
The Lifetime of Android API vulnerabilities:
case study on the JavaScript-to-Java interface

Daniel R. Thomas1 Alastair R. Beresford1 Thomas Coudray2

Tom Sutcliffe2 Adrian Taylor2

1Computer Laboratory, University of Cambridge, United Kingdom
firstname.lastname@cl.cam.ac.uk

2Bromium, Cambridge, United Kingdom
thomas.coudray.fr@gmail.com, tom.sutcliffe@bromium.com,

adrian@bromium.com

23rd Security Protocols Workshop

Daniel: 5017 A1EC 0B29 08E3 CF64 7CCD 5514 35D5 D749 33D9
Alastair: 9217 482D D647 8641 44BA 10D8 83F4 9FBF 1144 D9B3

Daniel, Alastair, Thomas, Tom, Adrian Android API lifetime 2015-04-01 1 / 13

We often see the two sided upgrade problem with protocols like TLS
where upgrades are deployed very slowly with substantial impacts on
security.
APIs are another kind of protocol.
We look at API upgrades in Android with a case study of a remote
code execution API vulnerability.

Android apps display ads in WebViews

WebViews display HTML/CSS and JavaScript.

Daniel, Alastair, Thomas, Tom, Adrian Android API lifetime 2015-04-01 2 / 13

Some apps are just a wrapper around a WebView which points at
their website

JavaScript communicates with Java

Collect information for ads
Provide interactivity
Sit down in a coffee shop and open angry birds, now your phone
is compromised and infecting other phones.

/** Show a toast from the web page */
public void showToast(String toast) {

Toast.makeText(context, toast, LENGTH).show();
}

Daniel, Alastair, Thomas, Tom, Adrian Android API lifetime 2015-04-01 3 / 13

Location, read contacts, installed appsTake a photo, record audio,
open an app

The JavaScript-to-Java interface vulnerability

<script>
android.getClass()

.forName(’java.lang.Runtime’)

.getMethod(’getRuntime’,null)

.invoke(null,null).exec([’id’]);
</script>

JavaScript attack, assuming android is the JavaScript alias for the
exposed Java object.

Apps use WebViews to display HTML fetched over HTTP.
Bridge from JavaScript-to-Java exposes all public methods.
Android worm.

Daniel, Alastair, Thomas, Tom, Adrian Android API lifetime 2015-04-01 4 / 13

Android apps use WebViews to display HTML content like adverts
fetched over HTTP
To interact with the app and to get data for the advertisers there is a
bridge from JavaScript to Java. Originally all public methods,
including the .getClass() inherited from java.lang.Object
were then accessible.
This means that JavaScript can use reflection to execute arbitrary
code in the context of the app.
Since 87.7% of Android devices are exposed to known critical
vulnerabilities this means that this code can then escalate its
privileges.
Once code has root it can use attacks like ARP spoofing, ICMP
redirect and exploit vulnerabilities in DHCP to spread to other Android
devices on the same network.

Two approaches to fixes

1 Change the API and require apps to recompile (2012)

target API < 17 target API ≥ 17
device API < 17 Vulnerable Vulnerable
device API ≥ 17 Vulnerable Safe

/** Show a toast from the web page */
@JavascriptInterface
public void showToast(String toast) {

Toast.makeText(context, toast, LENGTH).show();
}

Daniel, Alastair, Thomas, Tom, Adrian Android API lifetime 2015-04-01 5 / 13

Change the API to require apps to annotate methods which should be
accessible, but fallback to the old API for apps which have not made
this change for compatibility.
How effective is this first approach at fixing the vulnerability?
70% in the bottom 2/3 of the table, 60% in the left half of the table

Two approaches to fixes

1 Change the API and require apps to recompile (2012)
2 Block calls to .getClass (2014)

target API < 17 target API ≥ 17
API < 17 Vulnerable Vulnerable

API ≥ 17 and OS < 4.4.3 Vulnerable Safe
OS > 4.4.3 Safe(ish) Safe

Daniel, Alastair, Thomas, Tom, Adrian Android API lifetime 2015-04-01 6 / 13

In the Chrome WebView included in Android 4.4.3 calls to
.getClass from JavaScript are blocked which blocks the most
obvious attack path, this still requires an OS upgrade but is a single
sided fix.
How effective is this first approach at fixing the vulnerability?
70% in the bottom 2/3 of the table, 60% in the left half of the table

Jul 2
011

Nov 2011

Mar 2
012

Jul 2
012

Nov 2012

Mar 2
013

Jul 2
013

Nov 2013

Mar 2
014

Jul 2
014

Nov 2014
0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n

Proportion of devices running different API versions each month

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

21

Google provides data on the distribution of API versions for most
months since December 2009.
They publish this so that developers know what proportion of user
devices support different features.
I have collated this by going through old blog posts and visiting the
site each month.
We could also plot this differently to compare how API versions get
deployed.

0 500 1000 1500 2000
Days since release

0.0

0.2

0.4

0.6

0.8

1.0 2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

f(t)

By taking the proportion of devices not upgraded to a particular API
version and normalising the dates to be days since release we can
see how the behaviour of the change in proportion of not upgraded
devices changes with different API versions.
This shows similar looking curves, they look like exponential decay
curves with a slow start.
So we fitted a simple curve to them shown here f (x)
This is reasonable because at first the new version is not deployed as
it must be tested first and there are many independent parties
deploying the updates.

Meaningful curve fit

f (t): a combination of an exponential function together with a delay t0
which offsets the start time:

f (t) =

{
1.0 if t < t0
e−decay(t−t0) otherwise

Daniel, Alastair, Thomas, Tom, Adrian Android API lifetime 2015-04-01 9 / 13

We use this simple curve fit to give us meaningful parameters when
we fit it to the data.
The delay t0 before anything happens and the rate of deployment
when it does.
While this gives us a good fit in general for the average curve, there
are actually big differences between the different API versions and
this has changed over time.

2 3 4 56 7 8 9

10

11

12

13

14

15 16 17 18 19
API version distributed according to release date

0

100

200

300

400

500
t 0

(d
ay

s)

t0

1/decay

0

100

200

300

400

500

600

700

800

1/
d
ec

ay
(d

ay
s)

3.x

This graph shows the parameters fitted to the curve to each API
version.
The API versions are distributed according to their release date to
show how close they were chronologically.
Android versions 3.x targeted tablets and did not see widespread
deployment and so are outliers on the plot.
On this plot higher values for t0 and for 1/decay are bad as they
indicate slower deployment.
The graph shows a trend of increasing delays and decreasing rates of
deployment: it is getting worse not better.

2 3 4 56 7 8 9

10 14

15 16 17 18 19
API version distributed according to release date

0

50

100

150

200

250

300
t 0

(d
ay

s)

t0

1/decay

0

100

200

300

400

500

600

700

800

1/
d
ec

ay
(d

ay
s)

So we exclude Android 3.x.
On this plot higher values for t0 and for 1/decay are bad as they
indicate slower deployment.
The graph shows a trend of increasing delays and decreasing rates of
deployment: it is getting worse not better.
We looked at what this means for API version 17. Despite being
released in 2012, we don’t expect it to be fully deployed until 2018!

Apps are vulnerable (and have not upgraded)

We scanned 102 174 apps.
59% of apps which could be vulnerable had not upgraded their
target API version.
On an outdated device vulnerable apps were started 1.38 ± 0.11
times a day.
On an up to date device vulnerable apps were started 0.6 ± 0.0
times a day.

Daniel, Alastair, Thomas, Tom, Adrian Android API lifetime 2015-04-01 12 / 13

We scanned 102 174 apps and found which ones used the
JavaScript-to-Java interface and whether they were vulnerable.
Having not upgraded, they are always vulnerable.
Two sided upgrade means that even on an updated device users are
exposed to this vulnerability every other day

Conclusion
The Lifetime of Android API vulnerabilities:
case study on the JavaScript-to-Java interface

Two sided fixes are hard for API vulnerabilities, even when there is one
coordinating party (Google) who has a strong influence on both sides.
Fixing it takes 5.2 ± 1.2 years.

Daniel R. Thomas drt24@cam.ac.uk
5017 A1EC 0B29 08E3 CF64 7CCD 5514 35D5 D749 33D9
Alastair R. Beresford arb33@cam.ac.uk
9217 482D D647 8641 44BA 10D8 83F4 9FBF 1144 D9B3
Install Device Analyzer for Android
https://deviceanalyzer.cl.cam.ac.uk/

Daniel, Alastair, Thomas, Tom, Adrian Android API lifetime 2015-04-01 13 / 13

It is not really surprising that two sided fixes to API vulnerabilities are
hard, but you might think that Google was better placed with Android
to solve the problem. 5.2 ± 1.2 years is a long time.

drt24@cam.ac.uk
arb33@cam.ac.uk
https://deviceanalyzer.cl.cam.ac.uk/

