tuples (op ⋮ (𝑎1, . . . , 𝑎𝑛))
as the terms of the syntax, directly encoding the ⅀-algebra structure as a unified term constructor
con : ⅀ T _ T ; the other is the more common implementation with one constructor for each
operator, applicable for signatures with a finite set of operators.

Implicit encoding. Alongside the ⅀-algebraic structure, terms of a second-order syntax also have
to include constructors for variables and metavariables. This suggests the following generic data
type of terms for an arbitrary signature:
data Tm : FamilyS where
con : ⅀ Tm 𝜏 Γ → Tm 𝜏 Γ
var : I𝜏 Γ → Tm 𝜏 Γ
mvar : 𝔛 𝜏 Π→ Sub Tm Π Γ→ Tm 𝜏 Γ

data Sub (X : FamilyS) : Ctx→ Ctx→ Set where
• : Sub X ∅ Γ
_◀_ : X 𝛼 Γ→ Sub X Π Γ→ Sub X (𝛼 · Π) Γ

Note the use of Sub (defined on the right above) in place of a context map to represent themetavari-
able environment. It is a first-order, inductive encoding of a simultaneous substitution of terms in
context Γ for every variable in context Π, which, while isomorphic to context maps (with con-
version functions lookup and tabulate), is a more appropriate choice for syntax. Recalling that



Formal Metatheory of Second-Order Abstract Syntax 19

metasubstitution recurses into the metavariable environment, in a higher-order representation the
recursive call would get suspended in the body of a 𝜆-abstraction and lead to terms with unevalu-
ated expressions. With context maps, the application sem (mvar𝔪 (𝜆{ new � con (op ⋮ 𝑡 ) })) would
only normalise to mvar 𝔪 (𝜆{ new � sem (con (op ⋮ 𝑡 )) }), and sem would not get pushed further
under the constructor con unless the environment function is applied to new. In contrast, using the
first-order encoding Sub, each element of the sequence gets fully normalised, so, as desired, sem
(mvar 𝔪 (con (op ⋮ 𝑡 ) ◀ •)) reduces to mvar 𝔪 (con (op ⋮ sem 𝑡 ) ◀ •). The same reasoning was be-
hind our choice to represent operator arguments as tuples, rather than higher-order assignments
– though the strength instance would have been simpler, specifying arguments via case-analysis
is cumbersome, and syntactic operations only recurse one layer deep into subterms.

The proof of initiality of Tm asks us to define a recursive function sem : Tm _ A for any
meta-algebra A, translating constructors of Tm to the algebra and (meta)variable structure of A.
There is an issue with the obvious definition: recursively interpreting the subterms of a constructor
involves mapping sem over a tuple of terms, which Agda does not recognise as a terminating
function call. Allais et al. [2021, Section 4] also encountered this problem and proposed the use of
Agda’s sized types [Abel 2010] (which, unfortunately, are logically unsound in the current Agda
version 2.6.2) to mark a term as strictly “larger” than its subterms. The workaround suits their
needs of defining sem – at the expense of having to carry around the size index everywhere – but
it does not extend to proving the uniqueness of sem which our framework closely relies on (see
Pitts [2019] for the technical details of the same issue in the context of general 𝐹 -algebras).

The solution to this issue is surprisingly simple: instead of recursively interpreting the subterms
using a functorial mapping (X _ Y)→ (Arg 𝑎𝑠 X Γ → Arg 𝑎𝑠 Y Γ) (and similarly for Sub), we
inline the transformations as the mutually recursive functions A and S that apply sem : Tm _A
to subterms directly. The termination checker is satisfied without the need for sized types!

A : ∀𝑎𝑠 → Arg 𝑎𝑠 Tm Γ→ Arg 𝑎𝑠 A Γ
A [] tt = tt
A (𝑎 :: 𝑎𝑠) (𝑡 , 𝑡𝑠) = (sem 𝑡 , A 𝑎𝑠 𝑡𝑠)

S : Sub Tm Π Γ→ Π –[ A ]� Γ
S (𝑡 ◀ 𝜎) new = sem 𝑡
S (𝑡 ◀ 𝜎) (old 𝑣) = S 𝜎 𝑣

sem (con (𝑜 , 𝑒 , 𝑎)) = alg (𝑜 , 𝑒 , A (Arity 𝑜) 𝑎)
sem (var 𝑣) = var 𝑣
sem (mvar 𝔪 𝜀) = mvar 𝔪 (S 𝜀)

The proof that sem is a unique (⅀,𝔛)-meta-algebra homomorphism is also quite straightforward,
only requiring a fewmutually inductive lemmas aboutA and S. We then have the following result:
TheoRem 4.3. Tm is an initial (⅀,𝔛)-meta-algebra.

We can thus instantiate our previous metatheory with this concrete data type to get access to
substitution and its correctness properties, sound compositional interpretations in models, etc.

Explicit encoding. The implicit encoding achieves our conceptual goals: it is a first-order initial
meta-algebra for an arbitrary second-order signature. Its main practical disadvantage is that the
term syntax is closely tied to the algebraic framework and forces users to adopt a cumbersome
encoding of terms, rather than the natural and elegant “one constructor for each typing rule” prin-
ciple of intrinsic typing. Pattern synonyms may be used to simplify the surface syntax, though we
found them quite fragile when working with parametrised modules – not to mention that pattern
synonyms are untyped and feel inherently “hacky” for something as important as the terms of
a formalised language. Ideally, we would like users to be able to adopt our framework as seam-
lessly as possible, perhaps even plugging it into an existing formalisation without changing the
fundamental data type of syntactic terms.
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This is very much possible, thanks to our rigid separation between signatures, endofunctors
and initial meta-algebras. Defining the initial meta-algebra instance for an existing data type is
not an especially laborious task: one needs a recursive initial interpretation function, a homomor-
phism proof, and an inductive uniqueness proof. Metavariables still require the mutually recursive
transformation S (defined as before and so omitted here), but now that one is manually recursing
into subterms, the transformation A is not needed.
data Λ : FamilyS where
var : I𝜏 Γ→ Λ 𝜏 Γ
mvar : 𝔛 𝜏 Π→ Sub Λ Π Γ→ Λ 𝜏 Γ
app : Λ (𝛼 � 𝛽) Γ→ Λ 𝛼 Γ→ Λ 𝛽 Γ
lam : Λ 𝛽 (𝛼 · Γ)→ Λ (𝛼 � 𝛽) Γ

sem : Λ _ A
sem (var 𝑣) = var 𝑣
sem (mvar 𝔪 𝜀) = mvar 𝔪 (S 𝜀)
sem (app 𝑔 𝑎) = alg (appo ⋮ sem 𝑔 , sem 𝑎)
sem (lam 𝑏) = alg (lamo ⋮ sem 𝑏)

The homomorphism instance uses a simple lemma S-tab about the interaction of S and tabulate
(for all context maps 𝜀, S (tabulate 𝜀) = sem ◦ 𝜀), and the ⅀-algebra homomorphism proof, which
is satisfied merely by pattern-matching on the operand and sort equality proof.

semΣ⇒ : MetaAlg⇒ ΛΣ AΣ sem

semΣ⇒ = record { 〈alg〉 = 𝜆 {𝑡 = 𝑡 } � 〈alg〉 𝑡 ; 〈var〉 = refl
; 〈mvar〉 = 𝜆 {𝔪 = 𝔪}{𝜀} � cong (mvar 𝔪) (S-tab 𝜀) }

where 〈alg〉 : (𝑡 : ⅀ Λ 𝛼 Γ)→ sem (ΛΣ.alg 𝑡 ) ≡ AΣ.alg (⅀1 sem 𝑡 )
〈alg〉 (appo ⋮ _) = refl
〈alg〉 (lamo ⋮ _) = refl

The uniqueness proof – that sem is equal to any meta-algebra homomorphism 𝑔 : Λ _ A – in-
volves the mutually inductive lemma S-lu and the inverse property of tabulate and lookup in the
metavariable case; everything else follows from the homomorphism properties of 𝑔.

S-lu : (𝜀 : Sub Λ Π Γ)(𝑣 : I𝛼 Π)→ S 𝜀 𝑣 ≡ 𝑔 (lookup 𝜀 𝑣)
S-lu (𝑡 ◀ 𝜀) new = sem! 𝑡
S-lu (𝑡 ◀ 𝜀) (old 𝑣) = S-lu 𝜀 𝑣

sem! : (𝑡 : Λ 𝛼 Γ)→ sem 𝑡 ≡ 𝑔 𝑡
sem! (var 𝑣) = sym 〈var〉
sem! (mvar 𝔪 𝜀) rewrite S-lu 𝜀 = trans (sym 〈mvar〉) (cong (𝑔 ◦ mvar 𝔪) (tab◦lu≈id 𝜀))
sem! (app 𝑓 𝑎) rewrite sem! 𝑓 | sem! 𝑎 = sym 〈alg〉
sem! (lam 𝑏) rewrite sem! 𝑏 = sym 〈alg〉

At the expense of minimal extra boilerplate, one is able to prove that the inductively defined family
Λ is an initial meta-algebra, and instantiate our metatheory with this result. The Theory module
associated with an initial meta-algebra exports every definition and lemma given in the frame-
work for easy access; for example, the coveted single-variable substitution operation is directly
accessible as Theory.[_/] : Λ 𝛼 Γ→ Λ 𝛽 (𝛼 · Γ)→ Λ 𝛽 Γ, with no extra work required.

4.4 Code generation
The next logical step is eliminating the need to write boilerplate altogether and allow users to go
from a direct specification of the second-order signature to the formalised metatheory of an explic-
itly encoded data type of terms automatically. Since the initiality proof for the explicit encoding
is rather formulaic and much of it is signature-independent, one may as well generate the asso-
ciated Agda code from a syntax description using a simple Python script. This signature-to-Agda
compiler takes a simple textual specification of a type and term signature, and produces the Agda
code for the Signature declaration and initiality proof outlined in Sections 4.1 and 4.3. For instance,
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one can give the signature of our running STLC example as follows (recall the introduction), also
optionally specifying infix symbols and fixity information:

type
N : 0-ary
_�_ : 2-ary | r30

term
app : 𝛼 � 𝛽 𝛼 → 𝛽 | _$_ l20
lam : 𝛼 .𝛽 → 𝛼 � 𝛽 | o_ r10

Saving this in a file stlc and running python soas.py stlc produces the files Signature.agda
and Syntax.agda with all the required imports, declarations of the signature Λ:Sig and explicit
inductive data type of terms Λ, and the initiality proof. One is thereby free to proceed with the
interesting parts of language formalisation like operational and denotational semantics right away.

The compiler is a fairly straightforward Python program that parses the specification language
and produces formatted Agda files using the built-in string templating system. Its simplicity is one
of its advantages: the boilerplate code it generates is systematic and minimal (1-2 lines of code for
every type constructor and 6-7 lines for every term constructor), so manual testing on a wide range
of examples gives us sufficient confidence in the robustness and correctness of the script. Unlike
most other code generation solutions (some listed in Section 6.1) that produce the entire syntax-
specific formalisation, including fragile and impenetrable de Bruijn arithmetic proofs, we leverage
the fully syntax-generic metatheory implemented in the library and generate just enough code
(namely the initiality proof, which is less boilerplate and more an elegant categorical argument)
to instantiate it. Consequently, the compiler output is concise, readable, and easy to maintain.
Having examined the generic metatheory, construction of signatures, and the term syntax, we
conclude with some demonstrations of the framework used in practice.

5 EXAMPLES
Our framework is flexible and unopinionated: it can be plugged into any intrinsically-typed for-
malisation of a second-order calculus and equip the syntax with the often-needed operations of
weakening and substitution, and their corresponding laws. It also helps users in defining evalua-
tion functions, interpreters, and syntactic translations in a concise and provably-correct manner.
In this section, we give two extended examples of how the library may be used.

5.1 Computational calculi
The STLC has been our running example throughout the paper, and our framework is a great play-
ground for experimenting with various extensions of it, be it with new types, terms, or equations.
Below is a list of constructs that can be easily represented and compiled into Agda. The semantics
of such a language would be rather complicated, but its syntax is still just a second-order signature.
type

N : 0-ary
_�_ : 2-ary
_⊗_ : 2-ary
_⊕_ : 2-ary
¬_ : 1-ary
T : 1-ary

term
app : 𝛼 � 𝛽 𝛼 → 𝛽
lam : 𝛼 .𝛽 → 𝛼 � 𝛽

let : 𝛼 𝛼 .𝛽 → 𝛽
fix : 𝛼 � 𝛼 → 𝛼

throw : 𝛼 ¬ 𝛼 → 𝛽
callcc : (¬ 𝛼).𝛼 → 𝛼

return : 𝛼 → T 𝛼
bind : T 𝛼 𝛼 .(T 𝛽) → T 𝛽

pair : 𝛼 𝛽 → 𝛼 ⊗ 𝛽
fst : 𝛼 ⊗ 𝛽 → 𝛼
snd : 𝛼 ⊗ 𝛽 → 𝛽

inl : 𝛼 → 𝛼 ⊕ 𝛽
inr : 𝛽 → 𝛼 ⊕ 𝛽
case : 𝛼 ⊕ 𝛽 𝛼 .𝛾 𝛽 .𝛾 → 𝛾

ze : → N
su : N → N
nrec : N 𝛼 (𝛼 ,N).𝛼 → 𝛼
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We will use the minimal fragment of STLC (with app and lam) to showcase the construction of
models and interpretations. The CCC model of the STLC [Lambek 1980] in the category Set inter-
prets types as sets, and terms Γ ` 𝑡 : 𝛼 as functions from the interpretation of Γ to the interpretation
of 𝛼 . Interpretation of contexts can be higher-order or first-order (as a Cartesian product of type
interpretations) – with the higher-order encoding the model definition is remarkably concise.

J_K : ΛT→ SetJN K = NJ𝛼 � 𝛽 K = J𝛼 K→ J 𝛽 K
J_Kc : Ctx→ SetJ Γ Kc = ∀{𝛼 }→I𝛼 Γ→ J𝛼 K
_+_ : J𝛼 K→ J Γ Kc→ J𝛼 · Γ Kc
(𝑎 + 𝛾 ) new = 𝑎
(𝑎 + 𝛾 ) (old 𝑣) = 𝛾 𝑣

Env : FamilyS

Env 𝛼 Γ = J Γ Kc→ J𝛼 K

EnvΣM : ΣMon Env
EnvΣM = record

{ M = record { 𝜂 = 𝜆 𝑣 𝛾 � 𝛾 𝑣 ; 𝜇 = 𝜆 𝑡 𝜎 𝛿 � 𝑡 (𝜆 𝑣 � 𝜎 𝑣 𝛿)
; lunit = refl ; runit = refl ; assoc = refl }

; alg = 𝜆 { (appo ⋮ 𝑓 , 𝑎) 𝛾 � 𝑓 𝛾 (𝑎 𝛾 )
; (lamo ⋮ 𝑏) 𝛾 � 𝜆 𝑎 � 𝑏 (𝑎 + 𝛾 ) }

; 𝜇〈alg〉 = 𝜆 { (appo ⋮ _) � refl
; (lamo ⋮ 𝑏) � ext2 𝜆 𝛿 a � cong 𝑏 (dext

𝜆 { new � refl ; (old 𝑣) � refl }) } }
module Env = FreeMonoid Ø EnvΣM (𝜆 ())
eval : Λ0 _ Env
eval = Env.sem

Here we restrict to the sorted family Λ0 = ΛØ of 𝜆-terms without metavariables for simplicity. The
eval function interprets 𝜆-terms as Agda programs; for example, eval (o o x1) (𝜆 ()) (where the 1st
de Bruijn index var (old new) is denoted x1) normalises to the Agda function 𝜆 𝑥 𝑦 � 𝑥 . Since it
is derived by initiality, the interpretation is compositional and satisfies the semantic substitution
lemma by construction. This is an enormous time-saver, since proving the soundness of substitu-
tion is often one of the most tedious steps required for the development of denotational semantics
– the binding terms are the usual suspects, forcing one to reason about semantics of lifting, weak-
ening, renaming, etc. Our framework does all the heavy lifting, allowing users to move on to less
bureaucratic proofs. For example, after defining the predicate Val satisfied by value terms of the
form o𝑏 for𝑏 :Λ0 𝛽 (𝛼 · Γ), it takes minimal effort to equip the language with an intrinsically-typed
call-by-value reduction relation and a proof that it preserves the interpretation of terms:

data _⇝_ : Λ0 𝛼 Γ→ Λ0 𝛼 Γ→ Set where
𝜁 -$1 : {𝑓 𝑔 : Λ0 (𝛼 � 𝛽) Γ} {𝑎 : Λ0 𝛼 Γ} → 𝑓 ⇝ 𝑔→ 𝑓 $ 𝑎 ⇝ 𝑔 $ 𝑎
𝜁 -$2 : {𝑓 : Λ0 (𝛼 � 𝛽) Γ} {𝑎 𝑏 : Λ0 𝛼 Γ} → Val 𝑓 → 𝑎⇝ 𝑏 → 𝑓 $ 𝑎 ⇝ 𝑓 $ 𝑏
𝛽-o : {𝑡 : Λ0 𝛼 Γ} {𝑏 : Λ0 𝛽 (𝛼 · Γ)}→ Val 𝑡 → (o 𝑏) $ 𝑡 ⇝ [ 𝑡 /] 𝑏

sound : {𝑡 𝑠 : Λ0 𝛼 Γ}→ 𝑡 ⇝ 𝑠 → (𝛾 : J Γ Kc)→ eval 𝑡 𝛾 ≡ eval 𝑠 𝛾
sound (𝜁 -$1 𝑟 ) 𝛾 rewrite sound 𝑟 𝛾 = refl
sound (𝜁 -$2 _ 𝑟 ) 𝛾 rewrite sound 𝑟 𝛾 = refl
sound (𝛽-o {𝑡 }{𝑏} _) 𝛾 rewrite Env.sub-lemma 𝑡 𝑏

= cong (eval 𝑏) (dext 𝜆 { new � refl ; (old 𝑣) � refl })

Note the use of the freely-obtained single-variable substitution [ 𝑡 /] 𝑏 in the 𝛽-o axiom, and the
invocation of sub-lemma which translates eval ([ 𝑡 /] 𝑏) 𝛾 to Env.[ eval 𝑡 /] (eval 𝑠) 𝛾 . The STLC
is of course a basic calculus, but implementing its syntax, operational and denotational semantics
from scratch still involves a considerable amount of effort, mostly spent defining and reasoning
about substitution. Leveraging our framework, this standard but relatively robust formalisation
is possible in fewer than 100 lines of Agda code. We can also continue in the standard way with
proofs like progress, determinacy, normalisation, etc. – if a syntactic property like associativity of
substitution is required, it is likely to be present in the Theory module of the library already.
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5.2 Partial differentiation
Another example of a second-order calculus is the axiomatisation of partial differentiation laid
out by Plotkin [2020]. The syntax consists of the first-order theory of commutative rings with a
second-order partial-differentiation operator PDiff (𝑥 .𝑒 〈𝑥〉, 𝑑), interpreted as the partial derivative
of the expression 𝑒 〈𝑥〉 with respect to 𝑥 , evaluated at 𝑑 (which has no free occurrences of 𝑥 ). This
is usually denoted 𝜕 𝑒 〈𝑥 〉

𝜕𝑥

��
𝑥=𝑑 . To differentiate 𝑒 〈𝑥〉 without evaluation, one renames 𝑥 to a dummy

variable 𝑤 , differentiates 𝑒 〈𝑤〉 with respect to 𝑤 , then evaluates the result at 𝑤 = 𝑥 – thus, the
notation 𝜕

𝜕𝑥 𝑒 〈𝑥〉 is taken as abbreviating 𝜕 𝑒 〈𝑤 〉
𝜕𝑤

��
𝑤=𝑥 .

The signature of rings augmented with the partial-differentiation operator can be readily ex-
pressed as an unsorted syntax description. We manually implement some derived operators in
Agda, such as 𝜕0 and 𝜕1 (with symbols d0 and d1), respectively the partial derivatives w.r.t. the
first and second variable. Note the use of weakening below, available from the Theory module.

term
zero : ∗ | 0
one : ∗ | 1
inv : ∗ → ∗ | 	_ r50
add : ∗ ∗ → ∗ | _⊕_ l20
mult : ∗ ∗ → ∗ | _⊗_ l40
pdiff : ∗.∗ ∗ → ∗ | 𝜕_|_

𝜕0_ : PD 𝔛 ∗ (∗ · Γ)→ PD 𝔛 ∗ (∗ · Γ)
𝜕0 𝑒 = 𝜕 (Theory.wk 𝔛 𝑒) | x0
𝜕1_ : PD 𝔛 ∗ (∗ · ∗ · Γ)→ PD 𝔛 ∗ (∗ · ∗ · Γ)
𝜕1 𝑒 = 𝜕 (Theory.wk 𝔛 𝑒) | x1

The equational theory may also be included in the syntax description, listed both as explicit equa-
tions of the form ‘(name) metavars � vars ` expr1 = expr2’, and algebraic properties of operators.
Plotkin’s use of function variables matches up with parametrised metavariables, so the axioms of
the paper can be directly translated to our formalism. A few examples are given below.

theory
‘zero’ unit of ‘add’
‘mult’ distributes over ‘add’
(𝜕⊕) a : ∗ � x : ∗ ` d0 (add (x,a)) = one
(𝜕C) f : (∗,∗).∗ � x : ∗ y : ∗ ` d1 (d0 (f[x,y])) = d0 (d1 (f[x,y]))

The generated Agda modules include the intrinsically-typed syntax of semirings with partial dif-
ferentiation (as an inductive sorted family PD), and the generic equational reasoning framework
of Section 3.7 instantiated with the data type _�_`_≈𝐴_ generated from the axiom descriptions.
It employs some syntactic sugar for the purposes of readability and ease of use. Instead of defin-
ing a named inductive family of named metavariables for every axiom, we build up a context of
metavariables in-place with the notation ⦍ Π1 ⊩ 𝜏1 ⦐ ⦍ Π2 ⊩ 𝜏2 ⦐ · · · ⦍ Π𝑛 ⊩ 𝜏𝑛 ⦐, and refer to the
metavariables using (alphabetic) de Bruijn indices 𝔞, 𝔟, 𝔠. The environment for an 𝑛-ary metavari-
able 𝔪 is specified as 𝔪〈 𝑡0 ◀ . . . ◀ 𝑡𝑛−1 〉, or just 𝔪 if 𝑛 = 0. Some examples are shown below:

data _�_`_≈𝐴_ : (𝔛 : MCtx)(Γ : Ctx){𝛼 : ∗T}→ PD 𝔛 𝛼 Γ→ PD 𝔛 𝛼 Γ→ Set where
0U⊕𝐿 : ⦍ ∗ ⦐ � ∅ ` 0 ⊕ 𝔞 ≈𝐴 𝔞
⊗D⊕𝐿 : ⦍ ∗ ⦐ ⦍ ∗ ⦐ ⦍ ∗ ⦐ � ∅ ` 𝔞 ⊗ (𝔟 ⊕ 𝔠) ≈𝐴 (𝔞 ⊗ 𝔟) ⊕ (𝔞 ⊗ 𝔠)
𝜕⊕ : ⦍ ∗ ⦐ � b ∗ c ` 𝜕0 (x0 ⊕ 𝔞) ≈𝐴 1

𝜕⊗ : ⦍ ∗ ⦐ � b ∗ c ` 𝜕0 (𝔞 ⊗ x0) ≈𝐴 𝔞
𝜕C : ⦍ ∗ · ∗ ⊩ ∗ ⦐ � b ∗ · ∗ c ` 𝜕1 (𝜕0 𝔞〈 x0 ◀ x1 〉) ≈𝐴 𝜕0 (𝜕1 𝔞〈 x0 ◀ x1 〉)
𝜕Ch2 : ⦍ ∗ · ∗ ⊩ ∗ ⦐ ⦍ ∗ ⊩ ∗ ⦐ ⦍ ∗ ⊩ ∗ ⦐ � b ∗ c `

𝜕0 𝔞〈 𝔟〈 x0 〉 ◀ 𝔠〈 x0 〉 〉 ≈𝐴 (𝜕 𝔞〈 x0 ◀ 𝔠〈 x1 〉 〉 | 𝔟〈 x0 〉) ⊗ (𝜕0 𝔟〈 x0 〉) ⊕
(𝜕 𝔞〈 𝔟〈 x1 〉 ◀ x0 〉 | 𝔠〈 x0 〉) ⊗ (𝜕0 𝔠〈 x0 〉)
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Thefirst two constructors correspond to the left unit and distributivity laws, with the right versions
automatically derived via the commutativity of ⊕ and ⊗ (omitted).The four constructors involving
differentiation correspond to the axioms of sums and products ( 𝜕 𝑥⊕𝑎𝜕𝑥 = 1, 𝜕 𝑎𝑥

𝜕𝑥 = 𝑎), exchange of
derivative operators ( 𝜕

𝜕𝑦
𝜕
𝜕𝑥 𝑓 (𝑥,𝑦) =

𝜕
𝜕𝑥

𝜕
𝜕𝑦 𝑓 (𝑥,𝑦)), and the binary version of the chain rule. Note

that these axioms relate open terms with one or two object variables, which must be listed in the
context in addition to the metavariables.

We may now feed the axiom relation to the signature-generic equational logic and establish
theorems via equational reasoning – be they properties of rings, derivable partial-differentiation
laws, or explicit calculations of derivatives. The user can once again make use of some syntactic
sugar to streamline the proofs. For a simple example, consider the corollary 𝜕0

𝜕𝑥 = 0, derivable from
the left annihilation law of 0 and ⊗, and the product differentiation axiom.

𝜕0 : ⦍⦐ � b ∗ c ` 𝜕0 0 ≈ 0

𝜕0 = begin 𝜕0 0 ≈〈 cong[ ax 0X⊗𝐿 with ⟪ x0 ⟫ ]in 𝜕0 ◌ᵃ 〉S
𝜕0 (0 ⊗ x0) ≈〈 ax 𝜕⊗ with ⟪ 0 ⟫ 〉
0 ■

The ax 𝑎 with ⟪ 𝑡1 ⊳ . . . ⊳ 𝑡𝑛 ⟫ notation associates an axiom 𝑎 with an instantiation of metavariables
in the metavariable context of the axiom, given as a list of terms. Applications of an equation in a
subexpression of 𝑡 is done with the cong[ 𝑒 ]in 𝑡 〈𝔪〉 combinator, where 𝔪 is a new metavariable
(denoted◌m to make its role as a ‘hole’ clear) added to the context to indicate the location in which
the equation 𝑒 is applied. Thus, in the first step, we apply the left annihilation axiom 0 = 0 ⊗ 𝑥
instantiated at 𝑥 = x0 to the subexpression of the 𝜕0 operator. As a more involved example, we
derive the unary chain rule from the binary axiom (instantiated with 𝑓 (𝑥,𝑦) ≜ 𝑓 (𝑥) and ℎ(𝑥) = 0),
the 𝜕0 corollary above, and the unit and annihilation laws for 0:

𝜕Ch1 : ⦍ ∗ ⊩ ∗ ⦐ ⦍ ∗ ⊩ ∗ ⦐ ` 𝜕0 𝔞〈 𝔟〈 x0 〉 〉 ≈ (𝜕 𝔞〈 x0 〉 | 𝔟〈 x0 〉) ⊗ (𝜕0 𝔟〈 x0 〉)
𝜕Ch1 = begin 𝜕0 𝔞〈 𝔟〈 x0 〉 〉

≈〈 ax 𝜕Ch2 with ⟪ 𝔞〈 x0 〉 ⊳ 𝔟〈 x0 〉 ⊳ 0 ⟫ 〉
(𝜕 𝔞〈 x0 〉 | 𝔟〈 x0 〉) ⊗ (𝜕0 𝔟〈 x0 〉) ⊕ (𝜕 𝔞〈 𝔟〈 x1 〉 〉 | 0) ⊗ 𝜕0 0

≈〈 cong
[
thm 𝜕0

]
in [. . .] ⊕ (𝜕 𝔞〈 𝔟〈 x1 〉 〉 | 0) ⊗ ◌c 〉

(𝜕 𝔞〈 x0 〉 | 𝔟〈 x0 〉) ⊗ (𝜕0 𝔟〈 x0 〉) ⊕ (𝜕 𝔞〈 𝔟〈 x1 〉 〉 | 0) ⊗ 0

≈〈 cong
[
thm 0X⊗𝑅 with ⟪ 𝜕 𝔞〈 𝔟〈 x1 〉 〉 | 0 ⟫ ]

in [. . .] ⊕ ◌c 〉
(𝜕 𝔞〈 x0 〉 | 𝔟〈 x0 〉) ⊗ (𝜕0 𝔟〈 x0 〉) ⊕ 0

≈〈 ax 0U⊕𝑅 with ⟪ (𝜕 𝔞〈 x0 〉 | 𝔟〈 x0 〉) ⊗ 𝜕0 𝔟〈 x0 〉 ⟫ 〉
(𝜕 𝔞〈 x0 〉 | 𝔟〈 x0 〉) ⊗ (𝜕0 𝔟〈 x0 〉) ■

Wewrote [. . .] above for the sake of brevity – the context of the congruence needs to be written out
explicitly for Agda to be able to evaluate the metasubstitution that instantiates the distinguished
hole metavariable. Note also the use of thm, which uses an established (non-axiomatic) equality
as a proof step. The precise and sufficiently general definition of metasubstitution ensures that we
always have access to the right metavariables and object variables where we need them, making
the construction of equational proofs quite intuitive.

6 CONCLUSION
We presented a language-formalisation framework that allows users to produce Agda implementa-
tions of second-order languages at the press of a button. The generated term language is explicitly
represented as an inductive, intrinsically-encoded data type, and the formalised metatheory can be
used as and where required: substitution for operational semantics, compositional interpretations
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for denotational semantics, metasubstitution for equational reasoning, etc. All the formalisms fea-
tured in the library naturally derive from the mathematical theory of abstract syntax, without the
need for ad-hoc definitions or lemmas. The convenient code-generation script allows for rapid
prototyping and experimentation, and it is easy to manually extend a formalised signature or in-
corporate an existing intrinsic term syntax into the framework.

6.1 Related work
Thequestion of formalising and reasoning about abstract syntaxwasmotivated by the development
of proof assistants and the realisation that the Barendregt [1984] variable convention – “rename
variables as needed to avoid clashes” – is difficult to translate into a formal setting. This has lead
to a host of approaches that address the encoding of variable binding in proof assistants and func-
tional languages, such as: higher-order abstract syntax [Pfenning and Elliot 1988; Chlipala 2008];
locally nameless representation [Bird and Paterson 1999; McBride andMcKinna 2004;Weirich et al.
2011; Charguéraud 2012]; intrinsically-typed encoding [Benton et al. 2012; Allais et al. 2021; Érdi
2018]; and others [Shinwell et al. 2003; Urban and Kaliszyk 2011; Copello et al. 2017]. Similarly
active is the mathematical study of abstract syntax and variable binding: developments include
presheaf models [Fiore et al. 1999; Hofmann 1999]; nominal sets [Gabbay and Pitts 1999]; monadic
approaches [Bellegarde and Hook 1994; Altenkirch and Reus 1999]; and others [Pigozzi and Salibra
1995; Sun 1999; Blanchette et al. 2019; Chen and Roşu 2020].

Benchmarks. The PoplMaRK challenge [Aydemir et al. 2005; Abel et al. 2019] sets out a collection
of criteria according to which metatheory-formalisation efforts can be compared. Several submis-
sions use Coq as the target language, in some cases involving code generation from a second-order
signature [Aydemir et al. 2008; Vouillon 2011; Lee et al. 2012; Polonowski 2013; Keuchel et al. 2016;
Stark et al. 2019]. Though impressive, the approaches rarely adopt intrinsically-typed encodings
of variables and terms, usually opting for numeric de Bruijn indices with all their complicated and
error-prone arithmetic. We believe that the nameless, intrinsic representation is hard to surpass
in dependently-typed proof assistants thanks to its static guarantees on the typing and scoping
of terms. Its drawbacks (boilerplate and types “getting in the way”) are significant and form one
of the motivations of our line of research, but they are ultimately not unreasonable: a rigorous
pen-and-paper proof of the type-preservation of substitution would involve the same difficulties
we encounter in defining it in Agda. Our approach also incorporates generic traversals, and – for
the first time, as far as we are aware – equational logic with the aid of parametrised metavariables,
all naturally derived from the syntax.

Type- and scope-safe syntax. Our work is closely aligned with that of AACMM [2021]: how to
simplify the work of a language researcher by automating the boring metatheory. In their dis-
cussion of the presheaf model (loc. cit. Section 9.3), the authors suggest that freeing oneself from
the formalities of the mathematics enables further progress in the development of the metathe-
ory. We found very much the opposite: without the systematic view of the problem provided by
the categorical model, one misses out on powerful principles that simplify proofs and untangle
the conceptual labyrinth that is formal abstract syntax. A case in point is our reformulation of
AACMM’s core Semantics record as an instance of initial algebra semantics into the internal hom,
which are very useful abstractions that the authors seemingly overlooked despite working from
similar foundations. We also inherit the modularity of the categorical model by cleanly separating
the mathematical groundwork, abstract metatheory, second-order signatures, and term represen-
tation; whereas AACMM’s formalisation is very closely tied to their Desc data type which users
are required to adopt to make use of the library. We do not have an analogue of their proof frame-
work for simulations and fusions; but we suspect that equality-based properties (in addition to the
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fusion lemmas, which we already incorporate) can be captured through initiality, without reliance
on another complex set of proof techniques.

Presheaf approach. Thebackdrop of our Agda formalisation is a comprehensivemathematical refor-
mulation of the presheaf model of variable binding [Fiore et al. 1999] with parametrised metavari-
ables [Fiore 2008]. Namely, we shift attention to an indexed model (in the category of families over
the set of contexts, equivalently functors from the discrete category |F | to Set) equipped with a
pair of canonical adjoint monadic and comonadic modalities (3 a 2, induced by the inclusion
of |F | in F ) and their respective algebras and coalgebras, which are equivalent to presheaves. Al-
though in this paper we have chosen not to emphasise the abstract categorical development in
favour of a discussion geared towards programming-language researchers, we stress that the al-
ternative viewpoint is not a matter of taste but crucial to the practical formal development that we
have put forward. For instance, a direct translation of the presheaf model leads to a formalisation
that inevitably requires quotients (colimits and coends) and cannot be used for computation (such
as pretty printing, because of the lack of canonical representatives).

Our work required a variety of new considerations. Definitions and proofs had to be recast in
the setting of (𝑖) skew-closed structure and (𝑖𝑖) initiality; along the way, new notions and tech-
niques had to be developed to bypass quotienting. Concerning (𝑖), moving onto families with skew-
monoidal structure is not enough to avoid the need for quotienting (e.g. Borthelle et al. [2020]
achieve the freeness proof in a skew-monoidal setting only with the aid of a general lemma of
Fiore and Saville [2017, Theorem 4.8] that relies on the presentation of initial algebras as colim-
its of 𝜔-chains, rather than as inductive data types); while, concerning (𝑖𝑖), the fact that initial
algebras in presheaves can be lifted from initial algebras in families had to be given mathematical
grounding. As an upshot, using families (indexed types), instead of presheaves, leads to a light-
weight practical formalisation that suits the intrinsically-typed setting well.

6.2 Future work
We recognise that the formal systems studied in modern type theory go far beyond second-order
ones with algebraic types; indeed, linear, dual-context, polymorphic, dependent, polarised, etc.
calculi abound. The presheaf approach has been extended to several of these [Tanaka 2000; Fiore
2006; Hyland and Tasson 2020; Fiore and Hamana 2013; Fiore 2008] and we are of course interested
in adapting and/or extending our framework to these and combinations thereof.

As hinted at above, our background work involved a categorical reformulation of the highly
abstract presheaf model to the formalisation-friendly realm of sorted families and 2-coalgebras;
indeed, much of the Agda code has been directly read off categorical definitions and commutative
diagrams. Work on the formalisation, particularly in relation to metasubstitution, is ongoing. We
also anticipate interesting applications in the study of parametrised signatures and signature trans-
lations; for example, we can encode the second-order equational theory of first-order logic and
modularly extend it with the relation and function symbols of any first-order signature. Further
experiments with more complex languages and proofs (such as the ones given in the PoplMaRK
challenge) will also inform and motivate the future development of our library.
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