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Abstract. We examine the lifetime of API vulnerabilities on Android
and propose an exponential decay model of the uptake of updates af-
ter the release of a fix. We apply our model to a case study of the
JavaScript-to-Java interface vulnerability. This vulnerability allows un-
trusted JavaScript in a WebView to break out of the JavaScript sandbox
allowing remote code execution on Android phones, this can often then
be further exploited to gain root access. While this vulnerability was
first reported in 2012-12-21 we predict that the fix will not have been
deployed to 95% of devices until 2018-01-10, 5.2 years after the release
of the fix. We show how this vulnerability is exploitable in many apps
and the role that ad-libraries have in making this flaw so widespread.
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1 Introduction

The Android ecosystem today is complex network of competing and collaborat-
ing companies. In addition to the main OS developer (Google) there are at least
176 additional open source projects whose code is used in the platform. There
are also many manufacturers and network operators who customise Android for
their devices and networks. For example, 19 300 study participants in the De-
vice Analyzer project [12] use devices built by 271 distinct manufacturers and
networks run by 1 400 different operators.

In this landscape, fixing security flaws is hard since it often involves the
collaboration of open source developers, Google, the device manufacturers, the
network operators and the user (who needs to approve the installation of up-
dates). In this paper we explore Application Programming Interface (API) vul-
nerabilities in Android and quantify the rate at which these flaws are fixed on
real devices. Such vulnerabilities often represent a security protocol failure, in
the sense that the API designer had a particular protocol or API call sequence
in mind, and the attacker repurposes those API elements to break the intended
security model.
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Fig. 1. Proportion of devices running different API versions

Fixing API vulnerabilities, like fixing deployed protocols, is often hard: fixes
may require changes to the API which breaks backwards compatibility. In our
analysis we find an exponential decay function provides a good model for pre-
dicting the rate of fixes for API vulnerabilities in Android. Unfortunately the
rate of decay is low: it takes nearly a year for half of the Android devices using
the Google Play Store to update to a new version of Android. In other words,
it takes a long time to move from the domain of security fiction (a new release
is available which has fixed the vulnerability) to fact (devices are now secure).
This is explored further in Section 2.

In order to ground our approach we have included a case study in Section 3
to investigate the timeline for fixing one API vulnerability in Android. We have
selected the JavaScript-to-Java interface vulnerability for this purpose as it is
particularly serious and affects all versions of Android prior to the release of
version 4.2. The fixing release was first available in October 2012 and as such we
now have sufficient data to quantify the speed at which updates have propagated.

2 API vulnerabilities in Android

Android had at the beginning of 2015 revised its API twenty times since version
one was released with the first Android handset in 2008. We have manually
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collected the monthly statistics published by Google which record the proportion
of devices using particular API versions when they connect to the Google Play
Store since December 2009. These statistics3 are plotted in Figure 1. The API
version distribution shows a clear trend in which older API versions are slowly
replaced by newer ones.

In order to quantify the lifecycle of a particular API version we recalculate
the API version data in two ways. Firstly, in order to understand the speed of
adoption of a particular version of the API, we are interested in the number of
days since release rather than specific calendar dates. Secondly, we are interested
in the proportion of devices which have not upgraded to a particular API version
or any successor. For example, when a new API version is first released, no
devices could have already been updated to it and therefore the proportion
which have not upgraded is one. As devices begin to upgrade to the new API
version (or any subsequent release), the proportion not upgraded tends to zero.
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Fig. 2. Proportion of devices not updated to particular versions of Android or any
later version. The best fit f(t) is an exponential decay function.

We have replotted data from Figure 1 in Figure 2 to show the proportion of
devices not upgraded to a particular version of Android against days since the

3 We have made these available http://androidvulnerabilities.org/play/

historicplaydashboard

http://androidvulnerabilities.org/play/historicplaydashboard
http://androidvulnerabilities.org/play/historicplaydashboard
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API version was first released. These data show that all API version upgrades
follow a similar trend: a slow initial number of upgrades in the first 250 days, then
widespread adoption between 250 and 1000 days, followed by a slow adoption of
the new API version by the remaining devices.

Visually, these data appear to have an exponential decay as it tends to zero.
We therefore decided to model this as f(t), a combination of an exponential
function together with a delay t0 which offsets the start time:

f(t) =

{
1.0 if t < t0

e−decay(t−t0) otherwise
(1)

Fitting f(t) to these, we get a Root-Mean-Squared-Error (RMSE) of 0.183
with the parameters t0 = 80.6 days, decay = 0.002 62 days−1 across all API
versions. A RMSE of 0.183 compares favourably with a standard polynomial fit
(3 degree polynomial fit gave a RMSE of 0.183) or a spline fit (RMSE of 0.183)
and gives a meaningful model of behaviour rather than a generic curve.

From this fit, the number of days from release of a new version of Android
until 50% of devices are running that version or higher is 346 (0.947 years)
and full deployment to 95% of devices takes 1 230 days (3.36 years). The same
analysis using the Device Analyzer data on OS versions in use gives 312 days
(0.856 years) and 1 060 days (2.9 years) respectively which is faster but not by
much.

Hence if a security vulnerability is fixed through the release of a particular
API version it will be 1 230 days (3.36 years) after that until the fix is fully
deployed.

Unfortunately while this is a good predictor of average behaviour, individual
API versions are systematically different from each other. Hence we took the fit
parameters from the global analysis and used them to seed a fit for each API
version.

This gave us the parameters in Figure 3 with t0 and 1/decay plotted so that
larger values are worse. API versions 11, 12 and 13 were for Android 3.x which
never saw widespread deployment because they targeted tablets and were not
available for use on phones. Discounting those values, Figure 3 shows a trend
of updates taking longer over time as t0 increases and 1/decay increases. This
implies that the Android ecosystem is getting worse at distributing updates.

The differences between the predictions and recorded reality is shown in Fig-
ure 4. It shows how the difference between our prediction and recorded behaviour
oscillates around 0 with some systematic errors early on due to the simple model
of f(t). The errors are mostly less than 10% and fall over time.

3 Case study: The JavaScript-to-Java interface
vulnerability

The Android WebView provides a developer with a web browser UI component
which can be controlled programmatically by a hosting app, including rendering
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<script>

Android.getClass()

.forName(’java.lang.Runtime’)

.getMethod(’getRuntime’,null)

.invoke(null,null).exec([’id’]);

</script>

Fig. 5. JavaScript attack, assuming Android is the JavaScript alias for the exposed
Java object.

dynamic HTML content driven by JavaScript. To allow convenient interaction
between the WebView and the hosting app, a Java object instance can be bound
to a JavaScript variable name, allowing the JavaScript code to call any public
methods on the Java object. Prior to Android 4.2, the exposed public methods
included those inherited from parent classes, including the getClass() method
of java.lang.Object. This permitted the execution of arbitrary Java code from
the JavaScript running inside the WebView. For example, Java reflection con-
trolled from JavaScript can be used to execute Linux programs such as id as
shown in Figure 5.

This is a security vulnerability (CVE-2012-6636) which can be used to re-
motely run malicious code in the context of an app using the JavaScript-to-Java
interface vulnerability and from there exploit other vulnerabilities to gain root
privileges on devices and spread as an Android worm.

The attack is comprised of the following steps.

1. Content for WebViews in apps is commonly from untrusted sources or over
an unauthenticated HTTP connection, an active attacker controlling the
network (strategies for doing this are discussed in Section 3.1) can inject a
malicious JavaScript payload into the HTTP stream which is then executed
inside the JavaScript sandbox.

2. The malicious JavaScript can then use the JavaScript-to-Java interface vul-
nerability to break out of the JavaScript sandbox into the app context.

3. The malicious code can often then use other known vulnerabilities to break
out of the app sandbox and gain root privileges on the device. We know that
on average approximately 88% of Android devices are vulnerable to at least
one known root vulnerability.4

4. Once an attacker has root on a device he can use ARP spoofing or ICMP
redirect attacks to reroute local traffic through the device and inject mali-
cious JavaScript into any HTTP traffic, thereby creating an Android worm.

Google has made two attempts to fix the Android API to fix the JavaScript-
to-Java interface vulnerability. In the first the function of the JavaScript-to-Java
interface was modified in Android 4.2 to ensure that only public methods with
the annotation @JavaScriptInterface could be called from within JavaScript

4 http://androidvulnerabilities.org

http://androidvulnerabilities.org
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for new apps. This change only prevents the attack if both the phone is running
Android 4.2 or greater and the app has been compiled with a recent version of
the Android framework with a target API Level of 17 or newer. In the second, for
devices using the WebView based on Google Chrome for Android version 33.0.0.0
or later (included in Android 4.4.3 and later), access to the getClass method on
injected Java objects was blocked.5 This prevents the most obvious JavaScript-
to-Java interface attacks by preventing direct access to the Java runtime. An
attacker must instead find a different route through the public methods on the
injected Java objects which may not always exist and is certainly much harder.

Any app with a WebView with a JavaScript-to-Java interface is potentially
vulnerable to this attack. We label an app which uses JavaScript-to-Java in-
terface always vulnerable if it contains a target API level of 16 or older, since
such an app is vulnerable when run on any version of Android less than 4.4.3;
and vulnerable only on outdated devices if the app has a target API Level of 17
or newer, since such an app is vulnerable only if running on a device running
Android 4.1.x or older.

3.1 Threat model

There are several different scenarios in which an attacker could inject malicious
JavaScript to exploit the JavaScript-to-Java interface vulnerability.

1. An attacker could control the original server which supplied ‘legitimate’
HTML either through compromising it or by using some other means (such
as buying ads) to supply the malicious JavaScript.

2. They could control a node on the path from the original server allowing them
to inject malicious JavaScript into the HTTP traffic.

3. An attacker could control traffic passing through the device’s local network
and inject malicious JavaScript. This could be achieved by either running
a public WiFi network, or compromising an existing network using ARP
spoofing or ICMP redirect attacks to redirect all traffic via a machine under
their control.

Level 1 attacks can be mitigated by better system security and input vali-
dation at the original server. Level 2 and Level 3 attacks can be mitigated by
apps using HTTPS with proper validation of certificates [3] (for example using
pinning [2]) to prevent an attacker being able to inject malicious JavaScript.
Level 3 attacks can also be mitigated through use of a secure VPN to a trust-
worthy network and by better security on the local network (protection against
ARP spoofing, ICMP redirect attacks and independently encrypted connections
to the router).

5 https://codereview.chromium.org/213693005/patch/20001/30001 com-
mitted as 261801 or afae5d83d66c1d041a1fa433fbb087c5cc604b67 or
e55966f4c3773a24fe46f9bab60ab3a3fc19abaf

https://codereview.chromium.org/213693005/patch/20001/30001
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3.2 Sources of vulnerability

To investigate the severity of this vulnerability we need data on which apps use
the JavaScript-to-Java interface and where they use it. We analysed 102 174 APK
files from the Google Play Store collected on 2014-03-10 and between 2014-05-10
and 2014-05-15 and found that 21.8% (22 295) of apps were always vulnerable,
15.3% (15 666) were vulnerable only on outdated devices, 62.2% (63 533) were
not vulnerable and 0.67% (680) could not be analysed due to failures of our
static analyser. These results are shown in Table 1 and show that most apps are
not vulnerable but that more apps are always vulnerable than are vulnerable
only on outdated devices.

The static analysis was performed by decompiling the APKs using apktool

and extracting the target API version from the Android Manifest. Apps us-
ing JavaScript-to-Java interface were detected by string matching for ‘add-
JavascriptInterface’ in the decompiled .smali files.

Of the 38 000 vulnerable apps 12 300 were in the Device Analyzer data [12],
those which are not in the Device Analyzer data are unlikely to be widely used
since they were not installed on any of the 19 300 devices in Device Analyzer
data.

In the following analysis, values are given ± their standard deviation. We
found that always vulnerable apps were started 0.6 ± 0.0 times a day between
the disclosure of the vulnerability and the start of our APK file collection, with
8.37 ± 0.65 such apps installed.

We found that apps vulnerable only on outdated devices were started 0.778±
0.107 times a day between the disclosure of the vulnerability and the start of
our APK file collection, with 7.29 ± 0.73 such apps installed.

Hence on an outdated device vulnerable apps were started 1.38 ± 0.11 times
a day with 15.7 ± 0.9 vulnerable apps installed. Due to static analysis failures
and the fact that not all the apps are observed by Device Analyzer, these rates
are likely to be underestimates. It is also possible that the Device Analyzer data
could be biased towards users with more apps than is typical which might cause
this figure to be an overestimate.

Classification Percentage Count

Always vulnerable 21.8 22 295
Vulnerable only on outdated devices 15.3 15 666
Not vulnerable 62.2 63 533
Unscanable 0.67 680

Table 1. Percentage of the 102 174 apps analysed which fell in each category

Ad-libraries We tested a couple of dozen of the apps we had identified as
always vulnerable by MITMing them and injecting JavaScript which exploited
the JavaScript-to-Java interface vulnerability. We found that 50% of these were
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actually exploitable. There are several reasons why we might not have been able
to exploit the vulnerability: we did not activate the vulnerable activity, HTTPS
was used for the request or while there was vulnerable code in the app that code
is unreachable.

Inspecting the vulnerable HTTP requests revealed that ad-libraries were the
the usual reason for vulnerable requests. We performed further static analysis
on the APK files by reverse engineering the ten most downloaded apps which
detect ads and constructing a list of pattern matches for different ad-libraries.
The distribution of different ad-libraries is shown in Figure 6.
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Fig. 6. Number of instances of each ad-library within the always vulnerable apps. Not
all of these frameworks necessarily introduce the vulnerability and some versions of
them may have been fixed, this plot just shows the distribution of the ad-libraries
within the always vulnerable apps.

3.3 Lifetime of the vulnerability

The vulnerability was first publicly recorded on 2012-12-21 [1]. The proportion of
devices which contacted the Google Play Store and are secure for apps vulnerable
only on outdated devices are shown in blue in Figure 7. In summary, on 2015-
03-02 69.5% of devices were running a version of Android which protects users
from apps vulnerable only on outdated devices.

This vulnerability will cease to be problematic when all Android devices run
API version 17 or later and all apps which use JavaScript-to-Java interface target
API version 17 or later. Using our model for f(t) from Equation 1 and knowledge
that API version 17 was released on 2012-10-29 we expect 95% of all Android
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devices to be secure for apps vulnerable only on outdated devices by 2018-01-10.
This prediction is shown in green in Figure 7. We do not have visibility into the
way apps’ target API versions on Android change over time and therefore it is
harder to understand whether always vulnerable apps will continue to represent
a significant risk after almost all Android devices support API version 17 or
later.

3.4 Solutions

There are various strategies which could have been adopted to more rapidly
mitigate this vulnerability. Android could have broken API compatibility and
backported the fix to all versions of Android, however from analysis of the deploy-
ment of security updates on Android we know that this likely still would not have
been widely deployed.6 Android could refuse to load JavaScript over HTTP and
require HTTPS (with properly verified certificates) or use local storage which
would make MITM attacks injecting malicious JavaScript much harder. Part
of the problem is that the libraries (particularly ad-libraries) which developers
bundle inside their apps target old API versions and all the developers need to
update their dependencies to versions which target higher API versions.

If instead Android had a more comprehensive package management system
which handled dependencies then apps could be loosely coupled with their ad-
libraries and the libraries could be updated to fixed versions without the app
developers having to re-release every app which used it. Alternatively, to main-
tain backwards compatibility while fixing the vulnerability, apps could be auto-
matically rewritten to fix the vulnerability.

Users could use a VPN to tunnel all their traffic back to a trusted network
so that MITMs on local networks (such as open wifi access points) would not be

6 http://androidvulnerabilities.org

http://androidvulnerabilities.org
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able to mount this attack, but this would not protect against attackers on the
network path to the ad-server, or malicious ad-servers.

The fix included in Android 4.4.3 discussed earlier in Section 3 where access
to the getClass method is blocked substantially mitigates this vulnerability.

4 Related work

The JavaScript-to-Java interface vulnerability has been investigated before. It
was demonstrated by MWR Labs [6] who showed how it could be used to run
the Android security assessment framework drozer which can be used to run a
remote shell on a compromised Android device. The strategies we used for stat-
ically analysing Dalvik bytecode to discover use of JavaScript-to-Java interface
have been used before [13].

Attacks have been published against WebView [7] including those relating
to JavaScript-to-Java interface and vulnerabilities caused by the violation of the
origin based access control policy in hybrid apps [4].

There have been investigations of the behaviour of ad-libraries on Android.
Stevens et. al. demonstrated how attacks could be mounted on JavaScript-to-
Java interface used by ad-libraries but without realising the significance of get-
Class [10]. However, unlike the vulnerability we have discussed, these attacks
continue to work even on apps vulnerable only on outdated devices on fixed
devices. Grace et. al. have shown that ad-libraries require excessive permissions
and expose users to additional risks [5] which are further compounded by the
JavaScript-to-Java interface vulnerability.

To counteract the problems caused by ad-libraries being packaged within
an app, and thereby having all their permissions, there have been proposals to
separate out the ad-libraries into separate processes by altering Android to pro-
vide an API [8] and then automatically rewriting apps to use such an API [9].
This improves security, particularly if it means that the ad-libraries can be up-
dated independently of the apps, but it does not otherwise help if an attack on
JavaScript-to-Java interface can be followed up with a root exploit.

We scanned 102 174 apps but the PlayDrone crawler was able to analyse over
1 100 000 apps, and found the distribution of usage of different ad-libraries [11].

5 Conclusion

In this paper we proposed the exponential decay model for Android API vul-
nerabilities and we explored one case study: the JavaScript-to-Java interface
vulnerability. By applying our model to our case study we find that for apps
which are vulnerable only on outdated devices, 95% of all Android devices will
be protected from the JavaScript-to-Java interface vulnerability by 2018-01-10,
5.2 ± 1.2 years after the release of the fix. It is not known whether always vul-
nerable apps will continue to present a security risk and therefore it is unclear
whether Android users will be safe from this vulnerability after this date.
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