
Better authentication: password revolution by
evolution

Daniel R. Thomas and Alastair R. Beresford

22nd Security Protocols Workshop

Daniel: 5017 A1EC 0B29 08E3 CF64 7CCD 5514 35D5 D749 33D9
Alastair: 9217 482D D647 8641 44BA 10D8 83F4 9FBF 1144 D9B3

Daniel & Alastair (University of Cambridge) OTTA 2014-03-20 1 / 13

This is a crazy idea I had after last year’s SPW.



Idea: Use public key based tokens for password login

One time token based authentication using public key
cryptography
Allow machines to provision themselves from public data and
allow login
Inspiration from Monkeysphere and Google Authenticator

Daniel & Alastair (University of Cambridge) OTTA 2014-03-20 2 / 13

We want to replace passwords in a scalable way, and so want to use
public key cryptography rather than lots of shared secrets
A one time token using public keys rather than symmetric keys could
be used in existing password prompts but verified with a different
verification function
If we use public information for login verification then machines can
work out whether someone should be allowed to login without any
prior contact with an administrator
Monkeysphere does a similar public key infrastructure system for ssh
and Google Authenticator uses one time tokens for authentication



Motivation: Passwords don’t scale

when you have many machines and don’t want compromising one
to compromise the others.
per machine, per user passwords do not scale (O(mn))
Solutions for ssh but what about when networking broken?

Daniel & Alastair (University of Cambridge) OTTA 2014-03-20 3 / 13

We have a bunch of servers and VMs with entirely public
configurations as that makes it easier for them to self-configure. We
can use monkeysphere to do authentication over ssh in a scalable
way. But what about passwords? Hashes could be brute forced if one
machine was compromised and harder to provision servers if they
need secrets. Per machine, per user passwords just doesn’t work.
The picture on the left shows an attempt to login to a VM on the
console in XenCenter, since there is no password it must be rebooted
with the kernel options changed to init=/bin/bash to put it in
single user mode.
The picture on the right shows an attempt to login to the console on a
physical machine, again it needs to be rebooted into single user mode
but that involves pressing escape at the right point in the boot cycle.



Replace passwords

Something we could type in
Something we don’t have to remember
Something which does not require sharing secrets
We can use things we already have

Daniel & Alastair (University of Cambridge) OTTA 2014-03-20 4 / 13

We want something which scales to many machines and users but
which is compatible with existing password prompts. We have
devices which can do some cryptography and store keys and we
have networking.



Public keys can be distributed securely

+++++¡ ! " £ $ % ^ & * ( ) - +

¡ ! " £ $ % ^ & * ( ) - +

ctrl Q

ctrl

W E R T Y U I O P { }

A S D F G H J K L : @ ~

| Z X C V B N M < > ? ^

fnctrl

end

pgdn

pgup

home

O X Y G E N

Public

Private

Alice (A)
Device

Security domain

Key ServerAuditor

Daniel & Alastair (University of Cambridge) OTTA 2014-03-20 5 / 13

I am going to wave my hands a bit and say there is ongoing research
on solving PKI problem such as Certificate Transparency and so
while the details of exactly how it works are important I am mostly
going to refer you to the paper and to related work.
For all these things there are many of them, many users with many
devices, many security domains with many end points.
A user has some devices, each of which has a key pair. They send
their public key and signatures on it to some key servers which
maintains a database of these keys and signatures and an append
only signed log. The behaviour of the key server can be verified by
auditors which examine the log and the database.
End points can subscribe to relevant signatures and keys from the
key servers.
Users register public keys with each security domain to which they
can then authenticate using their private key.
The Auditor is a server run by someone like the EFF which verifies
the behaviour of the key server and if the key server lies to anyone
then the auditor can detect this.
For our purposes with only a few hundred thousand technical users it
scales easily, since we don’t need a web of trust it scales much better
than some other PKI systems. In term of storage it easily scales to
facebook and authentication becomes a more distributed process
which hopefully improves scalability.



A can authenticate by sending a token
SOTTA: Simple one time token authentication

Alice (A) can authenticate to the end point (S) in one step by sending
a token:

A→ S : A, {D||btc}K−1
A

D is the domain identifier (e.g. dtg.cl.cam.ac.uk) and btc is the
quantised time (e.g. to the nearest minute)

Daniel & Alastair (University of Cambridge) OTTA 2014-03-20 6 / 13

Here Alice (A) authenticates to the end point (S) by saying that she is
Alice and giving a token which proves it, D is the identifier for the
security domain which S is in and we also include the quantised time.



Signature length is too long

Username: drt24
Password: Xq8xdTBjJHunpIC64pBm6Q94wdlZkwiyrilTJgx5b4oFEYHUiD

ZZXIL4ouSxNW6YD3y8IsZSNDKNYKA7sYWfUi
(1 minute 20s to input password - and I got it wrong)

Daniel & Alastair (University of Cambridge) OTTA 2014-03-20 7 / 13

Here we have an example of an authentication using this protocol, the
‘password’ here is the right size to be a DSA signature of the domain
and quantised time. Clearly this is problematic because it takes me 1
minute 20 to type that out and I typed it wrong.



Signature length is too long
Need resistance to offline brute force⇒ 128 bits of security.

Bits Bytes numeric alphabetical Alphanumeric Algorithm
[0-9] [a-z] [A-Za-z0-9]

32 4 10 7 6
64 8 20 14 11
80 10 25 18 14

128 16 39 28 22
160 20 49 35 27
256 32 78 55 43 Minimum
320 40 97 69 54 BSL?
512 64 155 109 86 DSA
1024 128 309 218 172
3072 384 925 654 516 RSA

Table : Encoding sizes for different bit lengths

Daniel & Alastair (University of Cambridge) OTTA 2014-03-20 8 / 13

The problem is that the signature length is too long. This table shows
the number of characters required to encode signatures of different
lengths. RSA signatures would be 516 characters. DSA signatures
are 86 characters – and there are severe problems with DSA.
Ideally we want a public key signature scheme with a signature size
of at most 256 bits which is then ‘only’ 43 characters. The BSL
scheme might provide this but it does not seem that popular.



The long random string can be automatically input
AOTTA: Automatic one time token authentication

Some of the time the long random string can be automatically input
bluetooth keyboard
Copy & Paste
QR code
audio networking

Daniel & Alastair (University of Cambridge) OTTA 2014-03-20 9 / 13

There are a variety of tactics we can use to automate the process of
inputting the token and so avoid typing it in. This can be particularly
simple if the device with the keys is being used to connect to the end
point which requires authentication as then it can be copied and
pasted.



Online connectivity enables short tokens
OOTTA: Online one time token authentication

A−→e S : s (1)

A→ S : EK({D||btc}K−1
A

) (2)

+++++¡ ! " £ $ % ^ & * ( ) - +

¡ ! " £ $ % ^ & * ( ) - +

ctrl Q

ctrl

W E R T Y U I O P { }

A S D F G H J K L : @ ~

| Z X C V B N M < > ? ^

fnctrl

end

pgdn

pgup

home

O X Y G E N

Alice (A)
End point (S)

Relay (R)

(1)

(2)J J

e

Daniel & Alastair (University of Cambridge) OTTA 2014-03-20 10 / 13

If the device with the keys and the end point both have a working
network connection then we can use PAKE to connect the two over a
secure connection authenticated with a short token sent locally and
then send the public key token as before.



We can deploy this

Can bootstrap with existing PGP / GPG infrastructure used for
monkeysphere
Authenticate to what?
Key servers
Relays
Devices

Daniel & Alastair (University of Cambridge) OTTA 2014-03-20 11 / 13

Authenticate to servers and websites which have password prompts
at present.
Google, ICANN etc. might want to run key servers
Relays could be run by companies such as Google or self hosted
Phones, laptops, desktops, smartwatches etc.



Better authentication: password revolution by evolution

We can use public key cryptography to produce one time tokens
allowing authentication through typing on a keyboard.

Daniel R. Thomas drt24@cam.ac.uk
5017 A1EC 0B29 08E3 CF64 7CCD 5514 35D5 D749 33D9
Alastair R. Beresford arb33@cam.ac.uk
9217 482D D647 8641 44BA 10D8 83F4 9FBF 1144 D9B3

Daniel & Alastair (University of Cambridge) OTTA 2014-03-20 12 / 13

Acknowledgements

Useful feedback received from Andrew Rice and Robert Watson.
Suggestion of BSL scheme from Markus Kuhn.
Bluetooth logo from open icon library
Phone picture from openclipart
Computer laptop from open icon library
Copy from open icon library
Google Authenticator logo from Google.
Router image from open clip art
Monkeysphere logo based on wikimedia commons image
Networked server picture from open icon library
Paste icon from open icon library
Green seal from open clip art
Key diagram based on one from open clip art

Daniel & Alastair (University of Cambridge) OTTA 2014-03-20 13 / 13

drt24@cam.ac.uk
arb33@cam.ac.uk
http://openiconlibrary.sourceforge.net/gallery2/open_icon_library-full/icons/svg/apps/bluetooth.svg
https://openclipart.org/detail/49051/smartphone-by-hank0071
http://openiconlibrary.sourceforge.net/gallery2/open_icon_library-full/icons/svg/devices/computer-laptop-2.svg
http://openiconlibrary.sourceforge.net/gallery2/open_icon_library-full/icons/svg/actions/edit-copy-6.svg
https://openclipart.org/detail/1918/router-by-juanjo
https://commons.wikimedia.org/wiki/File:Monkey.svg
http://openiconlibrary.sourceforge.net/gallery2/open_icon_library-full/icons/svg/places/gnome-style/network-server.svg
http://openiconlibrary.sourceforge.net/gallery2/open_icon_library-full/icons/svg/actions/edit-paste-4.svg
https://openclipart.org/detail/179437/seal-simple-by-augustoschwartz-179437
https://openclipart.org/detail/15982/simple-key-by-witchlines

