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Abstract

This paper investigates novel methods for in-
corporating syntactic information in probabilis-
tic latent variable models of lexical choice and
contextual similarity. The resulting models cap-
ture the effects of context on the interpretation
of a word and in particular its effect on the
appropriateness of replacing that word with a
potentially related one. Evaluating our tech-
niques on two datasets, we report performance
above the prior state of the art for estimating
sentence similarity and ranking lexical substi-
tutes.

1 Introduction

Distributional models of lexical semantics, which as-
sume that aspects of a word’s meaning can be related
to the contexts in which that word is typically used,
have a long history in Natural Language Processing
(Spärck Jones, 1964; Harper, 1965). Such models
still constitute one of the most popular approaches
to lexical semantics, with many proven applications.
Much work in distributional semantics treats words
as non-contextualised units; the models that are con-
structed can answer questions such as “how similar
are the words body and corpse?” but do not cap-
ture the way the syntactic context in which a word
appears can affect its interpretation. Recent devel-
opments (Mitchell and Lapata, 2008; Erk and Padó,
2008; Thater et al., 2010; Grefenstette et al., 2011)
have aimed to address compositionality of meaning
in terms of distributional semantics, leading to new
kinds of questions such as “how similar are the us-
ages of the words body and corpse in the phrase the

body/corpse deliberated the motion. . . ?” and “how
similar are the phrases the body deliberated the mo-
tion and the corpse rotted?”. In this paper we focus
on answering questions of the former type and in-
vestigate models that describe the effect of syntactic
context on the meaning of a single word.

The work described in this paper uses probabilistic
latent variable models to describe patterns of syntac-
tic interaction, building on the selectional preference
models of Ó Séaghdha (2010) and Ritter et al. (2010)
and the lexical substitution models of Dinu and Lap-
ata (2010). We propose novel methods for incorpo-
rating information about syntactic context in models
of lexical choice, yielding a probabilistic analogue
to dependency-based models of contextual similarity.
Our models attain state-of-the-art performance on
two evaluation datasets: a set of sentence similarity
judgements collected by Mitchell and Lapata (2008)
and the dataset of the English Lexical Substitution
Task (McCarthy and Navigli, 2009). In view of the
well-established effectiveness of dependency-based
distributional semantics and of probabilistic frame-
works for semantic inference, we expect that our
approach will prove to be of value in a wide range of
application settings.

2 Related work

The literature on distributional semantics is vast; in
this section we focus on outlining the research that is
most directly related to capturing effects of context
and compositionality.1 Mitchell and Lapata (2008)

1The interested reader is referred to Padó and Lapata (2007)
and Turney and Pantel (2010) for a general overview.



follow Kintsch (2001) in observing that most distri-
butional approaches to meaning at the phrase or sen-
tence level assume that the contribution of syntactic
structure can be ignored and the meaning of a phrase
is simply the commutative sum of the meanings of its
constituent words. As Mitchell and Lapata argue, this
assumption clearly leads to an impoverished model of
semantics. Mitchell and Lapata investigate a number
of simple methods for combining distributional word
vectors, concluding that pointwise multiplication best
corresponds to the effects of syntactic interaction.

Erk and Padó (2008) introduce the concept of a
structured vector space in which each word is associ-
ated with a set of selectional preference vectors corre-
sponding to different syntactic dependencies. Thater
et al. (2010) develop this geometric approach further
using a space of second-order distributional vectors
that represent the words typically co-occurring with
the contexts in which a word typically appears. The
primary concern of these authors is to model the ef-
fect of context on word meaning; the work we present
in this paper uses similar intuitions in a probabilistic
modelling framework.

A parallel strand of research seeks to represent the
meaning of larger compositional structures using ma-
trix and tensor algebra (Smolensky, 1990; Rudolph
and Giesbrecht, 2010; Baroni and Zamparelli, 2010;
Grefenstette et al., 2011). This nascent approach
holds the promise of providing a much richer notion
of context than is currently exploited in semantic
applications.

Probabilistic latent variable frameworks for gen-
eralising about contextual behaviour (in the form of
verb-noun selectional preferences) were proposed by
Pereira et al. (1993) and Rooth et al. (1999). La-
tent variable models are also conceptually similar
to non-probabilistic dimensionality reduction tech-
niques such as Latent Semantic Analysis (Landauer
and Dumais, 1997). More recently, Ó Séaghdha
(2010) and Ritter et al. (2010) reformulated Rooth et
al.’s approach in a Bayesian framework using mod-
els related to Latent Dirichlet Allocation (Blei et al.,
2003), demonstrating that this “topic modelling” ar-
chitecture is a very good fit for capturing selectional
preferences. Reisinger and Mooney (2010) inves-
tigate nonparametric Bayesian models for teasing
apart the context distributions of polysemous words.
As described in Section 3 below, Dinu and Lapata

(2010) propose an LDA-based model for lexical sub-
stitution; the techniques presented in this paper can
be viewed as a generalisation of theirs. Topic models
have also been applied to other classes of semantic
task, for example word sense disambiguation (Li et
al., 2010), word sense induction (Brody and Lapata,
2009) and modelling human judgements of semantic
association (Griffiths et al., 2007).

3 Models

3.1 Latent variable context models

In this paper we consider generative models of lexical
choice that assign a probability to a particular word
appearing in a given linguistic context. In particular,
we follow recent work (Dinu and Lapata, 2010; Ó
Séaghdha, 2010; Ritter et al., 2010) in assuming a
latent variable model that associates contexts with
distributions over a shared set of variables and as-
sociates each variable with a distribution over the
vocabulary of word types:

P (w|c) =
∑
z∈Z

P (w|z)P (z|c) (1)

The set of latent variablesZ is typically much smaller
than the vocabulary size; this induces a (soft) clus-
tering of the vocabulary. Latent Dirichlet Allocation
(Blei et al., 2003) is a powerful method for learning
such models from a text corpus in an unsupervised
way; LDA was originally applied to document mod-
elling, but it has recently been shown to be very
effective at inducing models for a variety of semantic
tasks (see Section 2).

Given the latent variable framework in (1) we can
develop a generative model of paraphrasing a word o
with another word n in a particular context c:

PC→T (n|o, c) =
∑
z

P (n|z)P (z|o, c) (2)

P (z|o, c) = P (o|z)P (z|c)∑
z′ P (o|z′)P (z′|c)

(3)

In words, the probability P (n|o, c) is the probability
that n would be generated given the latent variable
distribution associated with seeing o in context c;
this latter distribution P (z|o, c) can be derived using
Bayes’ rule and the assumption P (o|z, c) = P (o|z).
Given a set of contexts C in which an instance o



appears (e.g., it may be both the subject of a verb and
modified by an adjective), (2) and (3) become:

PC→T (n|o, C) =
∑
z

P (n|z)P (z|o, C) (4)

P (z|o, C) = P (o|z)P (z|C)∑
z′ P (o|z′)P (z′|C)

(5)

P (z|C) =
∏

c∈C P (z|c)∑
z′
∏

c∈C P (z
′|c)

(6)

Equation (6) can be viewed as defining a “product
of experts” model (Hinton, 2002). Dinu and Lapata
(2010) also use a similar formulation to (5), except
that P (z|o, C) is factorised over P (z|o, C) rather
than just P (z|C):

PDL10(z|o, C) =
∏
c∈C

P (o|z)P (z|c)∑
z′ P (o|z′)P (z′|c)

(7)

In Section 5 below, we find that using (5) rather than
(7) gives better results.

The model described above (henceforth C → T )
models the dependence of a target word on its context.
An alternative perspective is to model the dependence
of a set of contexts on a target word, i.e., we induce
a model

P (c|w) =
∑
z

P (c|z)P (z|w) (8)

Making certain assumptions, a formula for P (n|o, c)
can be derived from (8):

PT→C(n|o, c) =
P (c|o, n)P (n|o)

P (c|o)
(9)

P (c|o, n) =
∑
z

P (c|z)P (z|o, n)

P (z|o, n) = P (z|o)P (z|n)∑
z′ P (z

′|o)P (z′|n)
(10)

P (c|o) =
∑
z

P (c|z)P (z|o) (11)

P (n|o) = 1/V (12)

The assumption of a uniform prior P (n|o) on the
choice of a paraphrase n for o is clearly not appro-
priate from a language modelling perspective (one
could imagine an alternative P (n) based on corpus
frequency), but in the context of measuring semantic

similarity it serves well. The T → C model for a set
of contexts C is:

PT→C(n|o, C) =
P (C|o, n)P (n|o)

P (C|o)
(13)

P (C|o, n) =
∑
z

P (z|o, n)
∏
c∈C

P (c|z) (14)

P (C|z) =
∏
c∈C

P (c|z) (15)

P (z|o, C) = P (z|o)P (C|z)∑
z′ P (z

′|o)P (C|z′)
(16)

With appropriate priors chosen for the distribu-
tions over words and latent variables, P (n|o, C) is a
fully generative model of lexical substitution. A non-
generative alternative is one that estimates the sim-
ilarity of the latent variable distributions associated
with seeing n and o in context C. The principle that
similarity between topic distributions corresponds
to semantic similarity is well-known in document
modelling and was proposed in the context of lexical
substitution by Dinu and Lapata (2010). In terms of
the equations presented above, we could compare the
distributions P (z|o, C) with P (z|n,C) using equa-
tions (5) or (16). However, Thater et al. (2010) and
Dinu and Lapata (2010) both observe that contextual-
ising both o and n can degrade performance; in view
of this we actually compare P (z|o, C) with P (z|n)
and make the further simplifying assumption that
P (z|n) ∝ P (n|z). The similarity measure we adopt
is the Bhattacharyya coefficient, which is a natural
measure of similarity between probability distribu-
tions and is closely related to the Hellinger distance
used in previous work on topic modelling (Blei and
Lafferty, 2007):

simbhatt(Px(z), Py(z)) =
∑
z

√
Px(z)Py(z) (17)

This measure takes values between 0 and 1.
In this paper we train LDA models of P (w|c) and

P (c|w). In the former case, the analogy to document
modelling is that each context type plays the role of
a “document” consisting of all the words observed
in that context in a corpus; for P (c|w) the roles are
reversed. The models are trained by Gibbs sampling
using the efficient procedure of Yao et al. (2009). The
empirical estimates for distributions over words and
latent variables are derived from the assignment of



topics over the training corpus in a single sampling
state. For example, to model P (w|c) we calculate:

P (w|z) = fzw + β

fz· +Nβ
(18)

P (z|c) = fzc + αz

f·c +
∑

z′ αz′
(19)

where fzw is the number of words of type w assigned
topic z, fzc is the number of times z is associated
with context c, fz· and f·c are the marginal topic and
context counts respectively, N is the number of word
types and α and β parameterise the Dirichlet prior
distributions over P (z|c) and P (w|z). Following the
recommendations of Wallach et al. (2009) we use
asymmetric α and symmetric β; rather than using
fixed values for these hyperparameters we estimate
them from data in the course of LDA training using
an EM-like method.2 We use standard settings for
the number of training iterations (1000), the length of
the burnin period before hyperparameter estimation
begins (200 iterations) and the frequency of hyperpa-
rameter estimation (50 iterations).

3.2 Context types
We have not yet defined what the contexts c look like.
In vector space models of semantics it is common to
distinguish between window-based and dependency-
based models (Padó and Lapata, 2007); one can make
the same distinction for probabilistic context mod-
els. A broad generalisation is that window-based
models capture semantic association (e.g. referee is
associated with football), while dependency models
capture a finer-grained notion of similarity (referee
is similar to umpire but not to football). Dinu and
Lapata (2010) propose a window-based model of
lexical substitution; the set of contexts in which a
word appears is the set of surrounding words within
a prespecified “window size”. In this paper we also
investigate dependency-based context sets derived
from syntactic structure. Given a sentence such as

The:d executive:j body:n

n:ncmod:j

OO decided:v

v:ncsubj:n
��

. . .

2We use the estimation methods provided by the MALLET
toolkit, available from http://mallet.cs.umass.edu/.

the setC of dependency contexts for the noun body is
{executive:j:ncmod−1:n, decide:v:ncsubj:n}, where
ncmod−1 denotes that body stands in an inverse non-
clausal modifier relation to executive (we assume that
nouns are the heads of their adjectival modifiers).

4 Experiment 1: Similarity in context

4.1 Data

Mitchell and Lapata (2008) collected human judge-
ments of semantic similarity for pairs of short sen-
tences, where the sentences in a pair share the same
subject but different verbs. For example, the sales
slumped and the sales declined should be judged as
very similar while the shoulders slumped and the
shoulders declined should be judged as less similar.
The resulting dataset (henceforth ML08) consists of
120 such pairs using 15 verbs, balanced across high
and low expected similarity. 60 subjects rated the
data using a scale of 1–7; Mitchell and Lapata cal-
culate average interannotator correlation to be 0.40
(using Spearman’s ρ). Both Mitchell and Lapata and
Erk and Padó (2008) split the data into a development
portion and a test portion, the development portion
consisting of the judgements of six annotators; in
order to compare our results with previous research
we use the same data split. To evaluate performance,
the predictions made by a model are compared to the
judgements of each annotator in turn (using ρ) and
the resulting per-annotator ρ values are averaged.

4.2 Models

All models were trained on the written section of the
British National Corpus (around 90 million words),
parsed with RASP (Briscoe et al., 2006). The BNC
was also used by Mitchell and Lapata (2008) and
Erk and Padó (2008); as the ML08 dataset was com-
piled using words appearing more than 50 times in
the BNC, there are no coverage problems caused
by data sparsity. We trained LDA models for the
grammatical relations v:ncsubj:n and n:ncsubj−1:v
and used these to create predictors of type C → T
and T → C, respectively. For each predictor, we
trained five runs with 100 topics for 1000 iterations
and averaged the predictions produced from their
final states. We investigate both the generative para-
phrasing model (PARA) and the method of comparing
topic distributions (SIM). For both PARA and SIM we



Model PARA SIM

No optimisation
C → T 0.24 0.34
T → C 0.36 0.39
T ↔ C 0.33 0.39

Optimised on dev
C → T 0.24 0.35
T → C 0.41 0.41
T ↔ C 0.37 0.41

Erk and Padó (2008)
Mult 0.24
SVS 0.27

Table 1: Performance (average ρ) on the ML08 test
set

present results using each predictor type on its own
as well as a combination of both types (T ↔ C);
for PARA the contributions of the types are multi-
plied and for SIM they are averaged.3 One potential
complication is that the PARA model is trained to
predict P (n|c, o), which might not be comparable
across different combinations of subject c and verb
o. Using P (n|c, o) as a proxy for the desired joint
distribution P (n, c, o) is tantamount to assuming a
uniform distribution P (c, o), which can be defended
on the basis that the choice of subject noun and ref-
erence verb is not directly relevant to the task. As
shown by the results below, this assumption seems to
work reasonably well in practice.

As well as reporting correlations for straightfor-
ward averages of each set of five runs, we also in-
vestigate whether the development data can be used
to select an optimal subset of runs. This is done by
simply evaluating every possible subset of 1–5 runs
on the development data and picking the best-scoring
subset.

4.3 Results

Table 1 presents the results of the PARA and SIM

predictors on the ML08 dataset. The best results pre-
viously reported for this dataset were given by Erk
and Padó (2008), who measured average ρ values of
0.24 for a vector multiplication method and 0.27 for
their structured vector space (SVS) syntactic disam-
biguation method. Even without using the develop-
ment set to select models, performance is well above
the previous state of the art for all predictors except

3This configuration seems the most intuitive; averaging PARA

predictors and multiplying SIM also give good results.

PARAC→T . Model selection on the development data
brings average ρ up to 0.41, which is comparable to
the human “ceiling” of 0.40 measured by Mitchell
and Lapata. In all cases the T → C predictors out-
perform C → T : models that associate target words
with distributions over context clusters are superior to
those that associate contexts with distributions over
target words.

Figure 1 plots the beneficial effect of averaging
over multiple runs; as the number of runs n is in-
creased, the average performance over all combi-
nations of n predictors chosen from the set of five
T → C and five C → T runs is observed to in-
crease monotonically. Figure 1 also shows that the
model selection procedure is very effective at select-
ing the optimal combination of models; development
set performance is a reliable indicator of test set per-
formance.

5 Experiment 2: Lexical substitution

5.1 Data

The English Lexical Substitution task, run as part of
the SemEval-1 competition, required participants to
propose good substitutes for a set of target words in
various sentential contexts (McCarthy and Navigli,
2009). Table 2 shows two example sentences and
the substitutes appearing in the gold standard, ranked
by the number of human annotators who proposed
each substitute. The dataset contains a total of 2,010
annotated sentences with 205 distinct target words
across four parts of speech (noun, verb, adjective,
adverb). In line with previous work on contextual
disambiguation, we focus here on the subtask of rank-
ing attested substitutes rather than proposing them
from an unrestricted vocabulary. To this end, a candi-
date set is constructed for each target word from all
the substitutes proposed for that word in all sentences
in the dataset.

The data contains a number of multiword para-
phrases such as rush at; as our models (like most
current models of distributional semantics) do not
represent multiword expressions, we remove such
paraphrases and discard the 17 sentences which have
only multiword substitutes in the gold standard.4

There are also 7 sentences for which the gold stan-
4Thater et al. (2010) and Dinu and Lapata (2010) similarly

remove multiword paraphrases (Georgiana Dinu, p.c.).
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(a) PARA: Target → Context
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(b) PARA: Context → Target
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(c) PARA: Target ↔ Context
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(d) SIM: Target → Context
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(f) SIM: Target ↔ Context

Figure 1: Performance on the ML08 test set with different predictor types and different numbers of LDA runs
per predictor type; the solid line tracks the average performance, the dashed line shows the performance of
the predictor combination that scores best on the development set.

Realizing immediately that strangers have come,
attack (5), rush at (1)

the animals charge them and the horses began to fight.

Commission is the amount charged to execute a trade. levy (2), impose (1), take (1), demand (1)

Table 2: Examples for the verb charge from the English Lexical Substitution Task

dard contains no substitutes. This leaves a total of
1986 sentences. These sentences were lemmatised
and parsed with RASP.

Previous authors have partitioned the dataset in
various ways. Erk and Padó (2008) use only a subset
of the data where the target is a noun headed by a verb
or a verb heading a noun. Thater et al. (2010) dis-
card sentences which their parser cannot parse and
paraphrases absent from their training corpus and
then optimise the parameters of their model through
four-fold cross-validation. Here we aim for complete
coverage on the dataset and do not perform any pa-
rameter tuning. We use two measures to evaluate per-
formance: Generalised Averaged Precision (Kishida,
2005) and Kendall’s τb rank correlation coefficient,

which were used for this task by Thater et al. (2010)
and Dinu and Lapata (2010), respectively. Gener-
alised Averaged Precision (GAP) is a precision-like
measure for evaluating ranked predictions against a
gold standard. τb is a variant of Kendall’s τ that is
appropriate for data containing tied ranks. We do
not use the “precision out of ten” measure that was
used in the original Lexical Substitution Task; this
measure assigns credit for the proportion of the first
10 proposed paraphrases that are present in the gold
standard and in the context of ranking attested sub-
stitutes it is unclear how to obtain non-trivial results
for target words with 10 or fewer possible substitutes.
We calculate statistical significance of performance



COORDINATION:

Cats and

c:conj:n

OO

c:conj:n

OOdogs run

v:ncsubj:n
��

⇒ Cats and dogsOO

n:and:n

OO run
��

v:ncsubj:n
��

PREDICATION:

The cat is

v:ncsubj:n

OO

v:xcomp:j
��

fierce ⇒ The cat

n:ncmod:j
��

is fierce

PREPOSITIONS:

The cat

n:ncmod:i
��

in

i:dobj:n

OOthe hat ⇒ The cat

n:prep in:n
��

in the hat

Table 3: Dependency graph preprocessing

differences using stratified shuffling (Yeh, 2000).5

5.2 Models
We apply the models developed in Section 3.1 to the
Lexical Substitution Task dataset using dependency-
and window-based context information. Here we
only use the SIM predictor type. PARA did not give
satisfactory results; in particular, it tended to rank
common words highly in most contexts.6

As before we compiled training data by extract-
ing target-context cooccurrences from a text corpus.
In addition to the parsed BNC described above we
used a corpus of Wikipedia text consisting of over 45
million sentences (almost 1 billion words) parsed us-
ing the fast Combinatory Categorial Grammar (CCG)
parser described by Clark et al. (2009). The depen-
dency representation produced by this parser is inter-
operable with the RASP dependency format. In order
to focus our models on semantically discriminative
information and make inference more tractable we
ignored all parts of speech other than nouns, verbs,
adjectives, prepositions and adverbs. Stopwords and
words of fewer than three characters were removed.
We also removed the very frequent but semantically

5We use the software package available at http://www.
nlpado.de/˜sebastian/sigf.html.

6Favouring more general words may indeed make sense in
some paraphrasing tasks (Nulty and Costello, 2010).

weak lemmas be and have.
We compare two classes of context models: mod-

els learned from window-based contexts and models
learned from syntactic dependency contexts. For
the syntactic models we extracted all dependencies
and inverse dependencies between lemmas of the
aforementioned POS types; in order to maximise
the extraction yield, the dependency graph for each
sentence was preprocessed using the transformations
shown in Table 3. For the window-based context
model we follow Dinu and Lapata (2010) in treating
each word within five words of a target as a member
of its context set.

It proved necessary to subsample the corpora in
order to make LDA training tractable, especially for
the window-based model where the training set of
context-target counts is extremely dense (each in-
stance of a word in the corpus contributes up to 10
context instances). For the window-based data, we
divided each context-target count by a factor of 5 and
a factor of 70 for the BNC and Wikipedia corpora
respectively, rounding fractional counts to the clos-
est integer. The choice of 70 for scaling Wikipedia
counts is adopted from Dinu and Lapata (2010), who
used the same factor for the comparably sized English
Gigaword corpus. As the dependency data is an order
of magnitude smaller we downsampled the Wikipedia
counts by 5 and left the BNC counts untouched. Fi-
nally, we created a larger corpus by combining the
counts from the BNC and Wikipedia datasets. Type
and token counts for the BNC and combined corpora
are given in Table 4.

We trained three LDA predictors for each corpus:
a window-based predictor (W5), a Context → Target
predictor (C → T ) and a Target → Context pre-
dictor (T → C). For W5 the sets of types and
contexts should be symmetrical (in practice there
is some discrepancy due to preprocessing artefacts).
For C → T , individual models were trained for each
of the four target parts of speech; in each case the set
of types is the vocabulary for that part of speech and
the set of contexts is the set of dependencies taking
those types as dependents. For T → C we again
train four models; the sets of types and contexts are
reversed. For the both corpora we trained models
with Z = {600, 800, 1000, 1200} topics; for each
setting of Z we ran five estimation runs. Each in-
dividual prediction of similarity between P (z|C, o)



BNC BNC+Wikipedia
Tokens Types Contexts Tokens Types Contexts

Nouns 18723082 122999 316237 54145216 106448 514257
Verbs 7893462 18494 57528 20082658 16673 82580
Adjectives 4385788 73684 37163 11536424 88488 57531
Adverbs 1976837 7124 14867 3017936 4056 18510
Window5 28329238 88265 102792 42828094 139640 143443

Table 4: Type and token counts for the BNC and downsampled BNC+Wikipedia corpora

BNC BNC + Wikipedia
GAP τb Coverage GAP τb Coverage

W5 44.5 0.17 100.0 44.8 0.17 100.0
C → T 43.2 0.16 86.4 48.7 0.21 86.5
T → C 47.2 0.21 86.4 49.3 0.22 86.5
T ↔ C 45.7 0.20 86.4 49.1 0.23 86.5
W5 + C → T 46.0 0.18 100.0 48.7 0.21 100.0
W5 + T → C 48.6 0.21 100.0 49.3 0.22 100.0
W5 + T ↔ C 48.1 0.20 100.0 49.5 0.23 100.0

Table 5: Results on the English Lexical Substitution Task dataset; boldface denotes best performance at full
coverage for each corpus

and P (z|n) is made by averaging over the predic-
tions of all runs and over all settings of Z. Choosing
a single setting of Z does not degrade performance
significantly; however, averaging over settings is a
convenient way to avoid having to pick a specific
value.

We also investigate combinations of predictor
types, once again produced by averaging: we com-
bine C → T with C ↔ T (T ↔ C) and combine
each of these three models with W5.

5.3 Results
Table 5 presents the results attained by our models on
the Lexical Substitution Task data. The dependency-
based models have imperfect coverage (86% of the
data); they can make no prediction when no syntactic
context is provided for a target, perhaps as a result
of parsing error. The window-based models have
perfect coverage, but score noticeably lower. By
combining dependency- and window-based models
we can reach high performance with perfect coverage.
All combinations outperform the corresponding W5
results to a statistically significant degree (p < 0.01).
Performance at full coverage is already very good
(GAP= 48.6, τb = 0.21) on the BNC corpus, but

the best results are attained by W5 + T ↔ C trained
on the combined corpus (GAP= 49.5, τb = 0.23).
The results for the W5 model trained on BNC data is
comparable to that trained on the combined corpus;
however the syntactic models show a clear benefit
from the less sparse dependency data in the combined
training corpus.

As remarked in Section 3.1, Dinu and Lap-
ata (2010) use a slightly different formulation of
P (z|C, o). Using the window-based context model
our formulation (5) outperforms (7) for both training
corpora; the Dinu and Lapata (2010) version scores
GAP = 41.5, τb = 0.15 for the BNC corpus and
GAP = 42.0, τb = 0.15 for the combined corpus.
The advantage of our formulation is statistically sig-
nificant for all evaluation measures.

Table 6 gives a breakdown of performance by tar-
get part of speech for the BNC+Wikipedia-trained
W5 and W5 + T ↔ C models, as well as figures
provided by previous researchers.7 W5 + T ↔ C
outperforms W5 on all parts of speech using both

7The overall average GAP for Thater et al. (2010) does not
appear in their paper but can be calculated from the score and
number of instances listed for each POS.



Nouns Verbs Adjectives Adverbs Overall
GAP τb GAP τb GAP τb GAP τb GAP τb

W5 46.0 0.16 38.9 0.14 44.0 0.18 54.0 0.22 44.8 0.17
W5 + T ↔ C 50.7 0.22 45.1 0.20 48.8 0.24 55.9 0.24 49.5 0.23
Thater et al. (2010) (Model 1) 46.4 – 45.9 – 39.4 – 48.2 – 44.6 –
Thater et al. (2010) (Model 2) 42.5 – – – 43.2 – 51.4 – – –
Dinu and Lapata (2010) (LDA) – 0.16 – 0.14 – 0.17 – 0.21 – 0.16
Dinu and Lapata (2010) (NMF) – 0.15 – 0.14 – 0.16 – 0.26 – 0.16

Table 6: Performance by part of speech

evaluation metrics. As remarked above, previous re-
searchers have used the corpus in slightly different
ways; we believe that the results of Dinu and Lapata
(2010) are fully comparable, while those of Thater et
al. (2010) were attained on a slightly smaller dataset
with parameters set through cross-validation. The
results for W5 + T ↔ C outperform all of Dinu
and Lapata’s per-POS and overall results except for
a slightly superior score on adverbs attained by their
NMF model (τb = 0.26 compared to 0.24). Turning
to Thater et al., we report higher scores for every POS
with the exception of the verbs where their Model
1 achieves 45.9 GAP compared to 45.1; the overall
average for W5 + T ↔ C is substantially higher at
49.5 compared to 44.6. On balance, we suggest that
our models do have an advantage over the current
state of the art for lexical substitution.

6 Conclusion

In this paper we have proposed novel methods for
modelling the effect of context on lexical meaning,
demonstrating that information about syntactic con-
text and textual proximity can fruitfully be integrated
to produce state-of-the-art models of lexical choice.
We have demonstrated the effectiveness of our tech-
niques on two datasets but they are potentially ap-
plicable to a range of applications where semantic
disambiguation is required. In future work, we intend
to adapt our approach for word sense disambiguation
as well as related domain-specific tasks such as gene
name normalisation (Morgan et al., 2008). A further,
more speculative direction for future research is to
investigate more richly structured models of context,
for example capturing correlations between words in
a text within a framework similar to the Correlated
Topic Model of Blei and Lafferty (2007) or more

explicitly modelling polysemy effects as in Reisinger
and Mooney (2010).
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