
Nigori
Nigori Computer Laboratory

Digital Technology Group
Secrets in the Cloud

Daniel Thomas, Alastair Beresford and Ben Laurie

Computer users today have a smartphone, a tablet, a laptop and a desktop machine. Consequently, many new computer
applications seamlessly synchronise user data between devices using cloud storage as a highly-available intermediary.
Whilst the communication link between the user device and cloud storage is often encrypted, user data is typically stored
in a form which is readable by the cloud provider and the application developer.

The aim of the Nigori project is to develop a practical, application neutral, mechanism for storing sensitive user data in the
cloud in such a way that the cloud provider and application developer cannot read any of the stored information. We have
an initial specification, and an implementation of Nigori for Java and Android. Work is underway on a Dart/JavaScript
version suitable for use as a plug-in for Web browsers.

Laptop Node
Encrypted
Datastore

Server
Process

Application

Nigori lib

App defined
merge

App defined
merge

Cloud Node
Encrypted
Datastore

Server
Process

Phone Node
Encrypted
Datastore

Server
Process

Application

Nigori lib

Trusted

Untrusted

Synchronised

Nigori consists of two components: a data-
store and a client library. A Nigori datastore
is a service, either run locally on the device
alongside the application, or run remotely
in the cloud. The client library forms part
of the application and runs on a user’s de-
vice, encrypts data, and manages the user’s
datastores. A typical application deploy-
ment will contain one datastore on each
user device and one datastore in the cloud;
the application can then use Nigori to keep
datastores, and therefore user data, syn-
chronised across all their devices.

In Nigori the key material is derived from
the user’s unique username and secret pass-
word. Then authentication to the servers
can be done using DSA and the data can
be encrypted on the client using AES.

A Nigori datastore stores a mapping of
users to indicies to revisions to values. All
of these are opaque byte arrays to the data-
store. On the client side the revisions are
interpreted as revision objects considing of

an id and a list of parent revisions. As in git the ids are generated by taking hashes of the value and the parent revision
information. This means that the client can verify that history has not been removed by the server.

e:

i:e

l:i

p:e

u:p,i

v:l,u

When clients asynchronously make multiple conflicting changes to a index then different revisions
are generated which allows the clients to do reconcilation on read. Since different applications will
have different ways of automatically or semi-automatically resolving conflicts, Nigori allows the
developer to specify how conflicts should be resolved.

http://www.cl.cam.ac.uk/research/dtg/nigori/

http://www.cl.cam.ac.uk/research/dtg/nigori/

