Flexible presentations of graded monads

Shin-ya Katsumata Dylan McDermott
Tarmo Uustalu Nicolas Wu

Presentations of monads

Presentation:
operations op : n

+ equations $t \equiv u$

Presentation of monoids:
$m: 2 \quad u: 0$

$$
m(u(), x) \equiv x \equiv m(x, u())
$$

$$
m(m(x, y), z) \equiv m(x, m(y, z))
$$

Presentations of monads

Presentation:

operations op : n

+ equations $t \equiv u$

Presentation of monoids:

Algebra:

set A with
functions 【op】 : $A^{n} \rightarrow A$
satisfying equations

$$
\begin{gathered}
m: 2 \quad u: 0 \\
m(u(), x) \equiv x \equiv m(x, u()) \\
m(m(x, y), z) \equiv m(x, m(y, z))
\end{gathered}
$$

Monoid:

set A with
functions $\llbracket u \rrbracket: 1 \rightarrow A, \llbracket m \rrbracket: A \times A \rightarrow A$ satisfying unit and associativity eqns

Presentations of monads

Presentation:

operations op : n

+ equations $t \equiv u$

Algebra:

set A with
functions 【op】 : $A^{n} \rightarrow A$
satisfying equations

Free algebra on X :
algebra $(T X, \llbracket-\rrbracket)$ with
function $\eta_{X}: X \rightarrow T X$
satisfying universal property

Presentation of monoids:

$$
\begin{gathered}
m: 2 \quad u: 0 \\
m(u(), x) \equiv x \equiv m(x, u()) \\
m(m(x, y), z) \equiv m(x, m(y, z))
\end{gathered}
$$

Monoid:

set A with
functions $\llbracket u \rrbracket: 1 \rightarrow A, \llbracket m \rrbracket: A \times A \rightarrow A$ satisfying unit and associativity eqns

Free monoid on X :
monoid (List $X,[],+$) with singleton function $X \rightarrow$ List X

Presentations of monads

Presentation:

operations op : n

+ equations $t \equiv u$

Algebra:

set A with
functions 【op】 : $A^{n} \rightarrow A$
satisfying equations

Free algebra on X :
algebra $(T X, \llbracket-\rrbracket)$ with
function $\eta_{X}: X \rightarrow T X$
satisfying universal property

Free algebra monad T : has the same algebras as the presentation

Presentation of monoids:

$$
\begin{gathered}
m: 2 \quad u: 0 \\
m(u(), x) \equiv x \equiv m(x, u()) \\
m(m(x, y), z) \equiv m(x, m(y, z))
\end{gathered}
$$

Monoid:

set A with
functions $\llbracket u \rrbracket: 1 \rightarrow A, \llbracket m \rrbracket: A \times A \rightarrow A$
satisfying unit and associativity eqns

Free monoid on X :
monoid (List X, [], +) with
singleton function $X \rightarrow \operatorname{List} X$

Free monoid monad List:
has monoids as algebras

Grading

Definition

A graded set $X: \mathbb{N}_{\leq} \rightarrow$ Set consists of:

- a set $X e$ for each $e \in \mathbb{N}$
- a function $X\left(e \leq e^{\prime}\right): X e \rightarrow X e^{\prime}$ for each $e \leq e^{\prime} \in \mathbb{N}$
such that $X(e \leq e)=\mathrm{id}$ and $X\left(e^{\prime} \leq e^{\prime \prime}\right) \circ X\left(e \leq e^{\prime}\right)=X\left(e \leq e^{\prime \prime}\right)$.

Example

- List $X e$ is lists over X of length $\leq e$
- List $X\left(e \leq e^{\prime}\right)$ is the inclusion $\operatorname{List} X e \subseteq \operatorname{List} X e^{\prime}$

Grading

Definition

A graded monoid (A, m, u) consists of:

- a graded set $A: \mathbb{N}_{\leq} \rightarrow$ Set
- multiplication functions $m_{e_{1}, e_{2}}: A e_{1} \times A e_{2} \rightarrow A\left(e_{1}+e_{2}\right)$ natural in $e_{1}, e_{2} \in \mathbb{N}_{\leq}$
- a unit $u \in A 0$
such that

$$
\begin{gathered}
m_{0, e}(u, x)=x=m_{e, 0}(x, u) \\
m_{e_{1}+e_{2}, e_{3}}\left(m_{e_{1}, e_{2}}(x, y), z\right)=m_{e_{1}, e_{2}+e_{3}}\left(x, m_{e_{2}, e_{3}}(y, z)\right)
\end{gathered}
$$

Example

- graded set List X
- multiplication (+) : $\operatorname{List} X e_{1} \times \operatorname{List} X e_{2} \rightarrow \operatorname{List} X\left(e_{1}+e_{2}\right)$
- unit [] $\in \operatorname{List} X 0$

Grading

Definition (Smirnov '08, Melliès '12, Katsumata '14)

A graded monad T consists of:

- a graded set $T X$ for each (ungraded) set X
- unit functions $\eta_{X}: X \rightarrow T X 1$
- Kleisli extension $\frac{f: X \rightarrow T Y e}{f_{d}^{\dagger}: T X d \rightarrow T Y(d \cdot e)}$ natural in d, e
such that the monad laws hold:

$$
f_{1}^{\dagger} \circ \eta_{X}=f \quad\left(\eta_{X}\right)_{d}^{\dagger}=\mathrm{id}_{T X m} \quad\left(g_{e}^{\dagger} \circ f\right)_{d}^{\dagger}=g_{d \cdot e}^{\dagger} \circ f_{d}^{\dagger}
$$

Example

- List X for each set X
- singleton functions $X \rightarrow \operatorname{List} X 1$
- $f_{d}^{\dagger}\left[x_{1}, \ldots, x_{k}\right]=f x_{1}+\cdots+f x_{k}$

Grading

Definition (Smirnov '08, Melliès '12, Katsumata '14)

A graded monad T consists of:

- a graded set $T X$ for each (ungraded) set X
- unit functions $\eta_{X}: X \rightarrow T X 1$
- Kleisli extension $\frac{f: X \rightarrow T Y e}{f_{d}^{\dagger}: T X d \rightarrow T Y(d \cdot e)}$ natural in d, e
such that the monad laws hold:

$$
f_{1}^{\dagger} \circ \eta_{X}=f \quad\left(\eta_{X}\right)_{d}^{\dagger}=\mathrm{id}_{T X m} \quad\left(g_{e}^{\dagger} \circ f\right)_{d}^{\dagger}=g_{d \cdot e}^{\dagger} \circ f_{d}^{\dagger}
$$

Example

- List X for each set X
- singleton functions $X \rightarrow \operatorname{List} X 1$
- $f_{d}^{\dagger}\left[x_{1}, \ldots, x_{k}\right]=f x_{1}+\cdots+f x_{k}$

This is the free graded monoid graded monad

Grading

Definition (Smirnov '08, Melliès '12, Katsumata '14)

A graded monad T consists of:

- a graded set $T X$ for each (ungraded) set X
- unit functions $\eta_{X}: X \rightarrow T X 1$
- Kleisli extension $\frac{f: X \rightarrow T Y e}{f_{d}^{\dagger}: T X d \rightarrow T Y(d \cdot e)}$ natural in d, e
such that the monad laws hold:

$$
f_{1}^{\dagger} \circ \eta_{X}=f \quad\left(\eta_{X}\right)_{d}^{\dagger}=\mathrm{id}_{T X m} \quad\left(g_{e}^{\dagger} \circ f\right)_{d}^{\dagger}=g_{d \cdot e}^{\dagger} \circ f_{d}^{\dagger}
$$

Example

- List X for each set X
- singleton functions $X \rightarrow \operatorname{List} X 1$
- $f_{d}^{\dagger}\left[x_{1}, \ldots, x_{k}\right]=f x_{1}+\cdots+f x_{k}$

This is the free graded monoid graded monad

- but its algebras are not graded monoids in general

(Rigidly) graded presentations [Smirnov '08, Dorsch et al. 19, Kura '20]

- Each operation op has an arity $n \in \mathbb{N}$ and grade $e^{\prime} \in \mathbb{N}$
- Terms generated by variables, coercions, and

$$
\frac{\Gamma \vdash t_{1}: e \quad \cdots \quad \Gamma \vdash t_{n}: e}{\Gamma \vdash \operatorname{op}\left(t_{1}, \ldots, t_{n}\right): e^{\prime} \cdot e}
$$

- There is an algebra-preserving correspondence between graded presentations and a class of graded monads

(Rigidly) graded presentations [Smirnov '08, Dorsch et al. 19, Kura '20]

- Each operation op has an arity $n \in \mathbb{N}$ and grade $e^{\prime} \in \mathbb{N}$
- Terms generated by variables, coercions, and

$$
\frac{\Gamma \vdash t_{1}: e \quad \cdots \quad \Gamma \vdash t_{n}: e}{\Gamma \vdash \operatorname{op}\left(t_{1}, \ldots, t_{n}\right): e^{\prime} \cdot e}
$$

- There is an algebra-preserving correspondence between graded presentations and a class of graded monads
But we want something like

$$
\frac{\Gamma \vdash t_{1}: e_{1} \quad \Gamma \vdash t_{2}: e_{2}}{\Gamma \vdash m\left(t_{1}, t_{2}\right): e_{1}+e_{2}}
$$

Flexibly graded presentations

- Each operation op has a list of grades e_{1}, \ldots, e_{n}, and another grade e^{\prime}
- Terms generated by variables, coercions, and

$$
\frac{\Gamma \vdash t_{1}: e_{1} \quad \cdots \quad \Gamma \vdash t_{n}: e_{n}}{\Gamma \vdash \operatorname{op}\left(t_{1}, \ldots, t_{n}\right): e^{\prime}}
$$

Flexibly graded presentations

Definition

A flexibly graded signature consists of a graded set $\Sigma_{\vec{e}}$ for each \vec{e}.
Given a signature Σ, terms in context $\Gamma=x_{1}: e_{1}, \ldots, x_{n}: e_{n}$ are generated by

$$
\begin{gathered}
\frac{\Gamma \vdash\left[e_{n} \leq e^{\prime}\right] x_{i}: e^{\prime}}{}\left(e_{i} \leq e^{\prime} \in \mathbb{N}\right) \\
\frac{\Gamma \vdash t_{1}: e_{1} \quad \cdots \quad \Gamma \vdash t_{n}: e_{n}}{\Gamma \vdash \mathrm{op}\left(t_{1}, \ldots, t_{n}\right): e^{\prime}}\left(\mathrm{op} \in \Sigma_{\vec{e}} e^{\prime}\right)
\end{gathered}
$$

Then $\operatorname{Tm}_{\vec{e}}^{\Sigma}$ is a graded set, where

$$
\operatorname{Tm}_{\vec{e}}^{\Sigma} e^{\prime}=\text { set of terms } x_{1}: e_{1}, \ldots, x_{n}: e_{n} \vdash t: e^{\prime}
$$

Flexibly graded presentations

Definition

A flexibly graded presentation consists of

1. a flexibly graded signature Σ
2. sets of axioms (pairs of terms $t, u \in \operatorname{Tm}_{\vec{e}}^{\Sigma} e^{\prime}$)
3. ...

Flexibly graded presentations

Definition

A flexibly graded presentation consists of

1. a flexibly graded signature Σ
2. sets of axioms (pairs of terms $t, u \in \operatorname{Tm}_{\vec{e}}^{\Sigma} e^{\prime}$)
3. ...

The Kleisli extension

$$
\frac{f: X \rightarrow \operatorname{List} Y e}{f_{d}^{\dagger}: \operatorname{List} X d \rightarrow \operatorname{List} Y(d \cdot e)}
$$

satisfies

$$
f_{d}^{\dagger}\left(\mathrm{xs}+_{e_{1}, e_{2}} \mathrm{ys}\right)=f_{d}^{\dagger} \mathrm{xs} \#_{e_{1} \cdot d, e_{2} \cdot d} f_{d}^{\dagger} \mathrm{ys}
$$

Flexibly graded presentations

Definition

A flexibly graded presentation consists of

1. a flexibly graded signature Σ
2. sets of axioms (pairs of terms $t, u \in \operatorname{Tm}_{\vec{e}}^{\Sigma} e^{\prime}$)
3. for each op $\in \Sigma_{\vec{e}} e^{\prime}$ and $d \in \mathbb{N}$, a term $\langle\langle\mathrm{op}, d\rangle\rangle_{e^{\prime}} \in \operatorname{Tm}_{\vec{e} \cdot d}^{\Sigma}\left(e^{\prime} \cdot d\right)$, natural in d
such that
4. $\langle\langle\mathrm{op},-\rangle\rangle$ respects $1, \cdot$ and \leq
5. $\langle\langle t, d\rangle\rangle \equiv\langle\langle u, d\rangle\rangle$ is admissible for every axiom $t \equiv u$ and d (using $\langle\langle-,-\rangle\rangle$ lifted to terms)

Presentation of graded monoids

1. Signature: $u \in \Sigma_{()} e^{\prime}$ for each e^{\prime}, and $m_{e_{1}, e_{2}} \in \Sigma_{\left(e_{1}, e_{2}\right)} e^{\prime}$ for each $e^{\prime} \geq e_{1}+e_{2}$
2. Axioms:

$$
\begin{gathered}
m_{e_{1}^{\prime}, e_{2}^{\prime}}\left(\left[e_{1} \leq e_{1}^{\prime}\right] x_{1},\left[e_{2} \leq e_{2}^{\prime}\right] x_{2}\right) \equiv\left[\left(e_{1} \cdot e_{2}\right) \leq\left(e_{1}^{\prime} \cdot e_{2}^{\prime}\right)\right]\left(m_{e_{1}, e_{2}}\left(x_{1}, x_{2}\right)\right) \\
m_{0, e}(u(), x) \equiv x \quad x \equiv m_{e, 0}(x, u()) \\
m_{e_{1}+e_{2}, e_{3}}\left(m_{e_{1}, e_{2}}\left(x_{1}, x_{2}\right), x_{3}\right) \equiv m_{e_{1}, e_{2}+e_{3}}\left(x_{1}, m_{e_{2}, e_{3}}\left(x_{2}, x_{3}\right)\right)
\end{gathered}
$$

3. $\langle\langle u, d\rangle\rangle=u$ and $\left\langle\left\langle m_{e_{1}, e_{2}}, d\right\rangle\right\rangle=m_{e_{1} \cdot d, e_{2} \cdot d}\left(x_{1}, x_{2}\right)$

Algebras

Definition
Given a flexibly graded presentation, an algebra consists of

- a graded set A
- a function $\llbracket \mathrm{op} \rrbracket_{e^{\prime}}: \prod_{i} A e_{i} \rightarrow A e^{\prime}$ for each op $\in \Sigma_{\vec{e}} e^{\prime}$, natural in e^{\prime}
such that $\llbracket t \rrbracket=\llbracket u \rrbracket$ for every axiom $t \equiv u$.

Algebras

Definition

Given a flexibly graded presentation, an algebra consists of

- a graded set A
- a function $\llbracket \mathrm{op} \rrbracket_{e^{\prime}}: \prod_{i} A e_{i} \rightarrow A e^{\prime}$ for each op $\in \Sigma_{\vec{e}} e^{\prime}$, natural in e^{\prime}
such that $\llbracket t \rrbracket=\llbracket u \rrbracket$ for every axiom $t \equiv u$.
Theorem
- For every presentation, there is a graded monad with the closest algebras possible
- For every sifted-cocontinuous graded monad, there is a presentation with the same algebras

Locally graded categories [Wood '76]

Definition

A locally graded category C consists of

- a collection $|C|$ of objects
- graded sets $C(X, Y)$ of morphisms $(f: X-e \rightarrow Y$ means $f \in C(X, Y) e)$
- identities $\operatorname{id}_{X}: X-1 \rightarrow X$
- composition

$$
\frac{f: X-e \rightarrow Y \quad g: Y-e^{\prime} \rightarrow Z}{g \circ f: X-e \cdot e^{\prime} \rightarrow Z}
$$

natural in e, e^{\prime}
such that

$$
\operatorname{id}_{Y} \circ f=f=f \circ \operatorname{id}_{X} \quad(h \circ g) \circ f=h \circ(g \circ f)
$$

Locally graded categories [Wood '76]

Definition

A locally graded category C consists of

- a collection $|C|$ of objects
- graded sets $C(X, Y)$ of morphisms ($f: X-e \rightarrow Y$ means $f \in \mathcal{C}(X, Y) e)$
- identities $\operatorname{id}_{X}: X-1 \rightarrow X$
- composition

$$
\frac{f: X-e \rightarrow Y \quad g: Y-e^{\prime} \rightarrow Z}{g \circ f: X-e \cdot e^{\prime} \rightarrow Z}
$$

natural in e, e^{\prime}
such that

$$
\operatorname{id}_{Y} \circ f=f=f \circ \operatorname{id}_{X} \quad(h \circ g) \circ f=h \circ(g \circ f)
$$

(These are categories enriched over $\left[\mathbb{N}_{\leq}\right.$, Set $]$with Day convolution)

Locally graded categories

The locally graded category $\operatorname{GObj}($ Set $)$:

- Objects are graded sets
- Morphisms $f: X-e \rightarrow Y$ are families of functions $f_{d}: X d \rightarrow Y(d \cdot e)$, natural in d
- Identities are the identity functions
- Composition $g \circ f$ is

$$
(g \circ f)_{d}: X d \xrightarrow{f_{d}} Y(d \cdot e) \xrightarrow{g_{d \cdot e}} Z\left(d \cdot e \cdot e^{\prime}\right)
$$

For example, $(\lambda x .[x, x, x])^{\dagger}: \operatorname{List} X-3 \rightarrow \operatorname{List} X$

$$
\left[x_{1}, \ldots, x_{n}\right] \mapsto\left[x_{1}, x_{1}, x_{1}, \ldots, x_{n}, x_{n}, x_{n}\right]
$$

Locally graded categories

The locally graded category Free(Set):

- Objects are sets
- Morphisms are given by

$$
\operatorname{Free}(\operatorname{Set})(X, Y) d= \begin{cases}\operatorname{Set}(X, Y) & \text { if } d \geq 1 \\ 0 & \text { otherwise }\end{cases}
$$

- Identities and composition are as in Set

Functors

Definition

A functor $F: C \rightarrow \mathcal{D}$ between locally graded categories is an object mapping $F:|C| \rightarrow|\mathcal{D}|$ with a mapping of morphisms

$$
\frac{f: X-e \rightarrow Y}{F f: F X-e \rightarrow F Y}
$$

natural in e, and preserving identities and composition.

Locally graded categories

The locally graded category Free(Set):

- Objects are sets
- Morphisms are given by

$$
\operatorname{Free}(\operatorname{Set})(X, Y) d= \begin{cases}\operatorname{Set}(X, Y) & \text { if } d \geq 1 \\ 0 & \text { otherwise }\end{cases}
$$

- Identities and composition are as in Set Functor $K:$ Free(Set) \rightarrow GObj(Set):

$$
K X d= \begin{cases}X & \text { if } d \geq 1 \\ 0 & \text { otherwise }\end{cases}
$$

$$
(K f)_{d}= \begin{cases}f & \text { if } d \geq 1 \\ 0 & \text { otherwise }\end{cases}
$$

Locally graded categories

The locally graded category Free(Set):

- Objects are sets
- Morphisms are given by

$$
\operatorname{Free}(\operatorname{Set})(X, Y) d= \begin{cases}\operatorname{Set}(X, Y) & \text { if } d \geq 1 \\ 0 & \text { otherwise }\end{cases}
$$

- Identities and composition are as in Set

Functor $K:$ Free(Set) \rightarrow GObj(Set):

$$
\begin{gathered}
K X d=\left\{\begin{array}{ll}
X & \text { if } d \geq 1 \\
0 & \text { otherwise }
\end{array} \quad(K f)_{d}= \begin{cases}f & \text { if } d \geq 1 \\
0 & \text { otherwise }\end{cases} \right. \\
\frac{K X-e \rightarrow Y}{X \rightarrow Y e}
\end{gathered}
$$

Relative monads [Altenkirch, Chapman, Uustalu '15]

Definition

A J-relative monad T (for $J: \mathcal{J} \rightarrow C$) consists of:

- object mapping $T:|\mathcal{J}| \rightarrow|C|$
- unit morphisms $\eta_{X}: J X-1 \rightarrow T X$
- Kleisli extension $\frac{f: J X-e \rightarrow T Y}{f^{\dagger}: T X-e \rightarrow T Y}$ natural in e
such that the monad laws hold:

$$
f^{\dagger} \circ \eta_{X}=f \quad \eta_{X}^{\dagger}=\operatorname{id}_{T X} \quad\left(g^{\dagger} \circ f\right)^{\dagger}=g^{\dagger} \circ f^{\dagger}
$$

Relative monads [Altenkirch, Chapman, Uustalu '15]

Definition

A J-relative monad T (for $J: \mathcal{J} \rightarrow C$) consists of:

- object mapping $T:|\mathcal{J}| \rightarrow|C|$
- unit morphisms $\eta_{X}: J X-1 \rightarrow T X$
- Kleisli extension $\frac{f: J X-e \rightarrow T Y}{f^{\dagger}: T X-e \rightarrow T Y}$ natural in e
such that the monad laws hold:

$$
f^{\dagger} \circ \eta_{X}=f \quad \eta_{X}^{\dagger}=\operatorname{id}_{T X} \quad\left(g^{\dagger} \circ f\right)^{\dagger}=g^{\dagger} \circ f^{\dagger}
$$

Each has an Eilenberg-Moore construction

$$
U_{\mathrm{T}}: \operatorname{EM}(\mathrm{T}) \rightarrow \operatorname{GObj}(\text { Set })
$$

satisfying nice properties

$(K:$ Free $($ Set $) \rightarrow \operatorname{GObj}($ Set $))$-relative monads

These are just graded monads:

- Assignment on objects:

$$
T: \mid \text { Free(Set) }|\rightarrow| \operatorname{GObj}(\text { Set }) \mid
$$

- Unit:

$$
\eta_{X}: K X-1 \rightarrow T X
$$

- Kleisli extension:

$$
\frac{f: K X-e \rightarrow T Y}{f^{\dagger}: T X-e \rightarrow T Y}
$$

($K:$ Free $($ Set $) \rightarrow \operatorname{GObj}($ Set $)$)-relative monads

These are just graded monads:

- Assignment on objects:

$$
T: \mid \text { Set }|\rightarrow| \text { GObj(Set }) \mid
$$

- Unit:

$$
\eta_{X}: K X-1 \rightarrow T X
$$

- Kleisli extension:

$$
\frac{f: K X-e \rightarrow T Y}{f^{\dagger}: T X-e \rightarrow T Y}
$$

$(K:$ Free $($ Set $) \rightarrow \operatorname{GObj}($ Set $)$)-relative monads

These are just graded monads:

- Assignment on objects:

$$
T: \mid \text { Set }|\rightarrow| \operatorname{GObj}(\text { Set }) \mid
$$

- Unit:

$$
\frac{X \rightarrow T X 1}{\overline{\eta_{X}: K X-1 \rightarrow T X}}
$$

- Kleisli extension:

$$
\frac{f: K X-e \rightarrow T Y}{f^{\dagger}: T X-e \rightarrow T Y}
$$

$(K: \operatorname{Free}($ Set $) \rightarrow \operatorname{GObj}($ Set $))$-relative monads

These are just graded monads:

- Assignment on objects:

$$
T: \mid \text { Set }|\rightarrow| \text { GObj(Set }) \mid
$$

- Unit:

$$
\frac{X \rightarrow T X 1}{\overline{\eta_{X}: K X-1 \rightarrow T X}}
$$

- Kleisli extension:

$$
\xlongequal[\overline{\frac{f: K X-e \rightarrow T Y}{f^{\dagger}: T X-e \rightarrow T Y}}]{\overline{T X d \rightarrow T Y(d \cdot e)}} \text { nat. in } d
$$

$(K: \operatorname{Free}($ Set $) \rightarrow \operatorname{GObj}($ Set $))$-relative monads

These are just graded monads:

- Assignment on objects:

$$
T: \mid \text { Set }|\rightarrow| \operatorname{GObj}(\text { Set }) \mid
$$

- Unit:

$$
\frac{X \rightarrow T X 1}{\overline{\eta_{X}: K X-1 \rightarrow T X}}
$$

- Kleisli extension:

$$
\frac{X \rightarrow T Y e}{\frac{\overline{f: K X-e \rightarrow T Y}}{f^{\dagger}: T X-e \rightarrow T Y}} \overline{\overline{T X d \rightarrow T Y(d \cdot e)}} \text { nat. in } d
$$

Flexibly graded monads

Definition

A flexibly graded monad is a monad on GObj(Set), i.e. a $\left(\operatorname{Id}_{\mathrm{GObj}(\mathrm{Set})}: \operatorname{GObj}(\right.$ Set $) \rightarrow \mathrm{GObj}($ Set $)$)-relative monad.

Flexibly graded monads

Definition

A flexibly graded monad is a monad on GObj(Set), i.e. a $\left(\operatorname{Id}_{\mathrm{GObj}(\mathrm{Set})}: \operatorname{GObj}(\right.$ Set $) \rightarrow \mathrm{GObj}($ Set $)$)-relative monad.

Example

List $_{\text {flex }}$ has graded monoids as algebras

$$
\operatorname{List}_{\mathrm{flex}} X e=\operatorname{colim}_{\vec{n} \in S_{e}} \prod_{i} X n_{i}
$$

where S_{e} is lists $\left(n_{1}, \ldots, n_{k}\right)$ with sum $\leq e$.

Flexibly graded monads

Definition

A flexibly graded monad is a monad on $\operatorname{GObj}($ Set $)$, i.e. a $\left(\operatorname{Id}_{\mathrm{GObj}(\mathrm{Set})}: \operatorname{GObj}(\right.$ Set $) \rightarrow \mathrm{GObj}($ Set $)$)-relative monad.

Example
List $_{\text {flex }}$ has graded monoids as algebras

$$
\operatorname{List}_{\mathrm{flex}} X e=\operatorname{colim}_{\vec{n} \in S_{e}} \prod_{i} X n_{i}
$$

where S_{e} is lists $\left(n_{1}, \ldots, n_{k}\right)$ with sum $\leq e$.
Theorem
There is an algebra-preserving correspondence between

- flexibly graded presentations
- flexibly graded monads that preserve conical sifted colimits

Flexibly graded to rigidly graded

Every flexibly graded monad T restricts to a (rigidly) graded monad [T] by

$$
\lfloor T\rfloor X=T(K X)
$$

This is universal:

and free $\lfloor\mathrm{T}\rfloor$-algebras are free T-algebras

Example: $\left\lfloor\operatorname{List}_{f l e x}\right\rfloor \cong$ List

Presenting graded monads

Given a flexibly graded presentation:

1. there is a flexibly graded monad T with the same algebras
2. so there is a universal graded monad $\lfloor T\rfloor$
3. and free $\lfloor T\rfloor$-algebras form free algebras for the presentation

Presenting graded monads

Given a flexibly graded presentation:

1. there is a flexibly graded monad T with the same algebras
2. so there is a universal graded monad $\lfloor T\rfloor$
3. and free $\lfloor T\rfloor$-algebras form free algebras for the presentation

For the presentation of graded monoids:

1. the flexibly graded monad is List flex
2. the universal graded monad is $\left\lfloor\operatorname{List}_{\text {flex }}\right\rfloor \cong$ List
3. so the free List-algebras List X form free graded monoids
flexibly graded presentations

graded presentations
 flexibly graded monads satisfying colimit condition

graded monads
satisfying colimit condition
