
Measuring security and cybercrime
Daniel R. Thomas
Cambridge Cybercrime Centre, Department of Computer Science and Technology, University
of Cambridge, UK

SecHuman 2018

GPG: 5017 A1EC 0B29 08E3 CF64 7CCD 5514 35D5 D749 33D9
Firstname.Surname@cl.cam.ac.uk

Format

1. Group warm up (5 minutes)
2. Short lecture (35 minutes).
3. Experimental design and review (50 minutes)

3.1 Designing an experiment to measure security or cybercrime (30
minutes)

3.2 Plenary feedback (20 minutes)

2 of 39

What is security and how to we measure it?

▶ Discuss in groups for 2 minutes
▶ Then we will listen to some of the ideas

3 of 39

Measuring security and cybercrime is important

▶ Is security getting better or worse?
▶ Did this intervention work?
▶ Is there a difference in security between these products?

4 of 39

Are we on a positive trajectory or do we need to start doing something
differently
Testing whether interventions work is necessary for science but we need to
be able to measure the improvement.
If we can compare products then we can pick more secure ones and that cre-
ates an economic incentive for manufacturers of those products to provide
better ones. If regulators can tell the difference then they can regulate.

Two examples of security measurement research

▶ Measuring security of Android
▶ Measuring DDoS attacks (cybercrime)

Drawing out the principles, insights, and mistakes as we go along.

5 of 39

I hope that you will learn from my mistakes so as to make interesting new
mistakes of your own, and that you will learn that you could probably do a
better job than me at this. We are all human and we all get things wrong.
I am going to cover these two examples and then we will discuss more
general principles through the group work.

Security metrics for the Android ecosystem1

https://androidvulnerabilities.org/

Daniel R. Thomas

Alastair R. Beresford

Andrew Rice

Daniel Wagner
1Daniel R. Thomas, Alastair R. Beresford, and Andrew Rice. 2015. Security

metrics for the Android ecosystem. In ACM CCS workshop on Security and Privacy
in Smartphones and Mobile Devices (SPSM). ACM, Denver, Colorado, USA, (Oct.
2015), 87–98. isbn: 978-1-4503-3819-6.

6 of 39

https://androidvulnerabilities.org/

This was the last paper of my PhD, Alastair was my PhD supervisor, Andy
my second supervisor, and Daniel Wagner a fellow PhD student. Here we
see the first mistake, Daniel Wagner’s name is not on the paper which is
an error I regret. His start-up got bought at an inconvenient moment.
This research is from 2015 and I am have mostly not updated figures or
numbers, mostly because I don’t have updated figures or numbers (more
on that later).

Smartphones contain many apps written by a spectrum
of developers

How “secure” is a smartphone?

7 of 39

Smartphones have lots of sensitive content on them and the quantity of
sensitive data is still growing.
We don’t trust developers
We have introduced a sandbox
Is the sandbox working?

Root/kernel exploits are harmful

▶ Root exploits break permission model
▶ Cannot recover to a safe state
▶ In 2012 37% Android malware used root exploits
▶ We’re interested in critical vulnerabilities, exploitable by code

running on the device

8 of 39

Is malware trying to break out of the sandbox?
We know that malware does not necessarily need to break out of the
sandbox to cause problems, but that is not our focus here. Vulnerability is
also rather more subtle than this critical/not critical distinction used here
for simplicity. Composite vulnerability modelling is future work.

Hypothesis: devices vulnerable because they are not
updated

▶ Anecdotal evidence was that updates rarely happen
▶ Android phones, sold on 1-2 year contracts

9 of 39

My anecdotes are now a bit out of date as I have not replaced my phone
since writing this in 2015 and I also have not had any updates since 2015.
While there is anecdotal evidence, there is a lack of concrete data about
what is really happening.
Many devices actually used for longer than 2 years.
In contrast Windows XP could be purchased for a one off payment and
got updates from 2001 until 2014.

No central database of Android vulnerabilities: so we
built one

10 of 39

Collected a whole bunch of vulnerabilities, including a number of critical
vulnerabilities that lack CVE numbers.
Standard trawling of forums, blog posts etc. as well as the CVE databases.
Not been updated since 2015 and so now very outdated. However, all
ready to go if someone wants to start it up again. This seems to always
happen with research projects, I was critical of others who did the same
thing but then did it myself. There is little incentive to keep updating
something like this if you don’t have another paper coming out of it. Lots
of tedious manual work to maintain.
I would perhaps also not use the same terminology “responsible disclosure”
has gone out of fashion in favour of “coordinated disclosure” as callint it
“responsible” is considered a pejorative towards people chosing different
disclosure strategies.

Device Analyzer gathers statistics on mobile phone
usage

▶ Deployed May ’11
▶ 30 000

contributors
▶ 4 000 phone years
▶ 180 billion records
▶ 10TB of data
▶ 1089 7-day active

contributors
(2015 numbers)

11 of 39

Device Analyzer has been running since 2011.
You can use the data for your own research and you can install the app to
contribute to research.
Actually being actively developed at the moment (not true back in 2015).

Device Analyzer gathers wide variety of data

Including: system statistics
▶ OS version and build number
▶ Manufacturer and device model
▶ Network operators

12 of 39

We use the OS version and build number information along with the man-
ufacturer and device model information.
This can be combined with data on vulnerabilities to work out which de-
vices were exposed to which vulnerabilities over time and apportion that
to manufacturers, network operators and device models.

Is the ecosystem getting updated?

13 of 39

One thing we can look at is whether the ecosystem as a whole is being
updated. If it is not being updated then it can’t be secure.

Google data: device API levels

Oct 2
011

Apr 2
012

Oct 2
012

Apr 2
013

Oct 2
013

Apr 2
014

Oct 2
014

Apr 2
015

Oct 2
015

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n
 o

f
d

e
v
ic

e
s

3 4
7

8

10

12 1314

15
16

17
18

19

21
22

23

14 of 39

I collected (and still collect) Google Play’s monthly data on API versions
installed on devices contacting Google Play.
This shows that it takes a long time for updates to be deployed. This
graph shows both updates due to devices getting updates, updates due
to devices getting replaced, and updates due to new phones being sold to
new people who didn’t have phones before (reducing the proportion of old
phone users).
Aside: longitudinal studies are important but hard so try to think if there
is some data that you could start collecting now so that in 5 years time
you can publish something really interesting.

Are devices getting updated?

15 of 39

However the change in the ecosystem could be due to old devices getting
binned and new ones being bought.
To work out if devices are being updated we need longitudinal data on
individual devices. This is provided by Device Analyzer.

LG devices by OS version

16 of 39

Top 50 LG devices (by length of contribution), many have received updates.
But you can also see that many of the older devices didn’t receive updates,
there appears to have been a change in LG’s behaviour.
Slightly strange looking hard to read but colourful plot, so many days of
my life spent trying to make these work well in matplotlib.
The black marks indicate build number only updates where the version
number did not change.

Connecting the two data sets: assume OS version →
vulnerability

▶ We have an OS version from Device Analyzer
▶ We have vulnerability data with OS versions
▶ Match on OS and Build Number and assign:

▶ Vulnerable
▶ Maybe invulnerable
▶ Invulnerable (not known vulnerable)

17 of 39

A device is insecure if it is exposed to known vulnerabilities because it’s
OS was built before the vulnerability was fixed and so must contain the
vulnerability.
It is maybe secure if its build number was only observed after the vulner-
ability was fixed but the OS version number is known to be insecure.
It is secure if it is running a known good version of Android for that date.

Vulnerability varies over time

Oct 2
011

Apr 2
012

Oct 2
012

Apr 2
013

Oct 2
013

Apr 2
014

Oct 2
014

Apr 2
015

Oct 2
015

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n

 o
f

d
e
v
ic

e
s

vulnerable

m
a
y
b

e
 i
n

v
u

ln
e
ra

b
le

invulnerable

zergRush APK duplicate file Fake ID Last AVO

19%

11%

70%

18 of 39

To start off with everything is maybe secure as we don’t have data before
a vulnerability was discovered to know if the build number was made after
it, however once zergRush was discovered we knew how bad things were.
14 vulnerabilities contribute to this graph. Red vertical lines are caused
by the discovery of vulnerabilities. After “Last AVO” the graph shows
improvement, but this might just be an artefact of the lack of additional
AVO data.

The FUM metric measures the security of Android
devices

FUM = 4f + 3u + 3 2
1 + em

free from (known) vulnerabilities
updated to the latest version
mean unfixed vulnerabilities

19 of 39

To provide a score out of 10 to compare manufacturers we combine three
metrics that are variations on ones that have been used in the past.
Free = Proportion of devices free from vulnerabilities
Update = Proportion of devices running the latest version of Android used
by that device manufacturer.
Mean = Mean number of vulnerabilities affecting not fixed on any device
by the device manufacturer. This has to be scaled to between 0 and 1,
hence the more complicated expression.
4+3+3=10
The sensitivity of this metric to changes is discussed in the paper.
We think it is hard to game this score without actually improving security.
Caveat: Proportion maybe invulnerable is just ignored in these calculations
for historical reasons.

Aug 2011

Feb 2012

Aug 2012

Feb 2013

Aug 2013

Feb 2014

Aug 2014

Feb 2015

4.4.4 KTU84Q

other

2
.3

.4
 G

R
J2

2

2.3.6 GINGERBREAD
2.3.7 GRJ22

4.0.1 ITL41F

4
.0

.2
 I
C

L
5

3
F

4.0.3 IML74K

4.0.4 ICL53F

4.0.4 IMM30B

4.0.4 IMM30D
4.0.4 IMM76D

4.0.4 IMM76I

4.0.4 IMM76K

4.1 JRN84D

4
.1

.1
 J
R

O
0

3
C

4.1.1 JRO03L

4.1.1 JRO03O

4.1.1 JRO03R

4.1.1 JRO03U

4.1.2 JZO54K

4.2 JOP40C

4.2.1 JOP40D

4.2.1 JOP40G

4
.2

.2
JD

Q
3

9

4.2.2 JDQ39E
4.3 JLS36G

4.3 JSS15J

4.3 JSS15Q

4.3 JWR66V

4.3 JWR66Y

4.3 JWR67B

4.3.1 JLS36I

4.4.2 KOT49H

4.4.2 KVT49L

4.4.3 KTU84M

4.4.4 KTU84P

Galaxy Nexus

1.0

0.8

0.6

0.4

0.2

0.0

P
ro

p
o
rt

io
n
 o

f
d
e
v
ic

e
s

2
.3

.3
 G

R
I4

0

20 of 39

Is the score reasonable?
This is the highest scoring device model, it gets lots of updates. Sometimes
only a few devices ever see a particular update and distribution of updates
is not immediate, but it is pretty quick, especially in comparison with the
ecosystem view.

Lack of security updates

Aug 2011

Feb 2012

Aug 2012

Feb 2013

Aug 2013

Feb 2014

Aug 2014

Feb 2015
0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n

2.3.3 GRI40

2.3.5 GRJ90

HTC Desire HD A9191

Aug 2011

Feb 2012

Aug 2012

Feb 2013

Aug 2013

Feb 2014

Aug 2014

Feb 2015
0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n

4.2.2 JDQ39

Symphony W68

21 of 39

These are two of the lowest scoring device models, one of them got one
update.
The first one starts on the same build number as our highest scoring device
model. Other device models with similar names got rather better scores.
How do you show uncertainty on plots like this? Some parts of these plots
may be based on contributions from a statistically insignificant number of
devices.

Comparing manufacturers

Nexus devices
LG

Motorola
Samsung

Sony
HTC

Asus
Alps

Symphony
Walton

0

1

2

3

4

5

6

7

FUM scores

m

u

f

F
U

M
 s

co
re

22 of 39

Nexus devices are not really a manufacturer, and actually LG (second on
this list), was the main manufacturer of Nexus devices during the period
of study. This means that the fact that LG does rather worse than Nexus
devices implies that its non-Nexus devices are not looked after nearly so
well.
There are companies on this list you probably haven’t heard of because
they were big in Bangladesh where we had a focussed study. There are
also manufacturers that you may well have heard of, which are not on this
list, because they were not big at the time.

Why is fixing vulnerabilities hard: software ecosystem is
complex

▶ Division of labour
▶ Open source software
▶ Core OS production
▶ Driver writer
▶ Device manufacturer
▶ Retailer
▶ Customer

▶ Apple and Google have different models
▶ Hypothesis: Apple’s model is more secure

23 of 39

Security updates have to pass through a lot of different hands before they
reach the device and any step could impose a delay.
Apple has a vertically integrated solution, perhaps simplifying things
though they still have some external dependencies.

Google to the rescue

▶ Play Store
▶ Verify apps
▶ Android Security Patch Level
▶ Later: Android Enterprise

Recommended

24 of 39

We saw that Android devices were mostly vulnerable to know critical secu-
rity vulnerabilities, but we didn’t see widespread exploitation. Why? Well
you first have to get the malicious app onto the device. Composition and
scalability of vulnerabilities comes into play again here.
Security updates within 90 days for at least 3 years

What happened next?

▶ Plenty press coverage
▶ Contacts with Google, manufacturers, UK Home Office
▶ FTC cites work.
▶ Google uses graphs to pressure manufacturers to improve update

provision
▶ We move on: no further collection of vulnerability data, no

updated scores.

25 of 39

Presenting metrics that produce comparative scores for the security pro-
vided by different entities such as manufacturers.
We collected data on what devices were doing and data that meant we
could ascribe security properties to that data and then we could produce
a score.

1000 days of UDP amplification DDoS attacks2

Daniel R. Thomas

Richard Clayton

Alastair R. Beresford

2Daniel R. Thomas, Richard Clayton, and Alastair R. Beresford. 2017. 1000 days
of UDP amplification DDoS attacks. In APWG Symposium on Electronic Crime
Research (eCrime). IEEE, (Apr. 2017).

26 of 39

We have been using honeypots to collect data on UDP amplification Dis-
tributed Denial of Service attacks since March 2014. I will describe some
of what we have learnt from this data and how we verified our results using
leaked data.

UDP scanning

Reflector
8.8.8.8

Attacker
192.168.25.4

big.gov IN TXT
src: 192.168.25.4
dst: 8.8.8.8

big.gov IN TXT "
Extremely long
response..............
...........................
...........................
.........................."
src: 8.8.8.8
dst: 192.168.25.4

(1)(2)

27 of 39

To conduct UDP amplification DDoS attacks the attacker first needs to
find reflectors it can use to reflect off.
To do this it uses UDP in a standard way, sending out UDP packets and
collecting the responses.
In this example it sends out a DNS packet, and when it finds a real reflector
it gets a response back.
In this way by scanning the IPv4 space attackers can build up a list of all
the reflectors they can use for attacks. This can be done in 45 minutes
on a fast connection. Some ISPs rate limit scanners and so you get better
coverage with slower scans.
I am going to focus on attacks, but the paper has further discussion of
scanners.

UDP reflection DDoS attacks

Reflector
8.8.8.8

Attacker
192.168.25.4

Victim
172.16.6.2

big.gov IN TXT
src: 172.16.6.2
dst: 8.8.8.8

big.gov IN TXT "
Extremely long
response..............
...........................
...........................
.........................."
src: 8.8.8.8
dst: 172.16.6.2

28 of 39

UDP reflection DDoS attacks exploit the fact that UDP (unlike TCP)
does not verify the source IP address with a 3 way handshake. Hence, if
an attacker can spoof the source IP address on the packets they send then
the response will go to their victim.
In this example the attacker sends a DNS query to a resolver but spoofs
the source IP address as the victim IP address. The much larger response
goes to the victim.
The attacker can repeat this many times and over thousands of resolvers.
This results in a large volume of traffic to the victim. The victim does not
know the address of the attacker. Most of the attacks using this method
are from booters: DDoS as a service.

We run lots of UDP honeypots

▶ Median 65 nodes since 2014
▶ Hopscotch emulates abused protocols

QOTD, CHARGEN, DNS, NTP, SSDP, SQLMon, Portmap,
mDNS, LDAP

▶ Sniffer records all resulting UDP traffic
▶ (try to) Only reply to black hat scanners

29 of 39

Since March 2014 we have been running UDP honeypots.
A small program called hopscotch emulates UDP protocols that are abused
in UDP reflection attacks.
Another small program called sniffer records UDP traffic.
Hopscotch aims to only reply to black hat scanners and so when it has
seen more than a handful of packets from the same destination it stops
responding. The honeypots also collaborate to report victims and so not
send them traffic.

Total attacks estimated using capture-recapture

A=160 B=200

Estimated population: 400 ± 62

80
80

120

30 of 39

With these sensors we can see some attacks, but we want to know how
many attacks there were, including the attacks we did not observe.
We can do this using the capture-recapture technique originally developed
for ecology.
On day A we go fishing in a lake and catch 160 fish, mark them and return
them to the lake, on day B we go fishing and catch 200 fish, of which 80
were marked as being previously caught. From this we can estimate that
there are 400 fish in the lake.
We can then use this to estimate the total number of UDP attacks. We
can split our sensors into two groups, A and B and look at the number of
attacks that each detected and the size of the overlap.

 10

 100

 1000

 10000

 100000

2014-07

2014-10

2015-01

2015-04

2015-07

2015-10

2016-01

2016-04

2016-07

2016-10

2017-01

2017-04

2017-07

E
st

im
a
te

d
 n

u
m

b
e
r

o
f

a
tt

a
ck

s
p
e
r

d
a
y
 (

lo
g
)

CHARGEN
DNS
NTP
SSDP

31 of 39

This graph shows the estimated total number of attacks per day for the
four most used protocols.
It shows substantial changes in the number of attacks being made with
each protocol over time.
SSDP is becoming more fashionable again after a period when it was much
less widely used.
NTP has remained consistently popular and DNS has varied a lot, our
data for DNS is not quite as good due to the large number of real DNS
reflectors.
There was a paper that examined data from before the start of our mea-
surement period and concluded that NTP was declining in popularity. Our
longitudinal study shows that protocols go in and out of fashion. Just
because it stops being used so much doesn’t mean it won’t come back.

 0

 0.2

 0.4

 0.6

 0.8

 1

2014-07

2014-10

2015-01

2015-04

2015-07

2015-10

2016-01

2016-04

2016-07

2016-10

2017-01

2017-04

2017-07

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

P
ro

p
o
rt

io
n
 o

f
a
ll

a
tt

a
ck

s
th

a
t

w
e
 o

b
se

rv
e

CHARGEN
DNS
NTP

SSDP

32 of 39

This graph shows the proportion of the estimated total number of attacks
that we observe each day. In general we have very good coverage, seeing
almost all attacks. However, on some days we do rather worse, particularly
for DNS and SSDP.

 0

 0.2

 0.4

 0.6

 0.8

 1

2014-07

2014-10

2015-01

2015-04

2015-07

2015-10

2016-01

2016-04

2016-07

2016-10

2017-01

2017-04

2017-07

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

N
u
m

b
e
r

o
f

h
o
n
e
y
p
o
ts

 i
n
 o

p
e
ra

ti
o
n

A+B
A

33 of 39

This graph shows both the total number of honeypots we had in operation
and the number in the A set used for capture-recapture. It varies over time
as a result of our main contributor ceasing to share data with us and our
rebuilding our own network of sensors.

 0

 0.2

 0.4

 0.6

 0.8

 1

2014-07

2014-10

2015-01

2015-04

2015-07

2015-10

2016-01

2016-04

2016-07

2016-10

2017-01

2017-04

2017-07

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

P
ro

p
o
rt

io
n
 o

f
a
ll

a
tt

a
ck

s
th

a
t

w
e
 o

b
se

rv
e

N
u
m

b
e
r

o
f

h
o
n
e
y
p
o
ts

 i
n
 o

p
e
ra

ti
o
n

A+B
A

CHARGEN
DNS
NTP

SSDP

34 of 39

As you might expect there is correlation between the number of honeypots
in operation and the proportion of attacks that we observe.

This was ethical

▶ We reduce harm by absorbing attack traffic
▶ We don’t reply to white hat scanners (no timewasting)
▶ We used leaked data for validation, this was necessary and did not

increase harm.
▶ Further discussion of the ethics of using leaked data for research

tomorrow.

35 of 39

We followed our institutions ethics procedure. Running these honeypots
reduces harm as when an attacker uses our honeypots to attack their
victim their victim will receive rather less traffic than they would have if
the attacker had used one of the many real reflectors.
To avoid wasting white hat’s time we never reply to their scanners so they
don’t report us as being reflectors.

This is a solvable problem

▶ BCP38/SAVE
▶ Follow the money
▶ Enforce the law
▶ Warn customers it is illegal

36 of 39

CAIDA’s spoofer prober project measures compliance with BCP38.
Paypal has made a big impact on booter revenue.
Lots of arrests have been made.
Booter users don’t all realise fully that what they are doing is illegal.

Experimental design [30 minutes]

How would you measure the relative security of different:

BO Banks
BOT CPU vendors

DO Residential ISPs
DU Operating systems

E Cycle lock
manufacturers

GE IoT manufacturers
HER Offices
MH Elections
OB Online payment

providers
RE Smartphones

What data would you need to collect?
How would you collect it?
Would it be possible to cheat your measurement without actually
improving security?

37 of 39

Plenary discussion [20 minutes]

Feedback from each group on their experimental design.

38 of 39

Thank you! Questions?

Daniel R. Thomas
Daniel.Thomas@cl.cam.ac.uk
@DanielRThomas24
https://www.cl.cam.ac.uk/~drt24/
5017 A1EC 0B29 08E3 CF64 7CCD 5514 35D5 D749
33D9

Daniel Thomas is supported by the EPSRC [grant number EP/M020320/1].

39 of 39

mailto:daniel.thomas@cl.cam.ac.uk
https://www.cl.cam.ac.uk/~drt24/
https://www.epsrc.ac.uk/

References I

[1] Daniel R. Thomas, Alastair R. Beresford, and Andrew Rice. 2015.
Security metrics for the Android ecosystem. In ACM CCS workshop on
Security and Privacy in Smartphones and Mobile Devices (SPSM). ACM,
Denver, Colorado, USA, (Oct. 2015), 87–98. isbn: 978-1-4503-3819-6.

[2] Daniel R. Thomas, Richard Clayton, and Alastair R. Beresford. 2017.
1000 days of UDP amplification DDoS attacks. In APWG Symposium on
Electronic Crime Research (eCrime). IEEE, (Apr. 2017).

1 of 1

	Appendix
	References

