
Incentivising software updates

Daniel R. Thomas and Alastair R. Beresford

Cybercrime Centre, Computer Laboratory, University of Cambridge

Abstract

Internet of Things devices will need software up-
dates to fix the security vulnerabilities that are
found after they are sold. Even when using de-
velopment practices that make producing updates
easy, there is still a cost to doing so. Hence, in-
centives to provide updates are required. This in-
centive can only be provided by monitoring the
relative performance of different companies at sup-
plying software updates to their customers.

1 Introduction

Internet connected devices are always subject to
external probing and attacks. Software always has
bugs and some of those are security vulnerabilities.
Hence, there will always be a need for software up-
dates to fix security vulnerabilities because provid-
ing secure software is hard.

There are tools and techniques for reducing the
number of vulnerabilities such as using static an-
alyzers to find them, using languages that enforce
type safety and prevent some classes of vulnera-
bility, using secure libraries to perform security
critical tasks like sanitising input, using operat-
ing systems that provide useful primitives and
strong compartmentalisation. There are also mit-
igation strategies that reduce the severity of vul-
nerabilities; for instance using compartmentalisa-
tion/containment technologies such as Capsicum
in the operating system [8] or CHERI in hard-
ware [9]; or using stateless firewalls that hide de-
vices from known bad addresses. Authenticated
encryption of connections to and from devices
can make it harder to exploit vulnerabilities and
projects like Let’s Encrypt [1] facilitate that.

However, even with all these strategies, updates
are still required, so this needs to be easy to do.
Upgrading can be made easier through side-by-
side installation of updates, such as is used in
Chrome [2], because this means updates are eas-
ily applied on the next restart, without prolonged
interruptions in service for the user. That is only

possible if there is sufficient room on the device’s
storage for two copies of the software plus working
space, and so devices need to be provisioned with
room to expand into. Proper package manage-
ment that tracks dependencies and separates out
all the component parts, such as the one used in
Debian derived systems, makes producing security
updates much easier because after fixing one li-
brary all its reverse-dependencies get the fix. How-
ever it does require coordinated maintainers for all
the components. This contrasts with the package
management used in Android and iOS where li-
braries get bundled with the apps making fixing
one library require fixing many apps that include
it. If software is open source then ‘anyone’ can
write the patch to fix the security vulnerability,
thus the manufacturer might be spared the cost
of implementing the fix (though they still need to
test it and deploy it). Even with all these and
other techniques there still is a cost to producing
updates, so incentives are required, or companies
will often decide it is not worth doing for discontin-
ued products. Even when an update is available,
until the fix has reached almost all devices the
vulnerability can still get exploited. Previously
we have shown that it takes years for updates to
be fully deployed on Android after a vulnerability
is discovered and fixed [6], and so ensuring deploy-
ment is important.

Incentives can come from a variety of sources. If
the business model is rent based (SAAS / Cloud /
subscription) and switching providers is easy then
the provider has an incentive to ensure that all
the equipment that they own and operate inside
customers property works correctly so that they
retain the customer. However, for devices bought
on a one-off basis the customer needs to believe
at the time of purchase that the device will keep
on working, thus the reputation of the company
providing the device matters. This provides an
opportunity to incentivise businesses to act cor-
rectly by providing customers and regulators with
comparative information on the security offered by
different providers.

1

Discovered Patched

Time

Sum of known but unpatched

0
1
2
3

#
u

n
p

a
tc

h
ed

v
u

ln
er

a
b

il
it

ie
s

0 0 01 1 1 112 2 22 2 2 2 2 2 23 3

Figure 1: As vulnerabilities are discovered and
patched the sum of known but unpatched vulnera-
bilities each day varies. From this m can be calcu-
lated: m = (0×3+1×5+2×10+3×2)/20 = 1.55.
Example based on the one given by Wright [10].

2 Comparing providers

This section describes a scheme for assigning a
device a score between zero and ten that should
correlate with the actual security of the devices.
We originally developed this scheme to compare
Android manufacturers and models but it can also
be applied to Internet of Things (IoT) devices [5].
To compare providers two kinds of information is
required: 1) information on the deployed versions
of all software running on devices; 2) information
on the vulnerabilities affecting different versions
of that software.

The FUM score is computed from three compo-
nents:

free f The proportion of running devices free
from critical vulnerabilities over time.

update u The proportion of devices that run the
latest version of the software shipped to any
device produced by that device manufacturer.
This is a measure of internal updatedness, so
a low score would mean many devices are left
behind. This assumes that newer versions are
better with stronger security. This is usually
the case though sometimes updates introduce
new vulnerabilities.

mean m The mean number of outstanding vul-
nerabilities affecting devices not fixed on any
device shipped by the device manufacturer.
An example is given in Figure 1.

These three metrics f , u and m, together mea-
sure the security of a platform with respect to
updates for known vulnerabilities. The value f
is a key measure of the direct risk to users as a
known, unfixed, vulnerability means devices are

vulnerable. However, it does not capture the in-
creased risk caused by multiple known vulnerabil-
ities, which gives an attacker more opportunities
and increases the likelihood of a piece of malware
having a matching exploit. This is captured by
the m score, which measures the size of the de-
vice manufacturers queue of outstanding vulnera-
bilities. The m score does not take into account
the update process or measure actual end user se-
curity. Neither of these metrics capture whether
devices are left behind and not kept up-to-date
with the most recent (and hopefully most secure)
version, which is captured by u.

A score out of 10 is provided as this is easy
for purchasers to understand, because many rat-
ings are given as a score out of 10. Since f is the
most important metric it is weighted more highly.
Since m is an unbounded positive real number, it
is mapped into the range (0–1]. This gives us the
FUM score with a range of (0–10]:

FUM score = 4 · f + 3 · u + 3 · 2

1 + em

2.1 Security scores for Android

Using data collected by an Android app called
Device Analyzer [7], which collects information
on the deployed versions of Android on running
devices; and from our AndroidVulnerabilities.org
website [4], which collates information on known
vulnerabilities in Android we applied the FUM
scoring metric to Android.

On average, between July 2011 and March 2016,
we found 12.4% of devices to be free from known
vulnerabilities, 5.67% of devices to run the most
recent version of Android and 0.661 outstand-
ing vulnerabilities not fixed on any device. This
gives a security score of 2.71 out of 10. However,
there are a wide variety of scores depending on
the source of the device. There is anecdotal ev-
idence that Google’s Nexus devices are better at
getting updates than other Android devices be-
cause Google makes the original updates and ships
them to its devices [3]. Table 1 shows that this is
indeed the case with Nexus devices getting much
better scores than non-Nexus devices. Different
device manufacturers have very different scores,
Table 1 shows the scores for several device man-
ufacturers with a significant presence in the data,
with LG (4.28 out of 10) scoring highest.

2

Name f u m score
(out of 10)

Nexus 0.53 0.50 0.69 5.63 ± 0.02
non-Nexus 0.09 0.02 0.74 2.35 ± 0.00

LG 0.34 0.33 0.74 4.28 ± 0.02
Motorola 0.26 0.14 0.65 3.50 ± 0.02
HTC 0.13 0.09 0.87 2.59 ± 0.02
Sony 0.13 0.18 1.09 2.57 ± 0.02
Asus 0.23 0.46 5.61 2.29 ± 0.02
Samsung 0.11 0.06 0.99 2.24 ± 0.00
oneplus 0.02 0.31 7.85 1.00 ± 0.02

Table 1: FUM scores for Nexus and manufacturers

2.2 Gaming the score

If the comparative scoring metric given here
is used to influence purchasing decisions then
providers might try to game the score rather than
genuinely improve security. The value of f is hard
to game without providing good security but it
does not get any worse if there is already one
known vulnerability and another is found. A high
value of u could be achieved by only having one
version but that would give low values for f and m
(and not be attractive to customers). A high value
of m could be achieved by on only supporting one
device at a time and ensuring that it gets updates,
but that would lower f and u. One way to influ-
ence the scores would be to attack the data collec-
tion system either by providing false data or pre-
venting correct data from being collected. There-
fore, the score is secure against passive gaming at-
tacks that change the measured distribution, but
would require active defence against active gaming
attacks, which target the measurement devices.

3 Outlook

Security updates will always be required because
writing software without vulnerabilities is hard.
There will always be some cost to producing
and deploying updates, hence incentives are re-
quired. In order to apply pressure, regulators, con-
sumers and corporate purchasers need data on the
comparative performance of alternative providers.
The FUM scoring metric is one attempt at provid-
ing that data. It requires third parties to a have
visibility into the versions of running software on
devices so that they can produce aggregate statis-
tics. However, advertising this information to the
whole world would make it easy for script kiddies
to find vulnerable devices.

References

[1] Barnes, R., Hoffman-Andrews, J., and
Kasten, J. Automatic Certificate Management
Environment (ACME). Tech. rep. IETF,
03/2016. url:
https://datatracker.ietf.org/doc/draft-

ietf-acme-acme/.

[2] Duebendorfer, T., and Frei, S. Why silent
updates boost security. Tech. rep. April. ETH
Zurich, 2009. url: ftp:
//129.132.2.249/pub/publications/TIK-

Report-302.pdf.

[3] Hoffman, C. HTG Explains: Why Android
Geeks Buy Nexus Devices. 05/2013. url:
http://www.howtogeek.com/139391/htg-

explains-why-android-geeks-buy-nexus-

devices/ – https://archive.is/iGxrZ

(visited on 2015-09-17).

[4] Thomas, D. R., and Beresford, A. R.
AndroidVulnerabilities.org. 2015. url:
http://androidvulnerabilities.org/ –
https://archive.is/VdiPu.

[5] Thomas, D. R., Beresford, A. R., and
Rice, A. Security metrics for the Android
ecosystem. In: ACM CCS Workshop on Security
and Privacy in Smartphones and Mobile
Devices (SPSM). ACM, Denver, Colorado,
USA, 10/2015. isbn: 978-1-4503-3819-6.

[6] Thomas, D. R., Beresford, A. R.,
Coudray, T., Sutcliffe, T., and Taylor, A.
The lifetime of Android API vulnerabilities:
case study on the JavaScript-to-Java interface.
In: Security Protocols XXIII. Springer, 03/2015.

[7] Wagner, D. T., Rice, A., and
Beresford, A. R. Device Analyzer:
Understanding smartphone usage. International
Conference on Mobile and Ubiquitous Systems:
Computing, Networking and Services
(MOBIQUITOUS) (2013), 1–12. issn:
1867-8211. url: http://link.springer.com/
chapter/10.1007/978-3-319-11569-6_16.

[8] Watson, R. N. M., Anderson, J.,
Kennaway, K., and Laurie, B. Capsicum:
practical capabilities for UNIX. In: USENIX
Security Symposium. Vol. 46. 2. USENIX
Association, 08/2010, 29–46. url:
http://www.usenix.org/events/sec10/tech/

full_papers/Watson.pdf.

[9] Watson, R. N. M., et al. CHERI: A hybrid
capability-system architecture for scalable
software compartmentalization. Symposium on
Security and Privacy (2015), 20–37. issn:
10816011.

[10] Wright, J. L. Software vulnerabilities:
lifespans, metrics, and case study. PhD thesis.
University of Idaho, 2014. url: http:
//www.thought.net/papers/thesis.pdf.

3

https://datatracker.ietf.org/doc/draft-ietf-acme-acme/
https://datatracker.ietf.org/doc/draft-ietf-acme-acme/
ftp://129.132.2.249/pub/publications/TIK-Report-302.pdf
ftp://129.132.2.249/pub/publications/TIK-Report-302.pdf
ftp://129.132.2.249/pub/publications/TIK-Report-302.pdf
http://www.howtogeek.com/139391/htg-explains-why-android-geeks-buy-nexus-devices/
http://www.howtogeek.com/139391/htg-explains-why-android-geeks-buy-nexus-devices/
http://www.howtogeek.com/139391/htg-explains-why-android-geeks-buy-nexus-devices/
 https://archive.is/iGxrZ
http://androidvulnerabilities.org/
 https://archive.is/VdiPu
http://link.springer.com/chapter/10.1007/978-3-319-11569-6_16
http://link.springer.com/chapter/10.1007/978-3-319-11569-6_16
http://www.usenix.org/events/sec10/tech/full_papers/Watson.pdf
http://www.usenix.org/events/sec10/tech/full_papers/Watson.pdf
http://www.thought.net/papers/thesis.pdf
http://www.thought.net/papers/thesis.pdf

	Introduction
	Comparing providers
	Security scores for Android
	Gaming the score

	Outlook

