
Security Metrics for the Android Ecosystem

Daniel R. Thomas Alastair R. Beresford
Computer Laboratory

University of Cambridge
Cambridge, United Kingdom

Firstname.Lastname@cl.cam.ac.uk

Andrew Rice

ABSTRACT
The security of Android depends on the timely delivery of
updates to fix critical vulnerabilities. In this paper we map
the complex network of players in the Android ecosystem
who must collaborate to provide updates, and determine
that inaction by some manufacturers and network operators
means many handsets are vulnerable to critical vulnerabil-
ities. We define the FUM security metric to rank the per-
formance of device manufacturers and network operators,
based on their provision of updates and exposure to critical
vulnerabilities. Using a corpus of 20 400 devices we show
that there is significant variability in the timely delivery of
security updates across different device manufacturers and
network operators. This provides a comparison point for
purchasers and regulators to determine which device man-
ufacturers and network operators provide security updates
and which do not. We find that on average 87.7% of An-
droid devices are exposed to at least one of 11 known critical
vulnerabilities and, across the ecosystem as a whole, assign
a FUM security score of 2.87 out of 10. In our data, Nexus
devices do considerably better than average with a score of
5.17; and LG is the best manufacturer with a score of 3.97.

Categories and Subject Descriptors
Security and privacy [Systems security]: Operating sys-
tems security—Mobile platform security ; Security and pri-
vacy [Systems security]: Vulnerability management

General Terms
Security, Measurement, Economics

Keywords
Android; updates; vulnerabilities; metrics; ecosystems

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
SPSM’15, October 12, 2015, Denver, Colorado, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3819-6/15/10 ...$15.00.
DOI: http://dx.doi.org/10.1145/2808117.2808118.

1. INTRODUCTION
All large software systems today contain undiscovered se-

curity vulnerabilities. Once discovered, these flaws are of-
ten exploited, and therefore the timely delivery of security
updates is important to protect such systems, particularly
when devices are connected to the Internet and therefore
can be exploited remotely. Manufactures and software com-
panies have known about this issue for many years and are
expected to provide regular updates to protect their users.
For example, Windows XP could be purchased for a one-
off payment in October 2001 and received monthly security
updates until support ended in April 2014.

Unfortunately something has gone wrong with the pro-
vision of security updates in the Android market. Many
smartphones are sold on 12–24 month contracts, and yet
our data shows few Android devices receive many security
updates, with an overall average of just 1.26 updates per
year, leaving devices unpatched for long periods of time.

In order to improve our understanding, we need to know
more about the Android ecosystem as a whole. It is a com-
plex system with many parties involved in a long multi-stage
pipeline [18]. We map and quantify the major players in this
space who must collaborate to provide updates (§4) and de-
termine that inaction (§5.3) by some of the manufacturers
and network operators means many handsets are vulnerable
to critical vulnerabilities. Understanding this ecosystem is
all the more important because device manufacturers have
introduced additional vulnerabilities in the past [17].

Corporate and public sector buyers are encouraged to pur-
chase secure devices, but we have found little concrete guid-
ance on the specific makes and models providing timely se-
curity updates. For example, CESG, which advises the UK
government on how to secure its computer systems, recom-
mends picking Android device models from device manu-
factures that are good at promptly shipping security up-
dates, but it does not state which device manufacturers these
are [5] and so far they have only certified one Android device
model [6]. Similarly, we are collaborating with a FTSE 100
company who wish to know which devices are secure and
which manufacturers provide updates.

The difficulty is that the market for Android security to-
day is like the market for lemons: there is information asym-
metry between the manufacturer, who knows whether the
device is currently secure and will receive security updates,
and the customer, who does not. To address the asymme-
try, we develop a scoring system and provide numbers on
the historic performance of device models found in the De-
vice Analyzer [29] project (§5). We propose three metrics: f

http://orcid.org/0000-0001-8936-0683
http://orcid.org/0000-0003-0818-6535
http://orcid.org/0000-0002-4677-8032
mailto:Permissions@acm.org
http://dx.doi.org/10.1145/2808117.2808118

the proportion of running devices free from critical vulner-
abilities over time; u the proportion of devices that run the
latest version of Android shipped to any device produced by
that device manufacturer; and m the mean number of out-
standing vulnerabilities affecting devices not fixed on any
device shipped by the device manufacturer. We then derive
a composite FUM score which is hard to game (§5.7).

The FUM score enables corporate and public sector buy-
ers, as well as individuals, to make more informed purchasing
decisions by reducing the information asymmetry. The FUM
score also supports better regulation, and indeed there is on-
going legal action to force network operators to ship updates
for security vulnerabilities [23]. We will continue to provide
updated versions of our FUM scores on our website [25].

In summary, the contributions of this paper are:

• We quantify the Android update process, providing
concrete numbers on the flow of updates and their la-
tency (§4).

• We propose the FUM scoring metric to evaluate the
security of different instances of a platform (§5.1).

• We measure the security of Android against our scor-
ing metric and compare different device manufactur-
ers, device models and network operators to allow de-
vice purchasers to differentiate between them based on
security (§5.2).

• We determine that the main update bottleneck lies
with manufacturers rather than Google, operators or
users (§5.3).

We indicate the uncertainty in our results by presenting
them ± one standard deviation and give results to 3 s.f., this
occasionally results in ‘± 0’ when the standard deviation is
small. We explore systematic errors in §6.

2. THREAT MODEL
In this paper we are concerned with vulnerabilities which

allow an attacker without physical access to the smartphone
to gain significant permissions (such as root-level access)
which are not available to a standard app running on the
device. We consider three attack vectors which can be used
as a starting point to launch an attack on a device.

The installation attack vector is used when a malicious
app is installed on the device. Android devices can install
apps through marketplaces such as the Google Play Store,
email attachments, URLs and via the Android Debug Bridge
(ADB). By default, many Android devices will only allow
the installation of apps from the Play Store, which auto-
matically analyses apps, and quickly takes down apps that
are reported as malicious. However, alternative markets are
also popular, particularly in countries where the Play Store
is not available.

The dynamic code loading attack vector occurs when an
existing app downloads and executes new code at runtime.
The most direct method is to upload a seemingly innocent
app to a marketplace that then dynamically loads malicious
code, either as additional davik bytecode, as a native library,
or by embedding an interpreter and executing received in-
structions. Neither static nor dynamic analysis of this app
will uncover any malicious code, since it does not exist in
the app. The marketplace can try to detect explicit use of

dynamic code loading, however there are ways to dynami-
cally load code which are hard to detect even on a platform
such as iOS, which does not permit dynamic code loading.
For example, a Return-Oriented Programming (ROP) at-
tack on iOS is relatively easy if the attacker creates an app
with carefully crafted flaws [30].

The injection attack vector occurs when the attacker in-
jects malicious code directly into existing code already run-
ning on the handset. For example, the addJavascriptInter-
face vulnerability (CVE-2012-6636) allows an attacker to in-
ject JavaScript into HTTP traffic destined for the device and
execute arbitrary code with all the privileges of the app. The
fix for this vulnerability breaks backwards compatibility and
requires a two-sided fix. While the fix was released in De-
cember 2012, by June 2015, 25.7% of handsets connecting
to the Play Store were still vulnerable to this attack [27].

Security for the Android ecosystem can be deployed at
three levels: in an online marketplace, at app installation
time on the device, and during app execution. Google pro-
vides its users with security in all these places: through
analysis of apps by the Play Store, using the Verify Apps
feature on the smartphone at installation time, and by an
app sandbox on the smartphone during execution. The best
place to prevent attacks is by sandboxing the app during
execution, since all three attack vectors can be prevented at
this level, whereas not all users install apps exclusively via
the Play Store or enable Verify Apps. In addition, dynamic
code loading and injection attacks cannot be discovered at
installation time and can be difficult for a marketplace to
detect. Unfortunately, as we shall see, the security sandbox
for Android has known critical vulnerabilities on most de-
vices. This does not mean these devices are attacked, but
that they are vulnerable. The likelihood of a successful at-
tack then depends on what apps the user installs and where
from, as well as the computer networks the device is con-
nected to and the actions the user takes whilst connected.

3. DATA
We use two sources of data to measure the security of An-

droid: (1) information on the critical vulnerabilities found
to affect particular versions of Android and (2) information
on the distribution of Android versions over time. These two
datasets can then be combined to determine the proportion
of devices at risk of attack from specific vulnerabilities.

3.1 Critical vulnerabilities
We built a list of critical Android vulnerabilities for our

AndroidVulnerabilities.org (AVO) website [25]. The site con-
tains 32 critical vulnerabilities such as root vulnerabilities
that do not require USB debugging to exploit. We have
chosen 11 vulnerabilities as shown in Table 1 for our analy-
sis in this paper. We selected these vulnerabilities since they
fit the attack vectors introduced in §2 and because they af-
fect all Android devices regardless of manufacturer, and as
a result our selected vulnerabilities will dominate any se-
curity analysis of Android. Hence, with our chosen set of
vulnerabilities, our analysis represents a lower-bound on the
vulnerability of devices in the Device Analyzer data.

Some critical vulnerabilities are not traditional kernel vul-
nerabilities, but exploit the installation attack vector in
our threat model. For example improper verification of
signatures at installation time was discovered in February
2013 [11] and meant that apps could pretend to be signed

Vulnerability How known Date Categories
KillingInTheNameOf Fixed 2010-07-13 sys, kern
exploid udev Discovered 2010-07-15 kernel
levitator Discovered 2011-03-10 kernel
Gingerbreak Fixed 2011-04-18 system
zergRush Discovered 2011-10-06 system
APK duplicate file Discovered 2013-02-18 signature
APK unchecked name Discovered 2013-06-30 signature
APK unsigned shorts Fixed 2013-07-03 signature
vold asec Fixed 2014-01-27 system
Fake ID Fixed 2014-04-17 signature
TowelRoot Discovered 2014-05-03 kernel

Table 1: Critical vulnerabilities in Android

with system keys and hence be granted system privileges.
On versions of Android below 4.1, malware could then use
known system-to-root escalation mechanisms. Regardless of
version, this exposed an increased attack area and would
also provide the ability for malware to control all user inter-
net traffic (via VPNs), brick the phone, remove and install
apps, steal user credentials and read the screen. The differ-
ent categories in which the vulnerabilities fall are shown in
Table 1. The ‘signature’ vulnerabilities require an installa-
tion attack, while ‘kernel’ and ‘system’ vulnerabilities can
be used together with an installation, dynamic code loading
or injection attack vector.

3.2 Device Analyzer data
We use historical data collected by the Device Analyzer

project [29]. Device Analyzer collects data1 from study par-
ticipants who install the Android app from the Play Store.
Most study participants allow external researchers to access
the subset of the device data needed for this analysis.

We extracted the build string and API version for each
device each day. The build string is a user-readable version
string and the API version is a positive integer that increases
when new features are added to the API. Consequently se-
curity (bug) fixes do not always result in a change in the API
version. Fortunately most (99.9%) entries in these data have
a build string of the form ‘x.y.z opaque marker’ and so it is
possible to extract the Android version number ‘x.y.z’. On a
large proportion of devices ‘opaque marker’ is a well defined
build number2 however this is not universal.

Device Analyzer has collected data from 20 400 devices
with a total of 1 330 000 device days. The majority of devices
only contribute data for a short period of time, however 2 110
devices have contributed data for more than 6 months. We
verify that the Device Analyzer data is representative in §6.

4. ANDROID ECOSYSTEM
There is a complex Android ecosystem that creates and

distributes updates which fix vulnerabilities. In this section
we describe how the Android ecosystem functions and how
Android versions are produced, using Device Analyzer data
and by analysing the Android source code and upstream
projects. We quantify the number of updates shipped by
various entities in the ecosystem and the number of entities.

To understand how vulnerabilities in Android are fixed

1https://deviceanalyzer.cl.cam.ac.uk/collected.
html
2https://source.android.com/source/build-numbers.
html

Upstream open source projects

other projects

(176)

59

6
618

(301)

28

1 270

OpenSSL BouncyCastle

Google Hardware
developer

Device
(20 400)

(1 460)

Linux

Device manufacturer

Network operator

Figure 1: Flow of updates between participants in the
Android ecosystem. Numbers on edges indicate updates
shipped between July 2011 and July 2015, those in brackets
represent number of such entities. Dotted arrows indicate
flows where we can’t measure because no public data is avail-
able.

Project # releases latency (days)
linux 618 137± 48
openssl 59 120± 55
bouncycastle 6 239± 78

Table 2: Flow of updates from upstream projects into An-
droid. Number of updates as in Figure 1, latency in days
between the upstream release and the release of the first An-
droid version containing it, for all pairs of versions we have
data on.

we examine the Android update process, which we model
in Figure 1. There are five entities or groups that con-
tribute towards Android updates: the network operators,
the device manufacturers, the hardware developers, Google
and the upstream open source projects. Android builds
on various open source projects, such as the Linux kernel,
OpenSSL and BouncyCastle cryptography libraries. Con-
sequently Android can include any compatible versions of
those projects, including those that fix security vulnerabili-
ties. Android also incorporates various drivers for different
bits of hardware. The Android platform is then built from
these components by Google. The code for each Android re-
lease or update is kept secret until after a binary release has
been published.3 Device manufacturers receive advanced
access in order to prepare handsets. The network operator
may then make or request customisations and perform test-
ing before shipping the update to the device. Sometimes
device manufactures ship updates directly to the user with-
out involving the network operator. Sometimes the device
manufacturer and Google collaborate closely to make a par-

3https://source.android.com/source/code-lines.html

https://deviceanalyzer.cl.cam.ac.uk/collected.html
https://deviceanalyzer.cl.cam.ac.uk/collected.html
https://source.android.com/source/build-numbers.html
https://source.android.com/source/build-numbers.html
https://source.android.com/source/code-lines.html

ticular phone, such as with Nexus devices and so Google
ships directly to the device. Sometimes device manufactur-
ers incorporate upstream open source project releases di-
rectly, and sometimes incorrectly – for example previous
work has recorded evidence of broken nightly builds of sqlite
in Android releases on some device models [29].

The numbers of devices (20 400), network operators (1 460)
and device manufacturers (301) in Figure 1 come from the
Device Analyzer data. Device manufacturer and network
operator counts were obtained by normalising the results
reported by Android to Device Analyzer of the device man-
ufacturer and active network operator. This normalisation
is a manual task that involves removing invalid values (such
as ‘manufacturer’ or ‘airplane mode is on’), collating across
company name changes (e.g. ‘lge’ to ‘LG’), normalising punc-
tuation, removing extra strings sometimes added such as
(‘(2g)’ or ‘communications’) and mapping some incorrectly
placed model names back to their manufacturer. This nor-
malisation is not perfect so these are likely overestimates on
the Device Analyzer data. We believe they nevertheless are
likely to underestimate the total number of device manufac-
turers and network operators worldwide.

In Figure 1 the number of updates received by devices
(1 270) is the number of different full version strings ob-
served in Device Analyzer. The number of updates shipped
by Google (28) is the number of Android versions reported
in Device Analyzer that affected more than 1% of devices
for more than 10 days. This significance test is to remove
spurious versions recorded in Device Analyzer such as ‘5.2.0’
in 2012 which had still not been released at time of writing.

We extracted data on the external projects used in An-
droid and have included this and the scripts which generated
it in AVO. These scripts analysed the Android Open Source
Project’s source tree to examine the source code of each of
the external projects to find the project version associated
with each Android version tag on the repository. There are
176 external open source projects in Android, contributing
25 Million lines of code. We analysed the top 40 by lines
of code (99.7% of the total) and were able to automatically
extract the versions of those projects included in different
versions of Android for 28 of these (24.9% of the total). We
found 72 distinct versions, a median of 2.0 and mean of
2.57± 1.84 versions per project. Android rarely changes the
version of external projects it includes.

To compute the latency between upstream releases and
the release of the first version of Android containing that
release we scraped the release pages, to obtain the version
numbers and release dates. This allows us to compute the
latency between an upstream project being released and it
being included in Android; this is shown in Table 2. The
versions included in Android were about half a year old when
the first version of Android containing it was released.

5. SECURITY METRICS
To allow buyers of Android devices to purchase those de-

vices with the best security, they need to know how different
device manufacturers, device models and network operators
compare in terms of security. We propose a method to score
a device manufacturer, device model or network operator
based on its historic performance at keeping devices up-to-
date and fixing security vulnerabilities. We find that An-
droid as a whole gets a score of 2.87 ± 0.0 out of 10, the

Dec 2
011

Jun 2012

Dec 2
012

Jun 2013

Dec 2
013

Jun 2014

Dec 2
014

Jun 2015
0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n

insecure

m
a
y
b

e
 s

e
cu

re

secure

zergRush APK duplicate file vold asec

Figure 2: Proportion of devices running insecure, maybe
secure and secure versions of Android. Table 1 lists the 11
vulnerabilities used, the red vertical lines are caused by their
discovery and the most important are annotated.

highest scoring device manufacturer is LG (3.97± 0.0) and
the lowest scoring is walton (0.272± 0.007).

By combining data on critical vulnerabilities in Android
and the versions of Android running on devices we can de-
termine which vulnerabilities each device was vulnerable to
each day. We consider a device is insecure if it is running
a vulnerable version of Android and the device has not re-
ceived an update which might fix it; it is maybe secure if
it is running a vulnerable version but received an update
which could have fixed the vulnerability if it contained a
backported fix; and it is secure if it is running a secure ver-
sion. This allows us to plot Figure 2, initially all devices are
maybe secure (yellow) since Device Analyzer does not have
historical data prior to May 2011. This means we cannot
distinguish between devices which are running a version of
Android which is known to be vulnerable from one which
may have received a backported fix. This demonstrates the
importance of a longitudinal study: this type of analysis
requires years of data. Once zergRush was discovered in Oc-
tober 2011 then most devices are recorded as insecure (red)
as they were vulnerable. The remaining devices were already
running a version of Android which fixed the zergRush vul-
nerability and are therefore marked as secure (green). From
October 2011 until the discovery of APK duplicate file in
February 2013 the graph shows progressive improvement as
devices are upgraded or replaced. This means more and
more devices are marked as secure because they are now
running a secure version of Android, or marked as maybe
secure because they received an OS update that did not up-
date to a known-good version of Android but which may still
have included a backport of a fix, as the update was made
available after the vulnerability was disclosed. From Febru-
ary 2013 onwards regular discovery of critical vulnerabilities
ensures that most devices are vulnerable. Ignoring devices
classed as maybe secure, we find that on average 87.7±0.0%
of devices were classed as insecure and 12.3% classified as
secure between July 2011 and July 2015.

5.1 Method: The FUM score
Computing how good a particular device manufacturer

or device model is from a security standpoint is difficult
because it depends on a number of factors which are hard
to observe, particularly on a large scale. Ideally, we would
consider both the prevalence of potential problems that were
not exploited and actual security failures. However, in the

http://androidvulnerabilities.org/vulnerabilities/zergRush
http://androidvulnerabilities.org/vulnerabilities/zergRush
http://androidvulnerabilities.org/vulnerabilities/APK_duplicate_file

Vulnerability first known Vulnerability first patched

Time

Sum of known but unpatched

0
1
2
3

#
u
n
p
a
tc

h
ed

v
u
ln

er
a
b
il
it

ie
s

0 0 01 1 1 112 2 22 2 2 2 2 2 23 3

Figure 3: As vulnerabilities are discovered and patched the
sum of known but unpatched vulnerabilities each day varies.
From this we can calculate m = (0 × 3 + 1 × 5 + 2 × 10 +
3 × 2)/20 = 1.55 For comparison VFD = 0.15 and MAV =
2. Example based on the one given by Wright [32].

absence of such data we propose a scheme for assigning a
device a score out of ten based on data that can be observed,
is based on previous metrics, and that we expect correlates
with the actual security of the devices.

The FUM score is computed from three components:

free f The proportion of running devices free from critical
vulnerabilities over time. This is equivalent to Acer
and Jackson’s proposal to measure the security based
on the proportion of users with at least one unpatched
critical vulnerability [1] and similar to the Vulnerabil-
ity Free Days (VFD) score [32]. Unlike VFD, this is
the proportion of running devices which were free from
critical vulnerabilities over time, rather than the num-
ber of days which the device manufacturer was free
from outstanding critical vulnerabilities, as that does
not take account of the update process.

update u The proportion of devices that run the latest ver-
sion of Android shipped to any device produced by that
device manufacturer. This is a measure of internal up-
datedness, so a low score would mean many devices are
being left behind. This assumes that newer versions
are better with stronger security. Historically, steps
have been taken to improve Android security in newer
versions so this assumption should generally hold, but
sometimes new updates introduce new vulnerabilities.

mean m The mean number of outstanding vulnerabilities
affecting devices not fixed on any device shipped by
the device manufacturer. This is related to the Me-
dian Active Vulnerabilities (MAV) measure [32] but is
the mean rather than the median, since this gives a
continuous value. An example is given in Figure 3.

These three metrics f , u and m, together measure the
security of a platform with respect to known vulnerabilities
and updates. f is a key measure of the direct risk to users as
if there is any known but unfixed vulnerability then they are
vulnerable. However it does not capture the increased risk
caused by there being multiple known vulnerabilities, which
gives an attacker more opportunities and increases the likeli-
hood of a piece of malware having a matching exploit. This
is captured by the m score, which measures the size of the
device manufacturers queue of outstanding vulnerabilities

but does not take into account the update process or mea-
sure the actual end user security. Neither of these metrics
capture whether devices are being left behind and not being
kept up-to-date with the most recent (and hopefully most
secure) version, which is captured by u.

We want to provide a score out of 10 as many other ratings
are given as a score out of 10. Since f is the most important
metric we weight it more highly. Since m is an unbounded
positive real number, we map it into the range (0–1]. This
gives us the FUM score:

FUM score = 4 · f + 3 · u+ 3 · 2

1 + em
(1)

We can compute the uncertainty for f , u and m. f is
computed by taking the total secure device days and divid-
ing it by the total insecure and secure device days. The
total secure device days and total insecure device days are
both counting experiments and so their measurement error
is their square root [24]. u is computed by taking the sum of
the proportions of devices running the most recent version
each day, both the count of devices running the maximum
version and total count have square root uncertainties. m is
computed by counting the number of vulnerabilities which
affected that entity and which have not yet been fixed on any
device we have observed from that entity every day and aver-
aging time. However, it could be that the entity has released
a fix to some devices but we have not yet observed a device
with that fix. So the uncertainty in our measurement is the
probability of not having observed a fixed device if a fixed
device existed. We assume that if the fix has been released
then at least 1.0% of devices have the fix. This represents a
trade-off between a proportion so small that the fix has not
really been deployed and a reasonable estimate of the error.
This gives an uncertainty of 0.99n where n is the number of
devices contributing to that day’s data for each vulnerability
outstanding each day. The Python uncertainties library
was used to propagate uncertainties through calculations.
This does not capture systematic errors. For example, we
do not include manufacturer specific vulnerabilities, however
we expect that performance in fixing manufacturer specific
vulnerabilities is strongly correlated with performance fixing
vulnerabilities affecting all of Android.

5.2 Results: Security scores
On average, between July 2011 and July 2015 we found

0.53±0.0 outstanding vulnerabilities not fixed on any device
and 5.23± 0.0% of devices to run the most recent version of
Android. This gives a security score of 2.87± 0.0 out of 10.

However there are a wide variety of scores depending on
the source of the device. There is anecdotal evidence that
Google’s Nexus devices are better at getting updates than
other Android devices because Google makes the original up-
dates and ships them to its devices.4 Table 3 shows that this
is the case with Nexus devices getting much better scores
than non-Nexus devices.

Different device manufacturers have very different scores;
Table 4 shows the scores for the 10 device manufacturers
with a significant presence in our data with LG (3.97± 0.0
out of 10) scoring highest and walton (0.272 ± 0.007 out
of 10) scoring lowest. Device manufacturers are considered

4http://www.howtogeek.com/139391/
htg-explains-why-android-geeks-buy-nexus-devices/

http://www.howtogeek.com/139391/htg-explains-why-android-geeks-buy-nexus-devices/
http://www.howtogeek.com/139391/htg-explains-why-android-geeks-buy-nexus-devices/

significant if we have data from at least 100 devices and at
least 10 000 days of contributions. Additionally, for m and
u we ignore the days with less than 20 devices contributing
to that day’s score.

Even within device manufacturers, different models can
have very different update behaviours and hence security.
Table 5 shows the results for the 18 device models which
have a significant presence by the same metric with Galaxy
Nexus (4.71± 0.0 out of 10) scoring highest and Symphony
W68 (0.0001±0.0273 out of 10) scoring lowest. We can then
test whether this seems fair by comparing the version data
for the highest and lowest scoring models. Figure 4c shows
the full version distribution for Symphony W68, which we
only observe running one version. Figure 4b shows the full
version distribution for HTC Desire HD A9191, which used
to be our worst model and for which we have more historical
data; it shows it received one update at the beginning of
2012, which was deployed fairly rapidly to most devices,
but received no further updates. Figure 4a shows the same
information for Galaxy Nexus which received 49 different
versions, some of which were only deployed to small numbers
of devices, but the distribution for all devices regularly and
rapidly transitions from one version to another before ending
up on ‘4.3 JWR66Y’. Both Galaxy Nexus and HTC Desire
HD A9191 device models start off with the full version string
of ‘2.3.3 GRI40’ but the Galaxy Nexus receives many more
updates over the same time period. Other models from the
same manufacturer with similar model names to HTC Desire
HD A9191 do much better such as the Desire HD.

We also analysed the 14 network operators with a signif-
icant presence in our data. Table 6 shows the results with
O2 uk (3.87 ± 0.0 out of 10) scoring highest and banglalink
(0.536± 0.018 out of 10) scoring lowest. However, the score
of a network operator is affected by the manufacturers of the
devices which are in use on its network. This is in turn af-
fected by both the device models a network operator offers
to users and upon user’s choice of device models. Hence,
having a worse score does not necessarily mean that a net-
work operator is worse, it could be that its users all pick
phones from a worse device manufacturer, for example, be-
cause they were cheaper. A network operator could use data
from this paper to exclude insecure devices from those of-
fered to consumers. An added value analysis of network
operators, which takes into account the device mix used by
users of that network operator, would make it possible to de-
termine whether a network operator is making the situation
better or worse by the way it ships updates to users. How-
ever our sample size is too small to do that because while we
have significant numbers of devices for each of the 18 device
models (Table 5) and for each of the 14 network operators
(Table 6), we would need a significant number of each model
in each network operator. Since the distribution of devices
is unlikely to be uniformly distributed across device models
and network operators we estimate that 100 000 unique de-
vices are required each day for at least a year. This is not
an unobtainable number but it is two orders of magnitude
more than is available in Device Analyzer.

5.3 Update bottleneck
If update delays are due to the delay in manufacturers

providing the update rather than in operators supplying the
update and users installing the update, we would expect the
update behaviour of devices with the same device model to

manufacturer model operator nexus
±σ 0.211 0.169 0.175 0.632
u 0.297 0.804 0.618 1.0
m 0.794 0.593 0.969 -1.0
f 0.83 0.775 0.934 1.0
weight u 0.939 0.996 0.991 1.0
weight m 0.976 0.964 0.996 1.0
equal 1.0 0.996 1.0 1.0

Table 7: Spearman Rank correlation coefficients for different
metrics. The uncertainty is constant for each column but
does not take into account the uncertainty in the score which
produced the ranking.

be similar and rapid. We found that within 30 days of the
first observation of a new version on a device, half of all
devices of that model have the new version (or a higher ver-
sion) installed, and within 324 days 95% of devices have the
new version (or a higher version). This compares with the
average rates of deployment for Android OS versions of 350
days for half and 1 100 days for 95%. There is a variation
between device models, with the update being distributed
to most devices quickly and others having a much slower
roll out, but since some device models do update quickly
the bottleneck is unlikely to be with the user. Perhaps some
device models are preferred by users who are more likely to
install updates than others, however we do observe updates
being rolled out to device models quickly and user behaviour
is not beyond the control of the device manufacturer. They
could install updates automatically or pester the user into
installing them, and at least some of them do pester, silent
automatic updates do boost uptake [9].

5.4 Sensitivity of scoring metric
To evaluate whether the ranking of different manufactur-

ers is sensitive to the form of the scoring metric we computed
the normalised Spearman’s Rank correlation coefficient be-
tween the lists ordered using different forms of the scoring
metric, this is shown in Table 7. In the table, the ‘equal’
metric weights f , u and m equally rather than favouring f
and makes little difference. Similarly weighting u or m more
highly rather than f makes little difference. While the f , u
and m components do have some correlation with the over-
all FUM score, the rankings produced vary substantially.
Changing the scoring metric also impacts the scores given
for each entity Table 8 shows the mean impact on the scores.
This shows that m tends to drag down scores.

5.5 Utilitarianism
From a utilitarian standpoint, while small manufacturers

like Symphony and Walton do badly on our scores, they
do not have as many customers as higher scoring manu-
facturers. Hence the total risk to users from the higher
scoring popular manufacturers is higher than the risk from
the lower scoring unpopular manufacturers. We could nor-
malise for market penetration and so give a score reflecting
the risk posed by that manufacturer’s performance, which
would tend to decrease the difference between manufactur-
ers in our current scoring. Since our scores are provided so
that customers can chose which devices to buy then it is the
marginal risk to that individual of that device which is of
interest rather than the aggregate risk to all users.

Name f u m score
(out of 10)

nexus 0.39± 0.00 0.48± 0.00 0.56± 0.01 5.17± 0.02
notnexus 0.10± 0.00 0.02± 0.00 0.53± 0.00 2.70± 0.00

Table 3: Security scores for nexus

Name f u m score
(out of 10)

LG 0.22± 0.00 0.33± 0.00 0.62± 0.01 3.97± 0.02
Motorola 0.18± 0.00 0.12± 0.00 0.71± 0.02 3.07± 0.02
Samsung 0.13± 0.00 0.04± 0.00 0.61± 0.00 2.75± 0.00
Sony 0.14± 0.00 0.19± 0.00 1.09± 0.02 2.63± 0.02
HTC 0.14± 0.00 0.10± 0.00 0.87± 0.01 2.63± 0.02
asus 0.20± 0.00 0.51± 0.01 6.01± 0.07 2.35± 0.02
other 0.06± 0.00 0.05± 0.00 1.04± 0.01 1.97± 0.02
alps 0.03± 0.00 0.19± 0.01 3.99± 0.08 0.80± 0.02
Symphony 0.00± 0.00 0.08± 0.00 5.00± 0.05 0.30± 0.01
walton 0.00± 0.00 0.09± 0.00 6.00± 0.08 0.27± 0.01

Table 4: Security scores for manufacturers

Name f u m score
(out of 10)

Galaxy Nexus 0.50± 0.00 0.54± 0.01 1.53± 0.04 4.71± 0.04
Nexus 4 0.30± 0.00 0.82± 0.01 6.06± 0.09 3.69± 0.04
Nexus 7 0.26± 0.00 0.74± 0.01 5.92± 0.09 3.25± 0.04
other 0.10± 0.00 0.14± 0.00 0.53± 0.00 3.03± 0.00
Desire HD 0.08± 0.00 0.05± 0.00 0.38± 0.02 2.91± 0.04
HTC Sensation 0.35± 0.00 0.01± 0.01 1.57± 0.05 2.44± 0.05
GT-I9100 0.22± 0.00 0.02± 0.00 1.23± 0.02 2.27± 0.02
HTC Desire S 0.02± 0.00 0.02± 0.00 1.00± 0.06 1.74± 0.07
GT-N7000 0.25± 0.00 0.00± 0.00 2.52± 0.05 1.43± 0.02
GT-P1000 0.01± 0.00 0.00± 0.01 1.79± 0.06 0.90± 0.05
GT-I9300 0.13± 0.00 0.01± 0.00 6.23± 0.04 0.58± 0.01
GT-I9505 0.03± 0.00 0.13± 0.00 6.82± 0.07 0.52± 0.01
HTC Desire HD 0.00± 0.00 0.00± 0.01 3.03± 0.05 0.28± 0.03
GT-N7100 0.06± 0.00 0.00± 0.01 6.93± 0.08 0.24± 0.02
Symphony W68 0.00± 0.00 0.00± 0.01 11.00± 0.12 0.00± 0.03

Table 5: Security scores for models

Name f u m score
(out of 10)

O2 uk 0.27± 0.00 0.12± 0.00 0.37± 0.02 3.87± 0.03
T-Mobile 0.21± 0.00 0.18± 0.00 0.40± 0.01 3.81± 0.02
Orange 0.22± 0.00 0.10± 0.00 0.36± 0.02 3.65± 0.04
Sprint 0.18± 0.00 0.11± 0.00 0.43± 0.02 3.42± 0.03
3 0.20± 0.00 0.09± 0.00 0.47± 0.02 3.39± 0.03
Vodafone uk 0.14± 0.00 0.13± 0.00 0.52± 0.03 3.17± 0.04
AT&T 0.14± 0.00 0.08± 0.00 0.43± 0.02 3.13± 0.02
unknown 0.11± 0.00 0.20± 0.00 0.84± 0.01 2.88± 0.02
Verizon 0.19± 0.00 0.09± 0.00 0.82± 0.02 2.84± 0.02
n Telenor 0.04± 0.00 0.12± 0.00 1.21± 0.02 1.89± 0.02
Airtel 0.05± 0.00 0.03± 0.00 1.47± 0.03 1.41± 0.03
Grameenphone 0.00± 0.00 0.04± 0.00 1.88± 0.02 0.94± 0.01
Robi 0.00± 0.00 0.08± 0.00 2.07± 0.04 0.91± 0.03
banglalink 0.00± 0.00 0.03± 0.00 2.56± 0.04 0.54± 0.02

Table 6: Security scores for operators

Aug 2011

Feb 2012

Aug 2012

Feb 2013

Aug 2013

Feb 2014

Aug 2014

Feb 2015

Aug 2011

Feb 2012

Aug 2012

Feb 2013

Aug 2013

Feb 2014

Aug 2014

Feb 2015
0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n

2.3.3 GRI40

2.3.5 GRJ90

(b) HTC Desire HD A9191

4.4.4 KTU84Q

other

2
.3

.4
 G

R
J2

2

2.3.6 GINGERBREAD
2.3.7 GRJ22

4.0.1 ITL41F

4
.0

.2
 I
C

L
5

3
F

4.0.3 IML74K

4.0.4 ICL53F

4.0.4 IMM30B

4.0.4 IMM30D
4.0.4 IMM76D

4.0.4 IMM76I

4.0.4 IMM76K

4.1 JRN84D

4
.1

.1
 J
R

O
0

3
C

4.1.1 JRO03L

4.1.1 JRO03O

4.1.1 JRO03R

4.1.1 JRO03U

4.1.2 JZO54K

4.2 JOP40C

4.2.1 JOP40D

4.2.1 JOP40G

4
.2

.2
 J
D

Q
3

9

4.2.2 JDQ39E
4.3 JLS36G

4.3 JSS15J

4.3 JSS15Q

4.3 JWR66V

4.3 JWR66Y

4.3 JWR67B

4.3.1 JLS36I

4.4.2 KOT49H

4.4.2 KVT49L

4.4.3 KTU84M

4.4.4 KTU84P

(a) Galaxy Nexus

1.0

0.8

0.6

0.4

0.2

0.0

P
ro

p
o
rt

io
n

2
.3

.3
 G

R
I4

0

Aug 2011

Feb 2012

Aug 2012

Feb 2013

Aug 2013

Feb 2014

Aug 2014

Feb 2015
0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n

4.2.2 JDQ39

(c) Symphony W68

Figure 4: Full version distributions for the highest and lowest scoring models

manufacturer model operator nexus
m −1.67± 2.25 −0.66± 2.54 −3.3± 1.3 −3.4± 1.8
weight m −0.264± 0.277 −0.0991± 0.321 −0.461± 0.167 −0.488± 0.217
equal −0.108± 0.062 −0.0367± 0.112 −0.146± 0.045 −0.165± 0.033
weight u −0.0608± 0.122 −0.0112± 0.232 0.0242± 0.0808 −0.00596± 0.12
u 0.367± 1.61 0.219± 2.12 1.55± 0.94 1.42± 1.48
f 0.975± 0.564 0.331± 1.01 1.31± 0.41 1.48± 0.3

Table 8: Mean change in scores for different metrics

5.6 Scores over time
The scoring metric as originally computed, is averaged

over the whole history of the device manufacturer, device
model or network operator, it gives equal weight to both
periods years ago and to the last few months. If instead
we take an exponential moving average of the daily score
for days with more than 20 devices when there have been
at least 100 consecutive days of data with that many de-
vices then we can plot how this score has changed over time.
Equation 2 shows how the value for a particular day (vi) is
computed from the previous day’s value and the input for
the current day (n) with an α of 1/100.

vi = vi−1(1− α) + nα (2)

Figure 5 shows this for manufacturers, device models, net-
work operators and for Nexus and non-Nexus devices. These
show how the scores for different entities are different and
change over time, while there is correlated behaviour for
different entities (for instance, when new vulnerabilities af-
fecting all Android are discovered), these lines still cross due
to the different behaviour of the entities. It also shows that
we do not have sufficient data for all the entities all of the
time, resulting in gaps in the data. The clearest results are
for Figure 5d with a large gap between the scores for Nexus
and non-Nexus devices across the whole data set.

5.7 Gaming the score
If the comparative data given here is used to influence

purchasing decisions then entities in the Android ecosystem
might try to game the score rather than genuinely improve
security. f is hard to game without doing a good job at
security but it doesn’t get any worse if there is already one
known vulnerability and another is found. A high value of
u could be achieved by only ever shipping one version but
that would give low values for f and m (and not be at-
tractive to new customers). A high value of m could be
achieved by focusing on only one device at a time and en-
suring that it gets updates but ignoring all others, but that
would lower f and u. One way to influence our scores would
be to add additional devices to Device Analyzer, which have
good security, these would have to be real end user devices
since we could detect fake ones if they deviated from the
behaviour of real devices in Device Analyzer. This would
increase the size of our data set and would require providing
genuinely good security to some users. Some active attacks
like blocking access to the Device Analyzer servers from the
mobile data network would not be effective as Device Ana-
lyzer would retry on Wi-Fi. Other denial of service attacks
on the Device Analyzer servers might be effective but ille-
gal. Some entities might be able to force the uninstallation
of the app from all devices. Therefore, our score is secure
against passive gaming attacks which change the measured

distribution, but would require active defence against active
gaming attacks, which target the measurement devices.

6. COMPARISON WITH OTHER DATA
We compare the Device Analyzer data with three other

sources of data and find similar distributions which bound
the Device Analyzer data, indicating that it is likely to be
typical. We have obtained comparable data on 5 290 de-
vices from a multinational FTSE 100 company’s mobile de-
vice management database, which includes company and
employee owned devices, and from 5 170 000 matching User-
Agent headers on all HTTP traffic for 30% of Rwanda for a
week. We used the data from the FTSE 100 company for a
week in April 2015 and the User-Agent data was collected
in February 2015. Figure 6 shows the proportion of devices
running each Android OS version in the two comparison data
sets and the comparable periods from Device Analyzer. The
general pattern this shows is that in the FTSE data newer
versions are more popular than in the Device Analyzer data
and that in the Rwanda data old versions are more popu-
lar. Therefore the Device Analyzer data on OS versions is
bounded by these two data sets.

Unfortunately, there is no ground truth of OS version in-
formation. However, we have collated the API version infor-
mation that Google has published most months since 2009.5

While API versions are too coarse grained to use for secu-
rity update detection they are closely related to OS versions.
If the Device Analyzer data on API versions are similar to
the Google data on API versions then the Device Analyzer
data on OS versions should be representative. We compared
the data from Google and from Device Analyzer and they
are similar. We analysed the difference between the API
version data from Device Analyzer and Google Play, nor-
malising for days since the API version was released. This
shows that the Device Analyzer data systematically overes-
timates the prevalence of new API versions and underesti-
mates the prevalence of old API versions. This means that
the OS version information from Device Analyzer is likely
to be overestimating the prevalence of new OS versions and
hence our results are likely to be conservative.

7. RELATED WORK
We assume updates make security better, however the up-

date process for apps, security fixes and OS upgrades also
needs to be secure. Unfortunately, package management sys-
tems designed to provide secure updates have been found to
contain vulnerabilities [4] and many software update sys-
tems fail to authenticate the connection between the device

5http://androidvulnerabilities.org/play/
historicplaydashboard

http://androidvulnerabilities.org/play/historicplaydashboard
http://androidvulnerabilities.org/play/historicplaydashboard

20
11
-12

-01

20
12
-06

-01

20
12
-12

-01

20
13
-06

-01

20
13
-12

-01

20
14
-06

-01

20
14
-12

-01

20
15
-06

-01
0

1

2

3

4

5

6

7

8

HTC

LG

Motorola

Samsung

Sony

Symphony

alps

asus

other walton

(a) Device manufacturers

2011-12-01

2012-06-01

2012-12-01

2013-06-01

2013-12-01

2014-06-01

2014-12-01

2015-06-01
0

1

2

3

4

5

6

7

8

Desire HD

GT-I9100

GT-I9300

GT-I9505

GT-N7000

GT-N7100

GT-P1000

Galaxy Nexus

HTC Desire HD A9191

HTC Desire S

HTC Sensation Z710e

Nexus 4

Nexus 7

Symphony W68

other

(b) Device models

2011-12-01

2012-06-01

2012-12-01

2013-06-01

2013-12-01

2014-06-01

2014-12-01

2015-06-01
0

1

2

3

4

5

6

7

3

AT&T

Airtel

Grameenphone

O2 uk

Orange

Robi

Sprint

T-Mobile

Verizon

Vodafone uk

banglalink

n Telenor

unknown

(c) Network operators

20
11
-12

-01

20
12
-06

-01

20
12
-12

-01

20
13
-06

-01

20
13
-12

-01

20
14
-06

-01

20
14
-12

-01

20
15
-06

-01
0

1

2

3

4

5

6

7

8

9

nexus notnexus

(d) Nexus and non-Nexus devices

Figure 5: Security scores for device manufacturers, device
models, network operators and Nexus devices. 95% confi-
dence intervals indicated.

1
.0
.0

2
.3
.3

2
.3
.4

2
.3
.5

2
.3
.6

3
.2
.0

3
.2
.1

4
.0
.3

4
.0
.4

4
.1
.1

4
.1
.2

4
.2
.1

4
.2
.2

4
.3
.0

4
.3
.1

4
.4
.2

4
.4
.3

4
.4
.4

5
.0
.0

5
.0
.1

5
.0
.2

5
.1
.0

Version

0.0

0.1

0.2

0.3

0.4

0.5

P
ro
p
o
rt
io
n

ftse

ftse_da

ua

ua_da

Figure 6: Comparison between FTSE, User-Agent and the
corresponding Device Analyzer data, error bars indicate 95%
confidence intervals.

and the update server or do not authenticate the down-
loaded binaries [3]. Android does authenticate update bi-
naries and Google Play downloads them over a secure con-
nection [28]. In this paper we have analysed four critical
vulnerabilities in the Android app update mechanism: APK
unsigned shorts, APK unchecked name, APK duplicate file
and Fake ID. Other work has demonstrated complex and
subtle errors exist in the Android app update process. For
example, the process can be exploited to allow apps to gain
privilege through ‘Pileup’ vulnerabilities by registering for
new permissions before the update which creates that per-
mission is installed [33].

We used Device Analyzer to record data on the OS ver-
sions of Android installed on devices. Nappa et al. per-
formed a similar analysis using WINE to record data on in-
stalled versions of Windows client programs and used cleaned
NVD data rather than AVO for vulnerability data. They did
not assign client applications scores [20].

We use User-Agent strings from Rwandan internet traffic
to examine the version distribution of Android OS versions.
User-Agent strings have been used to investigate the time-
liness of web browser updates, with at most 80% of Fire-
fox users running the most recent version [12]. The same
analysis was used to show that Chrome’s use of silent up-
dates seems to increase uptake of upgrades [8] with 97% of
users running the latest version within 3 weeks of release.
By way of comparison, Android’s update process is manual.
The user is notified an update exists, but further action is
required, including downloading the update and rebooting
the phone to enable installation. The phone must have suf-
ficient charge to perform the update and the device itself
is rendered inoperable during the update process, two fac-
tors that might prevent or delay the update process from
taking place. In our data we are unable to determine why
a device is not updated. It is possible that many updates
arrive at handsets, but are simply not installed. Anecdotal
evidence suggests that it is the lack of updates rather the
lack of installation, which is the major problem at present.

Our analysis in §5.3 supports this view. Nevertheless it is
problematic that an operating system update requires a re-
boot. Chrome installs the new version side by side with the
old one and switches the next time it is restarted. The same
technique would be more difficult on phones with limited
storage space (as many cheap Android phones have barely
enough space to install just the update) but is a plausible
improvement for more high-end devices. Google is deploying
the same silent update technique through Google Play Ser-
vices,6 which automatically installs updates for core Google
components of Android, this bypasses the device manufac-
turer and network operator.

As well as supplying security updates promptly, the im-
pact of vulnerabilities can be reduced through security in
depth. In this regard, iOS provides additional safeguards
beyond those used in Android, including a pre-distribution
review, mandatory code-signing by the manufacturer, and
(with the important exception of ROP-based attacks [30])
the technical prohibition of dynamic code loading by an app.
These features, combined with mandatory access controls,
has resulted in a lower level of malware affecting iOS when
compared to Android [10].

There are continuing efforts to reduce the impact of crit-
ical vulnerabilities, both in Android and elsewhere. SE-
Android [22], which is included in Android from version
4.1 [14], and fully enforcing from version 5.0 [15] claimed
to prevent some root vulnerabilities and to reduce the im-
pact of others. Capability based enforcement systems such
as Capsicum [31] substantially reduce the capabilities with
which an exploit has to try and gain increased privilege and
could be included in Linux7 and hence Android.

Rather than fixing critical vulnerabilities, security can be
obtained by detecting malicious apps and preventing their
installation or execution. Detection strategies include Risk-
Ranker, which classified 3 281 out of 118 318 apps (2.8%)
as risky of which 718 (22%) were malware and 322 (10%)
were previously unknown malware, an infection rate of 0.6%
across multiple markets [16]. DroidRanger also analysed
apps finding 148 out of 182 823 apps (0.08%) to be mali-
cious across multiple markets, of which 29 were previously
unknown [35]. A common technique used by attackers is
to include malicious code in repackaged popular apps. An-
Darwin uses this insight to detect similar apps, and found
169 out of 265 359 of all apps studied (0.06%) were mali-
cious clones [7]. Other approaches have made further use
of malware dependency graphs [19] or tried to extract fur-
ther semantic information to avoid malware being able to
avoid detection [34] but simpler approaches based on ex-
tracting strings from the binaries can be more effective [2]
in terms of false positives and false negatives. There is a
lack of ground truth data, a danger in training algorithms
based on APK files that other algorithms have already found
which might lead to new malware being missed and Droid-
Chameleon showed that existing AntiVirus apps could be
fooled by simple permutations of malicious APKs [21].

The percentage of Android devices running the current
version (5.23%) is much less than the rate (> 90%) for Win-
dows XP SP2 computers contacting the Microsoft update
servers [13]. A simple numerical comparison is unfair be-
cause only one major OS version was considered in the Mi-

6http://lifehacker.com/why-google-play-services-are-now-
more-important-than-an-975970197
7https://github.com/google/capsicum-linux

crosoft analysis, and data was only collected from comput-
ers that contacted the update server (this was the default).
Later data demonstrates the difficulty of upgrading com-
puters between major OS versions, with 27% of Windows
computers running Windows XP in July 2014,8 four months
after Windows XP stopped receiving security updates.

8. CONCLUSION
The security of Android depends on the timely delivery

of updates to fix critical vulnerabilities. Unfortunately few
devices receive prompt updates, with an overall average of
1.26 updates per year, leaving devices unpatched for long
periods. We showed that the bottleneck for the delivery of
updates in the Android ecosystem rests with the manufac-
turers, who fail to provide updates to fix critical vulnera-
bilities. This arises in part because the market for Android
security today is like the market for lemons: there is infor-
mation asymmetry between the manufacturer, who knows
whether the device is currently secure and will receive up-
dates, and the consumer, who does not.

Consequently there is little incentive for manufacturers to
provide updates. To address this issue we developed the
FUM security metric to quantify and rank the performance
of device manufacturers and network operators, based on
their provision of updates and exposure to critical vulner-
abilities. The metric enables purchasers and regulators to
determine which device manufacturers and network opera-
tors provide updates and which do not.

Using a corpus of 20 400 devices we demonstrated that
there is significant variability in the timely delivery of secu-
rity updates across different device manufacturers and net-
work operators. We find that on average 87.7% of Android
devices are exposed to at least one of 11 known critical vul-
nerabilities and, across the ecosystem as a whole, assign a
FUM security score of 2.87 out of 10. In our data, Nexus
devices do considerably better than average with a score of
5.17; LG is the best manufacturer with a score of 3.97.

Dataset
Much of the raw and processed data and source code is avail-
able, excluding that which might identify individuals [26].
Data from Device Analyzer and AVO used in this paper is
already available. The Rwanda and FTSE data cannot be
made available.

Acknowledgements
This work was supported by a Google focussed research
award; and the EPSRC [grant number EP/P505445/1].
Thanks to Sherif Akoush and Ripduman Sohan for
supplying the Rwanda data and to staff at the FTSE 100
company for supplying their MDM data. Thanks to our
anonymous reviewers for their insightful comments;
Richard Clayton, the mobile security reading group, Anil
Madhavapeddy and Oliver Chick for reading early drafts;
David Robertson for statistical advice; and Laurent Simon,
Thomas Coudray, Adrian Taylor, Justin Case, Giant Pune
and Khilan Gudka for reporting vulnerabilities.

8https://archive.today/PLGxn

http://lifehacker.com/why-google-play-services-are-now-more-important-than-an-975970197
http://lifehacker.com/why-google-play-services-are-now-more-important-than-an-975970197
https://github.com/google/capsicum-linux
https://www.cl.cam.ac.uk/~sa497/
http://orcid.org/0000-0003-0740-8650
https://archive.today/PLGxn

References
[1] Acer, M., and Jackson, C. Critical vulnerability in

browser security metrics. Web 2.0 Security & Privacy
(W2SP) (2010).

[2] Arp, D., Spreitzenbarth, M., Malte, H., Gascon, H.,
and Rieck, K. Drebin: Effective and Explainable
Detection of Android Malware in Your Pocket. In:
Network and Distributed System Security (NDSS).
Internet Society, San Diego, CA, USA, 02/2014, 23–26.
isbn: 1891562355.

[3] Bellissimo, A., Burgess, J., and Fu, K. Secure software
updates: disappointments and new challenges. In:
USENIX Hot Topics in Security. USENIX, 2006, 37–43.

[4] Cappos, J., and Samuel, J. Package management
security. Tech. rep. University of Arizona, Computer
Science Department, 2008, 1–20.

[5] CESG End User Devices Security Guidance: Android
4.2. 10/2013. url:
https://www.gov.uk/government/publications/end-
user-devices-security-guidance-android-42 (visited
on 2015-07-28).

[6] CESG Samsung Galaxy S6 & S6 Edge - Certification
Details. 07/2015. url:
http://www.cesg.gov.uk/servicecatalogue/Product-
Assurance/CPA/Pages/Samsung-Galaxy-S6-and-S6-Edge-
Certification-Details.aspx (visited on 2015-07-24).

[7] Crussell, J., Gibler, C., and Chen, H. AnDarwin:
Scalable Detection of Semantically Similar Android
Applications. In: Computer Security–ESORICS. Springer
Berlin Heidelberg, 2013, pp 182–199. isbn:
978-3-642-40202-9.

[8] Duebendorfer, T., and Frei, S. Web browser security
update effectiveness. Lecture Notes in Computer Science
(LNCS) 6027 LNCS (2010), 124–137. issn: 03029743.

[9] Duebendorfer, T., and Frei, S. Why silent updates
boost security. Tech. rep. April. ETH Zurich, 2009.

[10] Felt, A. P., Finifter, M., Chin, E., Hanna, S., and
Wagner, D. A survey of mobile malware in the wild.
Proceedings of the 1st ACM workshop on Security and
privacy in smartphones and mobile devices. SPSM ’11 55
(2011), 3.

[11] Forristal, J. Uncovering Android Master Key That
Makes 99% of Devices Vulnerable. 03/2013. url:
https://bluebox.com/technical/uncovering-android-
master-key-that-makes-99-of-devices-vulnerable/
(visited on 2015-04-08).

[12] Frei, S., Duebendorfer, T., and Plattner, B. Firefox
(in)security update dynamics exposed. ACM SIGCOMM
Computer Communication Review 39, 1 (2008), 16–22.

[13] Gkantsidis, C., Karagiannis, T., and Vojnović, M.
Planet scale software updates. ACM SIGCOMM
Computer Communication Review 36 (2006), 423. issn:
01464833.

[14] Google Jelly Bean version information. 2015. url:
https://developer.android.com/about/versions/jelly-
bean.html (visited on 2015-04-08).

[15] Google, and Ludwig, A. Android Security 2014 Year in
Review. 04/2015. url: https:
//source.android.com/devices/tech/security/reports/
Google_Android_Security_2014_Report_Final.pdf.

[16] Grace, M., Zhou, Y., Zhang, Q., Zou, S., and Jiang, X.
RiskRanker: Scalable and Accurate Zero-day Android
Malware Detection. In: Mobisys. 2012, 281–293. isbn:
9781450313018.

[17] Grace, M., Zhou, Y., Wang, Z., and Jiang, X.
Systematic detection of capability leaks in stock Android
smartphones. Network and Distributed System Security
Symposium (NDSS) (2012).

[18] HTC The anatomy of an Android OS update. 2013. url:
http://www.htc.com/us/go/htc-software-updates-
process/ (visited on 2015-06-03).

[19] Lindorfer, M., Neugschwandtner, M.,
Weichselbaum, L., Fratantonio, Y., Veen, V. van der,
and Platzer, C. ANDRUBIS - 1,000,000 Apps Later: A
View on Current Android Malware Behaviors. In: Building
Analysis Datasets and Gathering Experience Returns for
Security (BADGERS). Wroclaw, Poland, 09/2014.

[20] Nappa, A., Johnson, R., Bilge, L., Caballero, J., and
Dumitras, T. The Attack of the Clones : A Study of the
Impact of Shared Code on Vulnerability Patching. IEEE
Symposium on Security and Privacy (2015), 692–708.

[21] Rastogi, V., Chen, Y., and Jiang, X. DroidChameleon:
evaluating Android Anti-malware against Transformation
Attacks. In: Symposium on Information, Computer and
Communications Security (ASIA CCS). March. ACM,
2013, 329–334. isbn: 978-1-4503-1767-2.

[22] Smalley, S., and Craig, R. Security Enhanced (SE)
Android: Bringing Flexible MAC to Android. Network and
Distributed System Security Symposium (NDSS) (2013).

[23] Soghoian, C., and Wizner, B. ACLU FTC Android
updates. 2013. url:
http://www.aclu.org/files/assets/aclu_-
_android_ftc_complaint_-_final.pdf.

[24] Taylor, J. R. An introduction to error analysis. 2nd ed.
University Science Books Sausalito, California, 1997. isbn:
093570275X.

[25] Thomas, D. R., and Beresford, A. R.
AndroidVulnerabilities.org. 2015. url:
http://androidvulnerabilities.org/.

[26] Thomas, D. R., Wagner, D. T., Beresford, A. R., and
Rice, A. Supporting data for: “Security metrics for the
Android ecosystem”. 07/2015. url:
https://www.repository.cam.ac.uk/handle/1810/249077
(visited on 2015-07-27).

[27] Thomas, D. R., Beresford, A. R., Coudray, T.,
Sutcliffe, T., and Taylor, A. The lifetime of Android
API vulnerabilities: case study on the JavaScript-to-Java
interface. In: Security Protocols XXIII. Springer, 03/2015.

[28] Viennot, N., Garcia, E., and Nieh, J. A measurement
study of Google Play. SIGMETRICS (2014).

[29] Wagner, D. T., Rice, A., and Beresford, A. R. Device
Analyzer: Large-scale mobile data collection. In:
Sigmetrics, Big Data Workshop. ACM, Pittsburgh, PA,
06/2013.

[30] Wang, T., Lu, K, Lu, L., Chung, S., and Lee, W. Jekyll
on iOS: when benign apps become evil. USENIX Security
Symposium (2013), 559–572.

[31] Watson, R. N. M., Anderson, J., Kennaway, K., and
Laurie, B. Capsicum: practical capabilities for UNIX. In:
USENIX Security Symposium. Vol. 46. 2. USENIX
Association, 08/2010, 29–46.

[32] Wright, J. L. Software vulnerabilities: lifespans, metrics,
and case study. PhD thesis. University of Idaho, 2014.

[33] Xing, L., Pan, X., Wang, R, Yuan, K., and Wang, X.
Upgrading Your Android, Elevating My Malware:
Privilege Escalation Through Mobile OS Updating. IEEE
Security and Privacy (2014).

[34] Zhang, M., Duan, Y., Yin, H., and Zhao, Z.
Semantics-Aware Android Malware Classification Using
Weighted Contextual API Dependency Graphs. In: CCS.
ACM, 2014. isbn: 9781450329576.

[35] Zhou, Y., Wang, Z., Zhou, W., and Jiang, X. Hey, you,
get off of my market: Detecting malicious apps in official
and alternative Android markets. In: Network and
Distributed System Security Symposium (NDSS). 2. San
Diego, CA, 02/2012.

https://www.gov.uk/government/publications/end-user-devices-security-guidance-android-42
https://www.gov.uk/government/publications/end-user-devices-security-guidance-android-42
http://www.cesg.gov.uk/servicecatalogue/Product-Assurance/CPA/Pages/Samsung-Galaxy-S6-and-S6-Edge-Certification-Details.aspx
http://www.cesg.gov.uk/servicecatalogue/Product-Assurance/CPA/Pages/Samsung-Galaxy-S6-and-S6-Edge-Certification-Details.aspx
http://www.cesg.gov.uk/servicecatalogue/Product-Assurance/CPA/Pages/Samsung-Galaxy-S6-and-S6-Edge-Certification-Details.aspx
https://bluebox.com/technical/uncovering-android-master-key-that-makes-99-of-devices-vulnerable/
https://bluebox.com/technical/uncovering-android-master-key-that-makes-99-of-devices-vulnerable/
https://developer.android.com/about/versions/jelly-bean.html
https://developer.android.com/about/versions/jelly-bean.html
https://source.android.com/devices/tech/security/reports/Google_Android_Security_2014_Report_Final.pdf
https://source.android.com/devices/tech/security/reports/Google_Android_Security_2014_Report_Final.pdf
https://source.android.com/devices/tech/security/reports/Google_Android_Security_2014_Report_Final.pdf
http://www.htc.com/us/go/htc-software-updates-process/
http://www.htc.com/us/go/htc-software-updates-process/
http://www.aclu.org/files/assets/aclu_-_android_ftc_complaint_-_final.pdf
http://www.aclu.org/files/assets/aclu_-_android_ftc_complaint_-_final.pdf
http://androidvulnerabilities.org/
https://www.repository.cam.ac.uk/handle/1810/249077

	Introduction
	Threat model
	Data
	Critical vulnerabilities
	Device Analyzer data

	Android Ecosystem
	Security metrics
	Method: The FUM score
	Results: Security scores
	Update bottleneck
	Sensitivity of scoring metric
	Utilitarianism
	Scores over time
	Gaming the score

	Comparison with other data
	Related work
	Conclusion

