
Flexible presentations of graded monads

Shin-ya Katsumata1, Dylan McDermott2, Tarmo Uustalu23, and Nicolas Wu4

1 National Institute of Informatics, Japan s-katsumata@nii.ac.jp
2 Reykjavik University, Iceland dylanm@ru.is,tarmo@ru.is

3 Tallinn University of Technology, Estonia
4 Imperial College London, UK n.wu@imperial.ac.uk

Consider a language in which we can express backtracking computations using an operation
or for nondeterministic choice, and an operation cut for pruning any remaining choices. Let t
be the computation or(return 17, cut), which offers only 17 as a possible result, and prunes
the rest of the search space. The computation or(t, return 42) is equivalent to t, and more
generally, the equation or(x, y) ≈ x is valid whenever we know that x definitely cuts. We may
seek to analyse computations statically to determine whether they cut, and whether we can
therefore simplify a program using or(x, y) ≈ x. One approach to doing this is through grading.
We assign a grade ⊥ to each computation we know will cut, and propagate this information
throughout the program (other computations get other grades). This approach has a well-
established semantics using graded monads [9, 5, 2]. There is a graded monad Cut that models
our backtracking example; it is similar to Piróg and Staton’s non-graded monad [7]. Piróg and
Staton show that their monad has a presentation in terms of operations for nondeterministic
choice and cut. We may expect there to be a similar presentation of Cut, using the existing
notions of graded presentation [9, 6, 1, 3], which we call rigidly graded presentations. However,
rigidly graded presentations have a deficiency: they only allow operations to be applied when
all arguments have the same grade. Above t has grade ⊥ because one argument to cut has
grade ⊥, but the other does not. A rigidly graded presentation would assign some grade to t, by
overapproximating, but not ⊥, so the analysis would be imprecise. This is a problem in other
applications, such as: mutable state graded by relations (relating initial states to final states);
stack-based computations graded by bounds on the change in stack height; and nondeterministic
computations graded by upper bounds on the number of options that are chosen from.

While rigidly graded presentations are motivated by their theory (which includes a corre-
spondence with a class of graded monads, analogous to the classical monad–algebraic theory
correspondence), they are unsuitable when it comes to applications. We introduce a more
general notion of flexibly graded presentation that does not suffer from the same issue.

Grading We recall the notion of graded monad (on Set). The grades are elements of an
ordered monoid (|E|,≤, 1, ·). A grade e ∈ |E| abstractly quantifies the effect of a computation;
the order ≤ provides overapproximation of grades, the unit 1 is the grade of a trivial compu-
tation, and the multiplication · provides the grade of a sequence of two computations. For the
backtracking example above the poset (|E|,≤) is {⊥ ≤ 1 ≤ ⊤}, where ⊥ means ‘definitely cuts’,
the unit grade 1 means ‘definitely either cuts or produces at least one value’, and ⊤ imposes
no restrictions. Multiplication is given by ⊥ · e = ⊥, 1 · e = e and ⊤ · e = ⊤.

A graded set Y is a family of sets Y e, together with a coercion function (e≤e′)∗ : Y e → Y e′

for each e ≤ e′, satisfying two equational conditions. A graded monad R consists of a graded
set RX and unit function ηX : X → RX1 for each set X, and a Kleisli extension operation
that maps functions f : X → RY e and grades d to functions f†

d : RXd → RY (d · e), satisfying
some conditions. For Cut, computations over X of grade e are elements of the following set
CutXe, where c indicates whether the computation cuts (⊥ for ‘cuts’, ⊤ for ‘does not cut’).

CutXe = {(x⃗, c) ∈ ListX × {⊥,⊤} | (e = ⊥ ⇒ c = ⊥) ∧ (e = 1 ⇒ c = ⊥ ∨ x⃗ ̸= [])}

Flexible presentations of graded monads Katsumata, McDermott, Uustalu, Wu

Flexibly graded presentations In general, a presentation (Σ, E) consists of a signature
Σ, specifying the operations and inducing a notion of term, and a set E of equational axioms,
inducing an equational theory.

A flexibly graded signature Σ consists of a set Σ(d⃗′; d) of (d⃗′; d)-ary operations for each list

of grades d⃗′ and grade d. (Rigidly graded signatures correspond to the special case in which

every operation has d⃗′ = [1, . . . , 1].) The terms over Σ are generated by the following rules for

variables, coercions, and application of operations op ∈ Σ(d⃗′; d), where Γ = x1 : d′1, . . . , xm : d′m.

1 ≤ i ≤ m

Γ ⊢ xi : d′i

Γ ⊢ t : e e ≤ e′

Γ ⊢ (e≤e′)∗t : e′
Γ ⊢ u1 : d′1 · e · · · Γ ⊢ un : d′n · e

Γ ⊢ op(e;u1, . . . , un) : d · e
The grade e in the op rule has a crucial role: it is there precisely because of the grade e
in the Kleisli extension above. Unlike in a rigidly graded presentation, variables can have
different grades d′i. In a flexibly graded presentation (Σ, E), an equational axiom in E is a pair
(t, u) of terms of some grade e in some context Γ. These axioms induce a notion of equality
Γ ⊢ t ≈ u : e. For the backtracking example, we have a flexibly graded version of Piróg and
Staton’s non-graded presentation [7]. The signature has operations cut, fail, ord1,d2 , giving rise
to the following rules for constructing terms (where ⊓ denotes meet).

Γ ⊢ cut(e;) : ⊥ Γ ⊢ fail(e;) : ⊤
Γ ⊢ u1 : d1 · e Γ ⊢ u2 : d2 · e
Γ ⊢ ord1,d2

(e;u1, u2) : (d1 ⊓ d2) · e
One of the axioms (we omit the rest) is x : ⊥, y : 1 ⊢ or⊥,1(1;x, y) ≈ x : ⊥, which is the example
we use in the introduction. This can be applied only when x has grade ⊥; such a restriction on
the grade of a variable is not possible in a rigidly graded presentation.

Semantics In classical universal algebra each presentation gives rise to a notion of algebra
(a.k.a. model), consisting of a set with interpretations for the operations, validating the equa-
tions. The equational theory is sound and complete w.r.t. this notion of model. If (Σ, E) is a
flexibly graded presentation, a Σ-algebra is a graded set A equipped with a natural transfor-
mation JopK :

∏
i A(d′i · −) ⇒ A(d · −) for each op ∈ Σ(d⃗′, d). These extend to interpretations

JtK :
∏

i A(d′i ·−) ⇒ A(d ·−) of terms x1 : d′1, . . . , xn : d′n ⊢ t : d. A Σ-algebra is a (Σ, E)-algebra
when JtK = JuK for each axiom (t, u). The equational logic is sound and complete: an equation
Γ ⊢ t ≈ u : e is derivable exactly when JtK = JuK in every (Σ, E)-algebra.

Presenting graded monads In the classical correspondence between presentations and mon-
ads, the monad T(Σ,E) induced by a presentation is completely determined by the fact that
T(Σ,E)-algebras are equivalently (Σ, E)-algebras. For flexibly graded presentations the situa-
tion is more complex. In general, there is no graded monad whose algebras are (Σ, E)-algebras,
and we do not get a correspondence with graded monads. However, every flexibly graded
presentation does induce a canonical graded monad R(Σ,E). Every (Σ, E)-algebra induces an
R(Σ,E)-algebra, and R(Σ,E) is in some sense the universal graded monad with this property (we
omit the precise statement). Moreover, free R(Σ,E)-algebras form (Σ, E)-algebras, so in particu-
lar the graded sets R(Σ,E)X admit interpretations of the operations of Σ. These interpretations
form flexibly graded algebraic operations for R(Σ,E) (which are analogous to algebraic operations
for non-graded monads [8]). In this sense, (Σ, E) does indeed present a graded monad R(Σ,E).

The proof of this involves a notion of flexibly graded monad, introduced in [4]. There is an
algebra-preserving correspondence between flexibly graded presentations and flexibly graded
monads that preserve conical sifted colimits, and every flexibly graded monad induces a canoni-
cal (rigidly) graded monad [4, Section 5]. The latter is R(Σ,E) if we start with (Σ, E). Moreover,
every graded monad R that preserves sifted colimits has a flexibly graded presentation.

2

Flexible presentations of graded monads Katsumata, McDermott, Uustalu, Wu

References

[1] Ulrich Dorsch, Stefan Milius, and Lutz Schröder. Graded monads and graded logics for the linear
time–branching time spectrum. In Wan Fokkink and Rob van Glabbeek, editors, 30th Int. Conf.
on Concurrency Theory, CONCUR 2019, volume 140 of Leibniz Int. Proc. in Informatics, pages
36:1–36:16. Dagstuhl Publishing, Saarbrücken/Wadern, 2019.

[2] Shin-ya Katsumata. Parametric effect monads and semantics of effect systems. In Proc. of 41st
Ann. ACM SIGPLAN-SIGACT Symp. on Principles of Programming Languages, POPL ’14, San
Diego, CA, USA, January 20-21, 2014, pages 633–645. ACM Press, New York, 2014.

[3] Satoshi Kura. Graded algebraic theories. In Jean Goubault-Larrecq and Barbara König, editors,
Foundations of Software Science and Computation Structures: 23rd Int. Conf., FOSSACS 2020,
Dublin, Ireland, April 25–30, 2020, Proceedings, volume 12077 of Lect. Notes in Comput. Sci., pages
401–421. Springer, Cham, 2020.

[4] Dylan McDermott and Tarmo Uustalu. Flexibly graded monads and graded algebras. Manuscript,
available at https://dylanm.org/drafts/flexibly-graded-monads.pdf, 2022.

[5] Paul-André Melliès. Parametric monads and enriched adjunctions. Manuscript, 2012.

[6] Stefan Milius, Dirk Pattinson, and Lutz Schröder. Generic trace semantics and graded monads.
In Lawrence S. Moss and Pawe l Sobociński, editors, 6th Conf. on Algebra and Coalgebra in Com-
puter Science, CALCO 2015, volume 35 of Leibniz Int. Proceedings in Informatics, pages 253–269.
Dagstuhl Publishing, Saarbrücken/Wadern, 2015.

[7] Maciej Piróg and Sam Staton. Backtracking with cut via a distributive law and left-zero monoids.
J. Funct. Program., 27, 2017.

[8] Gordon Plotkin and John Power. Algebraic operations and generic effects. Appl. Categ. Struct.,
11:69–94, 2003.

[9] A.L. Smirnov. Graded monads and rings of polynomials. J. Math. Sci., 151(3):3032–3051, 2008.

3

https://dylanm.org/drafts/flexibly-graded-monads.pdf

